首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eugene C. Weinbach  Joel Garbus 《BBA》1968,162(4):500-505
Interaction with uncoupling reagents at minimally effective concentrations enhanced the response of freshly isolated rat-liver mitochondria to the action of snake-venom phospholipases. This study corroborated previous findings with proteinases that uncoupling reagents increase the susceptibility of freshly isolated mitochondria to enzymatic attack, as determined by turbidimetric and titrimetric techniques. It is postulated that this effect of uncoupling reagents is due to their binding to protein constituents of the mitochondrial membranes, and a subsequent derangement of the protein-phospholipid organization. The possible relevance of the phenomenon to uncoupling of oxidative phosphorylation is discussed.  相似文献   

2.
In vitro, uncoupling protein 3 (UCP3)-mediated uncoupling requires cofactors [e.g., superoxides, coenzyme Q (CoQ) and fatty acids (FA)] or their derivatives, but it is not yet clear whether or how such activators interact with each other under given physiological or pathophysiological conditions. Since triiodothyronine (T3) stimulates lipid metabolism, UCP3 expression and mitochondrial uncoupling, we examined its effects on some biochemical pathways that may underlie UCP3-mediated uncoupling. T3-treated rats (Hyper) showed increased mitochondrial lipid-oxidation rates, increased expression and activity of enzymes involved in lipid handling and increased mitochondrial superoxide production and CoQ levels. Despite the higher mitochondrial superoxide production in Hyper, euthyroid and hyperthyroid mitochondria showed no differences in proton-conductance when FA were chelated by bovine serum albumin. However, mitochondria from Hyper showed a palmitoyl-carnitine-induced and GDP-inhibited increased proton-conductance in the presence of carboxyatractylate. We suggest that T3 stimulates the UCP3 activity in vivo by affecting the complex network of biochemical pathways underlying the UCP3 activation.  相似文献   

3.
The cupro-zinc enzyme superoxide dismutase (SOD) undergoes an irreversible (oxidative) inactivation when exposed to its product, hydrogen peroxide (H2O2). Recent studies have shown that several oxidatively modified proteins (e.g., hemoglobin, albumin, catalase, etc.) are preferentially degraded by a novel proteolytic pathway in the red blood cell. We report that bovine SOD is oxidatively inactivated by exposure to H2O2, and that the inactivated enzyme is selectively degraded by proteolytic enzymes in cell-free extracts of bovine erythrocytes. For example, 95% inactivation of SOD by 1.5 mM H2O2 was accompanied by a 106 fold increase in the proteolytic susceptibility of the enzyme during (a subsequent) incubation with red cell extract. Both SOD inactivation and proteolytic susceptibility increased with H2O2 concentration and/or time of exposure to H2O2. Pre-incubation of red cell extracts with metal chelators, serine reagents, or sulfhydryl reagents inhibited the (subsequent) preferential degradation of H2O2-modified SOD. Furthermore, a slight inhibition of degradation was observed with the addition of ATP. We suggest that H2O2-inactivated SOD is recognized and preferentially degraded by the same. ATP-independent, metallo- serine- and sulfhydryl- proteinase pathway which degrades other oxidatively denatured red cell proteins. Related work in this laboratory suggests that this novel proteolytic pathway may actually consist of a 700 kDa enzyme complex of proteolytic activities. Mature red cells have no capacity for de novo protein synthesis but do have extremely high concentrations of SOD. Red cell SOD generates (and is, therefore, exposed to) H2O2 on a continuous basis, by dismutation of superoxide (from hemoglobin autooxidation and the interaction of hemoglobin with numerous xenobiotics).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
GDP binding, proton conductance and the specific concentration of uncoupling protein were measured in brown-adipose-tissue mitochondria of rats treated acutely with the novel beta-agonist, BRL 26830A. At 1 h after dosing with BRL 26830A, mitochondrial GDP binding was increased more than 2-fold. The increase in binding resulted from an increase in the number of binding sites. An iterative analysis of Scatchard binding data suggested that there is only one high-affinity GDP-binding site (Kd 0.3 microM) in brown-adipose-tissue mitochondria. The acute increase in GDP binding produced by treatment with BRL 26830A occurred without any alteration in the specific mitochondrial concentration of uncoupling protein, as determined by radioimmunoassay. Treatment with the beta-agonist did, however, lead to a small increase in the GDP-sensitive component of mitochondrial proton conductance. These results indicate that GDP-binding sites on uncoupling protein can be rapidly unmasked after treatment with a brown-fat-specific beta-agonist, and that the increase in binding reflects an increase in the activity of the mitochondrial proton-conductance pathway.  相似文献   

5.
Rats, previously acclimated to 29 degrees C, were moved into the cold (4 degrees C) for 2 h. Scatchard analysis of GDP binding to the brown-adipose-tissue mitochondria of these animals showed a 2.3-fold increase in the number of high-affinity sites and a 1.5-fold increase in the number of low-affinity sites compared with binding in animals maintained at 29 degrees C. Immunochemical determination showed no increase in the amount of mitochondrial uncoupling protein during this period. This strongly suggests an unmasking of existing GDP-binding sites before a detectable increase in synthesis of uncoupling protein can occur. Washing with albumin increased the number of GDP-binding sites of brown-adipose-tissue mitochondria from both warm-housed and cold-exposed animals to the same extent. This indicates that the effects of washing with albumin and cold exposure are independent and additive.  相似文献   

6.
Homogeneous yeast cytoplasmic and mitochondrial phenylalanyl-tRNA synthetases (L-phenylalanine:tRNAPhe ligase (AMP-forming), EC 6.1.1.20) are analysed for structural differences. Only the large subunit of the mitochondrial enzyme is a glycoprotein with nearly 3% carbohydrate by weight. The carbohydrates present are: glucose, N-acetylglucosamine, mannose, galactose and N-acetylneuraminic acid. Removal of the sugar moieties yields an activity increase, but no significant change of sensitivity to proteolytic degradation. Antibodies to both homogeneous enzymes demonstrate a structural similarity for both types of subunit using the highly sensitive immunoblotting technique.  相似文献   

7.
The autodigestive proteolytic activity of extracts of cotyledons of mung beans (Phaseolus aureus Roxb.) increased 4- to 5-fold during germination. A similar increase was found in the ability of these extracts to digest added casein or mung bean globulins. The increase occurred after a 2-day lag during the next 2 to 3 days of germination and coincided with the period of rapid storage protein breakdown. To understand which enzyme(s) may be responsible for this increase in proteolytic activity, the hydrolytic activity of cotyledon extracts toward a number of synthetic substrates and proteins was measured. Germination was accompanied by a marked decline in leucine aminopeptidase, while carboxypeptidase increased about 50%. There were no dramatic changes in either α-mannosidase or N-acetyl-β-glucosaminidase, enzymes which may be involved in the metabolism of the carbohydrate moieties of the reserve glycoproteins. The increase in general proteolytic activity was closely paralleled by a 10-fold increase in endopeptidase activity. This activity was inhibited by sulfhydryl reagents such as N-ethylmaleimide. Studies with inhibitors of proteolytic enzymes showed that reagents which blocked sulfhydryl groups also inhibited the rise in general proteolytic activity. Our results suggest that the appearance of a sulfhydryl-type endopeptidase activity is a necessary prerequisite for the rapid metabolism of the reserve proteins which accompanies germination.  相似文献   

8.
When present in high copy number plasmids, the nuclear genes MRS3 and MRS4 from Saccharomyces cerevisiae can suppress the mitochondrial RNA splicing defects of several mit- intron mutations. Both genes code for closely related proteins of about Mr 32,000; they are 73% identical. Sequence comparisons indicate that MRS3 and MRS4 may be related to the family of mitochondrial carrier proteins. Support for this notion comes from a structural analysis of these proteins. Like the ADP/ATP carrier protein (AAC), the mitochondrial phosphate carrier protein (PiC) and the uncoupling protein (UCP), the two MRS proteins have a tripartite structure; each of the three repeats consists of two hydrophobic domains that are flanked by specific amino acid residues. The spacing of these specific residues is identical in all domains of all proteins of the family, whereas spacing between the hydrophobic domains is variable. Like the AAC protein, the MRS3 and MRS4 proteins are imported into mitochondria in vitro and without proteolytic cleavage of a presequence and they are located in the inner mitochondrial membrane. In vivo studies support this mitochondrial localization of the MRS proteins. Overexpression of the MRS3 and MRS4 proteins causes a temperature-dependent petite phenotype; this is consistent with a mitochondrial function of these proteins. Disruption of these genes affected neither mitochondrial functions nor cellular viability. Their products thus have no essential function for mitochondrial biogenesis or for whole yeast cells that could not be taken over by other gene products. The findings are discussed in relation to possible functions of the MRS proteins in mitochondrial solute translocation and RNA splicing.  相似文献   

9.
10.
Addition of the cold-stress-related protein CSP 310 to mitochondria isolated from winter wheat ( Triticum aestivum L. cv. Zalarinka), winter rye ( Secale cereale L. cv. Dymka), maize ( Zea mays L. cv. VIR 36) and pea ( Pisum sativum L. cv. Marat) caused an increase in non-phosphorylative respiration. This increase was inhibited by KCN, indicating that the protein is not a CN-resistant alternative oxidase. Unlike plant mitochondrial uncoupling proteins such as PUMP, the uncoupling action of CSP 310 did not depend on the presence of free fatty acids in the incubation medium. We propose that the mechanism of the uncoupling action of CSP 310 differs from that of other known plant uncoupling systems and that the CSP 310 uncoupling system is a third uncoupling system in cereals.  相似文献   

11.
The effect of triiodothyronine (T3) on mitochondrial efficiency could be related to an increase in the concentrations of some proteins, such as uncoupling proteins (UCPs). Free fatty acids (FFA) seem to be a cofactor essential for the uncoupling activity of UCP3. In this paper, we report that the hypothyroidism-hyperthyroidism transition is accompanied by increases: (i) in the endogenous levels of mitochondrial FFA and (ii) in the sensitivity to FFA shown by the mitochondrial respiration rate and membrane potential, which correlated with the level of UCP3 protein. The level of the mRNA for adenine-nucleotide translocase-1 (ANT) was not affected by the thyroid state, while the ANT contribution to FFA-induced changes in mitochondrial uncoupling was low in the hypothyroid and euthyroid states but became more relevant in the hyperthyroid state at the highest concentration of FFA.  相似文献   

12.
We have previously reported increased O(2) consumption unrelated to active transport by tubular cells and up-regulated mitochondrial uncoupling protein (UCP)-2 expressions in diabetic kidneys. It is presently unknown if the increased UCP-2 levels in the diabetic kidney results in mitochondrial uncoupling and increased O(2) consumption, which we therefore investigated in this study. The presence of UCP-2 in proximal tubular cells was confirmed by immunohistochemistry and found to be increased (western blot) in homogenized tissue and isolated mitochondria from kidney cortex of diabetic rats. Isolated proximal tubular cells had increased total and ouabain-insensitive O(2) consumption compared to controls. Isolated mitochondria from diabetic animals displayed increased glutamate-stimulated O(2) consumption (in the absence of ADP and during inhibition of the ATP-synthase by oligomycin) compared to controls. Guanosine diphosphate, an UCP inhibitor, and bovine serum albumin which removes fatty acids that are essential for UCP-2 uncoupling activity, independently prevented the increased glutamate-stimulated O(2) consumption in mitochondria from diabetic animals. In conclusion, diabetic rats have increased mitochondrial UCP-2 expression in renal proximal tubular cells, which results in mitochondrial uncoupling and increased O(2) consumption. This mechanism may be protective against diabetes-induced oxidative stress, but will increase O(2) usage. The subsequently reduced O(2) availability may contribute to diabetes-induced progressive kidney damage.  相似文献   

13.
The mechanism of uncoupling by lauryl sulfate (LS) has been studied. The very fact that uncoupling by low concentration of LS (a strong acid) resembles very much that by fatty acids (weak acids) was used as an argument against the fatty acid cycling scheme of uncoupling where protonated fatty acids operate as a protonophore. We have found that rat liver and heart muscle mitochondria can be uncoupled by low (70 microM) LS concentration in a fashion completely arrested by the ATP/ADP antiporter inhibitor carboxyatractylate (CAtr). On the other hand, uncoupling by two-fold higher LS concentration is not sensitive to CAtr. Addition of oleate desensitizes mitochondria to low LS so that addition of bovine serum albumin becomes necessary to recouple mitochondria. The data are accounted for assuming that low LS releases endogenous fatty acids from some mitochondrial depots, and these fatty acids are responsible for uncoupling. As to high LS, it causes a nonspecific (CAtr-insensitive) damage to the mitochondrial membrane.  相似文献   

14.
Low concentrations of beta-bungarotoxin or bee-venom phospholipase A2 cause a progressive Ca2+-dependent increase in the proton permeability of the mitochondria within the synaptosomal cytosol, manifested as an increase in oligomycin-insensitive respiration and a partial depolarization of the mitochondrial membrane potential. This uncoupling appears to be a consequence of fatty acids liberated by phospholipase A2 activity at the plasma membrane, since it can be mimicked by the addition of oleate-albumin complexes, in which case there is no requirement for external Ca2+. Dendrotoxin does not affect the mitochondrial proton permeability in situ, but protects partially against the uncoupling action of beta-bungarotoxin. In contrast, this effect of bee-venom phospholipase A2 is unaffected by dendrotoxin. beta-Bungarotoxin, but not bee-venom phospholipase A2, induces a slow progressive depolarization of the plasma membrane. The action of beta-bungarotoxin at the plasma membrane appears not to be related to fatty acid production, since it is augmented rather than inhibited by raising albumin concentrations in the medium. It is concluded that beta-bungarotoxin has at least two actions on intact synaptosomes, both of which may involve interaction at the plasma membrane with a site common to dendrotoxin: first, a mitochondrial uncoupling mediated by fatty acids and, secondly, a depolarization at the plasma membrane.  相似文献   

15.
The uncoupling proteins (UCPs) are thought to uncouple oxidative phosphorylation in the mitochondria and thus generate heat. One of the UCP isoforms, UCP3, is abundantly expressed in skeletal muscle, the major thermogenic tissue in humans. UCP3 has been overexpressed at high levels in yeast systems, where it leads to the uncoupling of cell respiration, suggesting that UCP3 may indeed be capable of dissipating the mitochondrial proton gradient. This effect, however, was recently shown to be a consequence of the high level of expression and incorrect folding of the protein and not to its intrinsic uncoupling activity. In the present study, we investigated the properties of UCP3 overexpressed in a relevant mammalian host system such as the rat myoblast L6 cell line. UCP3 was expressed in relatively low levels (< 1 microg x mg(-1) membrane protein) with the help of an adenovirus vector. Immunofluorescence microscopy of transduced L6 cells showed that UCP3 was expressed in more than 90% of the cells and that its staining pattern was characteristic for mitochondrial localization. The oxygen consumption of L6 cells under nonphosphorylating conditions increased concomitantly with the levels of UCP3 expression. However, uncoupling was associated with an inhibition of the maximal respiratory capacity of mitochondria and was not affected by purine nucleotides and free fatty acids. Moreover, recombinant UCP3 was resistant to Triton X-100 extraction under conditions that fully solubilize membrane bound proteins. Thus, UCP3 can be uniformly overexpressed in the mitochondria of a relevant muscle-derived cell line resulting in the expected increase of mitochondrial uncoupling. However, our data suggest that the protein is present in an incompetent conformation.  相似文献   

16.
Proteolytic enzymes were characterized in the midgut and the excreta of the stable fly Stomoxys calcitrans (L) with proteins, synthetic substrates, and inhibitors. Inhibition studies suggested trypsinlike activity in sugar-fed fly midguts, whereas excreta and blood-fed fly guts exhibited other proteases. Trypsinlike activity in midguts removed 20 and 30 h after a blood meal increased from 20% to 50% of the total proteolytic enzymes present. Trypsinlike activity was inhibited with human sera, trypsin-specific inhibitors, and a protein isolated from the stable fly thorax. When human albumin and globulin fractions were incubated with trypsinlike enzymes isolated from the midgut and excreta, the albumin fraction was less inhibitory than the globulin fractions and was readily hydrolyzed by the proteolytic enzymes. These results may indicate that the proteolytic enzymes produce an abortive complex with the globulin fractions of the sera. Such a complex may explain the temporary inhibition of proteolysis by the blood meal. Soybean trypsin inhibitor fed to stable flies caused 50% inhibition in proteolytic activity in the midguts of sugar-fed stable flies and 25% inhibition in the midguts of blood-fed stable flies. Complete inhibition of proteolytic enzyme activity was achieved only in vitro. pH profiles of proteolytic enzyme activity isolated from the excreta of blood-fed stable flies indicated that several proteolytic enzymes were excreted.  相似文献   

17.
Oxidative stress has been postulated as one of the mechanisms underlying the estrogen carcinogenic effect in breast cancer. Estrogens are known to increase mitochondrial-derived reactive oxygen species (ROS) by an unknown mechanism. Given that uncoupling proteins (UCPs) are key regulators of mitochondrial energy efficiency and ROS production, our aim was to check the presence and activity of UCPs in estrogen receptor (ER)-positive and ER-negative breast cancer cells and tumors, as well as their relation to oxidative stress. Estrogen (1 nM) induced higher oxidative stress in the ER-positive MCF-7 cell line, showing increased mitochondrial membrane potential, H2O2 levels, and DNA and protein damage compared to ER-negative MDA-MB-231 cells. All isoforms of uncoupling proteins were highly expressed in ER-positive breast cancer cells and tumors compared to negative ones. ROS production in mitochondria isolated from MCF-7 was increased by inhibition of UCPs with GDP, but not in mitochondria from MDA-MB-231. Estrogen treatment decreased uncoupling protein and catalase levels in MCF-7 and decreased GDP-dependent ROS production in isolated mitochondria. On the whole, these results suggest that estrogens, through an ER-dependent mechanism, may increase mitochondrial ROS production by repressing uncoupling proteins, which offers a new perspective on the understanding of why estrogens are a risk factor for breast cancer.  相似文献   

18.
Small, round-structured viruses (SRSV) were detected in 14 of 300 fecal specimens obtained from patients with acute gastroenteritis by electron microscopy. These SRSV strains were morphologically indistinguishable from one another. While 11 of these strains had a single usual major structural protein with molecular weight of 63,000 (63K) daltons (p63), interestingly, three strains possessed a single major structural protein with molecular weight of 33K daltons (p33). Treatments of p63-SRSV with proteolytic enzymes or denaturating reagents did not affect the molecular weight of p63, and the p33 was not detectable by Western immunoblot in the ultracentrifugal supernatant of the p63-SRSV suspension. These results suggest that the p33 is neither a definitive subunit of p63 nor disintegrated component derived from the p63-SRSV but a novel polypeptide of SRSV. Immune electron microscopy and Western immunoblot analyses indicated that p63- and p33-SRSVs may share an antigenic determinant(s).  相似文献   

19.
Guanosine diphosphate binding to the uncoupling protein of isolated mitochondria of brown adipose tissue in newborn rabbits was measured as an index of thermogenic activity. The binding was 0.281 +/- 0.022 nmol GDP/mg mitochondrial protein at 1 day of age, 0.214 +/- 0.017 at 3 days, 0.428 +/- 0.038 at 5 days, and 0.208 +/- 0.016 at 7 days. The increase in binding between 3 and 7 days of age suggests that the brown fat has an increased thermogenic capacity at that age. In addition, the potential for synthesis of the uncoupling protein was investigated in 1- to 5-day-old newborn rabbits by probing the total cellular ribonucleic acid for the messenger that codes for uncoupling protein. The amount of uncoupling protein messenger was highest at 1 day of age and declined at least until 5 days of age. Because the amount of uncoupling protein messenger decreased as the GDP binding increased, the results suggest that either the initially translated uncoupling protein was unmasked at about 5 days of age or there was a delay in the incorporation of uncoupling protein into the mitochondrial inner membrane, or both.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号