首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diversity of fungi in permanently frozen soil from northeastern Siberia was studied by culture-independent PCR amplification of diverse environmental 18S rRNA genes. Elaborate protocols to avoid contamination during drilling, sampling, and amplification were used. A broad diversity of eukaryotic DNA sequences that were 510 bp long, including sequences of various fungi, plants, and invertebrates, could be obtained reproducibly from samples that were up to 300,000 to 400,000 years old. The sequences revealed that ancient fungal communities included a diversity of cold-adapted yeasts, dark-pigmented fungi, plant-parasitic fungi, and lichen mycobionts. DNA traces of tree-associated macrofungi in a modern tundra sample indicated that there was a shift in fungal diversity following the last ice age and supported recent results showing that there was a severe change in the plant composition in northeastern Siberia during this period. Interestingly, DNA sequences with high homology to sequences of coprophilic and keratinophilic fungi indicated that feces, hair, skin, and nails could have been sources of ancient megafauna DNA recently reported to be present in small amounts of Siberian permafrost sediments.  相似文献   

2.
Analyses of degraded DNA are typically hampered by contamination, especially when employing universal primers such as commonly used in environmental DNA studies. In addition to false-positive results, the amplification of contaminant DNA may cause false-negative results because of competition, or bias, during the PCR. In this study, we test the utility of human-specific blocking primers in mammal diversity analyses of ancient permafrost samples from Siberia. Using quantitative PCR (qPCR) on human and mammoth DNA, we first optimized the design and concentration of blocking primer in the PCR. Subsequently, 454 pyrosequencing of ancient permafrost samples amplified with and without the addition of blocking primer revealed that DNA sequences from a diversity of mammalian representatives of the Beringian megafauna were retrieved only when the blocking primer was added to the PCR. Notably, we observe the first retrieval of woolly rhinoceros (Coelodonta antiquitatis) DNA from ancient permafrost cores. In contrast, reactions without blocking primer resulted in complete dominance by human DNA sequences. These results demonstrate that in ancient environmental analyses, the PCR can be biased towards the amplification of contaminant sequences to such an extent that retrieval of the endogenous DNA is severely restricted. The application of blocking primers is a promising tool to avoid this bias and can greatly enhance the quantity and the diversity of the endogenous DNA sequences that are amplified.  相似文献   

3.
The taxonomic and ecological diversity of ancient fungal communities was assessed by combining next generation sequencing and metabarcoding of DNA preserved in permafrost. Twenty‐six sediment samples dated 16 000–32 000 radiocarbon years old from two localities in Siberia were analysed for fungal ITS. We detected 75 fungal OTUs from 21 orders representing three phyla, although rarefaction analyses suggested that the full diversity was not recovered despite generating an average of 6677 ± 3811 (mean ± SD) sequences per sample and that preservation bias likely has considerable effect on the recovered DNA. Most OTUs (75.4%) represented ascomycetes. Due to insufficient sequencing depth, DNA degradation and putative preservation biases in our samples, the recovered taxa probably do not represent the complete historic fungal community, and it is difficult to determine whether the fungal communities varied geographically or experienced a composition shift within the period of 16 000–32 000 bp . However, annotation of OTUs to functional ecological groups provided a wealth of information on the historic communities. About one‐third of the OTUs are presumed plant‐associates (pathogens, saprotrophs and endophytes) typical of graminoid‐ and forb‐rich habitats. We also detected putative insect pathogens, coprophiles and keratinophiles likely associated with ancient insect and herbivore faunas. The detection of putative insect pathogens, mycoparasites, aquatic fungi and endophytes broadens our previous knowledge of the diversity of fungi present in Beringian palaeoecosystems. A large group of putatively psychrophilic/psychrotolerant fungi was also detected, most likely representing a modern, metabolically active fungal community.  相似文献   

4.
Analysis of arbuscular mycorrhizal (AM) fungal diversity through morphological characters of spores and intraradicular hyphae has suggested previously that preferential associations occur between plants and AM fungi. A field experiment was established to investigate whether AM fungal diversity is affected by different host plants in upland grasslands. Indigenous vegetation from plots in an unimproved pasture was replaced with monocultures of either Agrostis capillaris or Lolium perenne. Modification of the diversity of AM fungi in these plots was evaluated by analysis of partial sequences in the large subunit (LSU) ribosomal RNA (rDNA) genes. General primers for AM fungi were designed for the PCR amplification of partial sequences using DNA extracted from root tissues of A. capillaris and L. perenne. PCR products were used to construct LSU rDNA libraries. Sequencing of randomly selected clones indicated that plant roots were colonised by AM fungi belonging to the genera Glomus, Acaulospora and Scutellospora. There was a difference in the diversity of AM fungi colonising roots of A. capillaris and L. perenne that was confirmed by PCR using primers specific for each sequence group. These molecular data suggest the existence of a selection pressure of plants on AM fungal communities.  相似文献   

5.
In molecular ecology, the development of efficient molecular markers for fungi remains an important research domain. Nuclear ribosomal internal transcribed spacer (ITS) region was proposed as universal DNA barcode marker for fungi, but this marker was criticized for Indel‐induced alignment problems and its potential lack of phylogenetic resolution. Our main aim was to develop a new phylogenetic gene and a putative functional marker, from single‐copy gene, to describe fungal diversity. Thus, we developed a series of primers to amplify a polymorphic region of the Glycoside Hydrolase GH63 gene, encoding exo‐acting α‐glucosidases, in basidiomycetes. These primers were validated on 125 different fungal genomic DNAs, and GH63 amplification yield was compared with that of already published functional markers targeting genes coding for laccases, N‐acetylhexosaminidases, cellobiohydrolases and class II peroxidases. Specific amplicons were recovered for 95% of the fungal species tested, and GH63 amplification success was strikingly higher than rates obtained with other functional genes. We downloaded the GH63 sequences from 483 fungal genomes publicly available at the JGI mycocosm database. GH63 was present in 461 fungal genomes belonging to all phyla, except Microsporidia and Neocallimastigomycota divisions. Moreover, the phylogenetic trees built with both GH63 and Rpb1 protein sequences revealed that GH63 is also a promising phylogenetic marker. Finally, a very high proportion of GH63 proteins was predicted to be secreted. This molecular tool could be a new phylogenetic marker of fungal species as well as potential indicator of functional diversity of basidiomycetes fungal communities in term of secretory capacities.  相似文献   

6.
Increasing evidence of the fungal diversity in deep-sea sediments has come from amplification of environmental DNA with fungal specific or eukaryote primer sets. In order to assess the fungal diversity in deep-sea sediments of the Central Indian Basin (CIB) at ~5,000 m depth, we amplified sediment DNA with four different primer sets. These were fungal-specific primer pair ITS1F/ITS4 (internal transcribed spacers), universal 18S rDNA primers NS1/NS2, Euk18S-42F/Euk18S-1492R and Euk18S-555F/Euk18S-1269R. One environmental library was constructed with each of the primer pairs, and 48 clones were sequenced per library. These sequences resulted in 8 fungal Operational Taxonomic Units (OTUs) with ITS and 19 OTUs with 18S rDNA primer sets respectively by taking into account the 2% sequence divergence cut-off for species delineation. These OTUs belonged to 20 distinct fungal genera of the phyla Ascomycota and Basidiomycota. Seven sequences were found to be divergent by 79–97% from the known sequences of the existing database and may be novel. A majority of the sequences clustered with known sequences of the existing taxa. The phylogenetic affiliation of a few fungal sequences with known environmental sequences from marine and hypersaline habitat suggests their autochthonous nature or adaptation to marine habitat. The amplification of sequences belonging to Exobasidiomycetes and Cystobasidiomycetes from deep-sea is being reported for the first time in this study. Amplification of fungal sequences with eukaryotic as well as fungal specific primers indicates that among eukaryotes, fungi appear to be a dominant group in the sampling site of the CIB.  相似文献   

7.
Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1. 4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic resolution to identify fungal species and strains, they do provide information on the diversity and dynamics of groups of related species in environmental samples with sufficient resolution to produce discrete bands which can be separated by TGGE. This combination of 18S-rDNA PCR amplification and TGGE community analysis should allow study of the diversity, composition, and dynamics of the fungal community in bulk soil and in the rhizosphere.  相似文献   

8.
H Toju  AS Tanabe  S Yamamoto  H Sato 《PloS one》2012,7(7):e40863
The kingdom Fungi is estimated to include 1.5 million or more species, playing key roles as decomposers, mutualists, and parasites in every biome on the earth. To comprehensively understand the diversity and ecology of this huge kingdom, DNA barcoding targeting the internal transcribed spacer (ITS) region of the nuclear ribosomal repeat has been regarded as a prerequisite procedure. By extensively surveying ITS sequences in public databases, we designed new ITS primers with improved coverage across diverse taxonomic groups of fungi compared to existing primers. An in silico analysis based on public sequence databases indicated that the newly designed primers matched 99% of ascomycete and basidiomycete ITS taxa (species, subspecies or varieties), causing little taxonomic bias toward either fungal group. Two of the newly designed primers could inhibit the amplification of plant sequences and would enable the selective investigation of fungal communities in mycorrhizal associations, soil, and other types of environmental samples. Optimal PCR conditions for the primers were explored in an in vitro investigation. The new primers developed in this study will provide a basis for ecological studies on the diversity and community structures of fungi in the era of massive DNA sequencing.  相似文献   

9.
Jumpponen A  Johnson LC 《Mycologia》2005,97(6):1177-1194
We tested whether fungal communities are impacted by nitrogen deposition or increased precipitation by PCR-amplifying partial fungal rRNA genes from 24 soil and 24 root samples from a nitrogen enrichment and irrigation experiment in a tallgrass prairie at Konza Prairie Biological Station in northeastern Kansas, U.S.A. Obtained fungal sequences represented great fungal diversity that was distributed mainly in ascomycetes and basiodiomycetes; only a few zygomycetes and glomeromycetes were detected. Conservative extrapolated estimates of the fungal species richness suggest that the true richness may be at least twice as high as observed. The effects of nitrogen enrichment or irrigation on fungal community composition, diversity or clone richness could not be unambiguously assessed because of the overwhelming diversity. However, soil communities differed from root communities in diversity, richness and composition. The compositional differences were largely attributable to an abundant, soil-inhabiting group placed as a well-supported sister group to other ascomycetes. This group likely represents a novel group of fungi. We conclude that the great fungal richness in this ecosystem precluded a reliable assessment of anthropogenic impacts on soil or rhizosphere communities using the applied sampling scheme, and that detection of novel fungi in soil may be more a rule than an exception.  相似文献   

10.
11.
Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1.4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic resolution to identify fungal species and strains, they do provide information on the diversity and dynamics of groups of related species in environmental samples with sufficient resolution to produce discrete bands which can be separated by TGGE. This combination of 18S-rDNA PCR amplification and TGGE community analysis should allow study of the diversity, composition, and dynamics of the fungal community in bulk soil and in the rhizosphere.  相似文献   

12.
Next‐generation sequencing technologies have provided unprecedented insights into fungal diversity and ecology. However, intrinsic biases and insufficient quality control in next‐generation methods can lead to difficult‐to‐detect errors in estimating fungal community richness, distributions and composition. The aim of this study was to examine how tissue storage prior to DNA extraction, primer design and various quality‐control approaches commonly used in 454 amplicon pyrosequencing might influence ecological inferences in studies of endophytic and endolichenic fungi. We first contrast 454 data sets generated contemporaneously from subsets of the same plant and lichen tissues that were stored in CTAB buffer, dried in silica gel or freshly frozen prior to DNA extraction. We show that storage in silica gel markedly limits the recovery of sequence data and yields a small fraction of the diversity observed by the other two methods. Using lichen mycobiont sequences as internal positive controls, we next show that despite careful filtering of raw reads and utilization of current best‐practice OTU clustering methods, homopolymer errors in sequences representing rare taxa artificially increased estimates of richness c. 15‐fold in a model data set. Third, we show that inferences regarding endolichenic diversity can be improved using a novel primer that reduces amplification of the mycobiont. Together, our results provide a rationale for selecting tissue treatment regimes prior to DNA extraction, demonstrate the efficacy of reducing mycobiont amplification in studies of the fungal microbiomes of lichen thalli and highlight the difficulties in differentiating true information about fungal biodiversity from methodological artefacts.  相似文献   

13.
Arbuscular mycorrhizal (AM) fungi are important root symbionts that enhance plant nutrient uptake and tolerance to pathogens and drought. While the role of plant dispersal in shaping successional vegetation is well studied, there is very little information about the dispersal abilities of AM fungi. We conducted a trap-box experiment in a recently abandoned quarry at 10 different distances from the quarry edge (i.e. the potential propagule source) over eleven months to assess the short term, within-year, arrival of plant and AM fungal assemblages and hence their dispersal abilities. Using DNA based techniques we identified AM fungal taxa and analyzed their phylogenetic diversity. Plant diversity was determined by transporting trap soil to a greenhouse and identifying emerging seedlings. We recorded 30 AM fungal taxa. These contained a high proportion of ruderal AM fungi (30% of taxa, 79% of sequences) but the richness and abundance of AM fungi were not related to the distance from the presumed propagule source. The number of sequences of AM fungi decreased over time. Twenty seven plant species (30% of them ruderal) were recorded from the soil seed traps. Plant diversity decreased with distance from the propagule source and increased over time. Our data show that AM fungi with ruderal traits can be fast colonizers of early successional habitats.  相似文献   

14.
研究了广西雅长自然保护区和云南西双版纳自然保护区共3个产地的兰科植物羊耳蒜属长茎羊耳蒜Liparis viridiflora的菌根真菌类群区系组成.根内菌根真菌的核糖体基因内转录间隔区序列(rDNA-ITS)采用PCR技术扩增,克隆,测序并构建系统发育树.结果表明,长茎羊耳蒜根内所检测到的真菌大部分为胶膜菌科Tulasnellaceae真菌;根据序列相似性和系统发育分析,所有真菌可归为12个可操作分类单元(OTU),其中胶膜菌科有7个OTUs,达到总数的90.6%,为优势类群.菌根真菌多样性及区系组成在3个不同产地样本之间存在一定的差异;菌根真菌可能和兰科植物的生境适应性存在一定的相关性.  相似文献   

15.
贡嘎蝠蛾幼虫肠道真菌多样性分析   总被引:3,自引:0,他引:3  
[目的]分析贡嘎蝠蛾肠道(Hepialus gonggaensis)幼虫肠道真菌多样性.[方法]采用常规分离与分子鉴定的方法和基于ITS(internal transcribed spacer)基因的RFLP方法,建立贡嘎蝠蛾幼虫肠道真菌的ITS克隆文库,分别用MspⅠ、HaeⅢ和Taq Ⅰ对205个阳性克隆的质粒酶切指纹图谱分析,结果显示有23个不同的RFLP操作分类单元(OTU),对这23个操作分类单元的阳性克隆子进行测序并绘制系统进化树.[结果]结果显示贡嘎蝠蛾幼虫肠道内存在8个属的真菌类群.其中被孢霉属(Mortierella)和丝孢酵母属(Trichosporon)的丰度最高,分别占克隆文库的46.34%和40.00%,鉴定为肠道内的优势真菌类群.用常规分离与分子鉴定方法只获得隐球酵母(Cryptococcus magnus)、Geomyces sp和丝孢酵母(Trichosporon porosum)3个类群的真菌.结合常规分离法与RFLP法能够更有效的分析肠道微生物的多样性,获得更多更全面的微生物多样性信息.  相似文献   

16.
Few studies have addressed the occurrence of fungi in deep-sea sediments, characterized by elevated hydrostatic pressure, low temperature, and fluctuating nutrient conditions. We evaluated the diversity of fungi at three locations of the Central Indian Basin (CIB) at a depth of ~5,000 m using culture-independent approach. Community DNA isolated from these sediments was amplified using universal and fungal-specific internal transcribed spacers and universal 18S rDNA primer pairs. A total of 39 fungal operational taxonomic units, with 32 distinct fungal taxa were recovered from 768 clones generated from 16 environmental clone libraries. The application of multiple primers enabled the recovery of eight sequences that appeared to be new. The majority of the recovered sequences belonged to diverse phylotypes of Ascomycota and Basidiomycota. Our results suggested the existence of cosmopolitan marine fungi in the sediments of CIB. This study further demonstrated that diversity of fungi varied spatially in the CIB. Individual primer set appeared to amplify different fungal taxa occasionally. This is the first report on culture-independent diversity of fungi from the Indian Ocean.  相似文献   

17.
Kauserud H  Lie M  Stensrud O  Ohlson M 《Mycologia》2005,97(6):1215-1224
In this study we present a new approach to characterize fungal diversity with DNA sequencing of mycelium grown from trapped airborne spores. Fungal spores were extracted systematically from air in three boreal forest sites (clear-cut, young and old-growth forests) using an air sampling device. Internal transcribed spacer (ITS) sequences from the nuclear ribosomal DNA (nrDNA) were generated, and the sequences most likely taxon affinities were established through DNA homology searches. Phylogenetic analyses were used to classify similar sequences into operational taxonomic units (OTUs). The analyses indicated that a total of 84 different OTUs had been sampled, 24 basidiomycetes and 60 ascomycetes. OTUs belonging to the ascomycete orders Helotiales and Pleosporales were most frequent (31 and 18 respectively). A total of 54, 29 and 33 OTUs were sampled, respectively, in the old-growth, young and clear-cut forest sites. Although heavy generalization should be avoided due to few replicates, the results could indicate that old-growth boreal forests have significantly higher airborne fungal species richness than recently managed forests. The study shows that the spore-trapping approach has a great potential for targeting and studying anonymous fungi.  相似文献   

18.
Madagascar is known for its high diversity and endemism of fauna and flora. Fungi, however, have been largely overlooked in diversity and evolution studies on the island, and whether fungi exhibit the same patterns as animals and plants has yet to be further examined. We collected fungal sporocarps and ectomycorrhizal (EcM) roots during three opportunistic surveys in five forests in Madagascar and generated a dataset of fungal Internal Transcribed Spacer (ITS) DNA sequences. We analyzed them together with all publicly available fungal ITS DNA sequences and identified 620 Operational Taxonomic Units (OTUs) from Madagascar, 10% of which contained only sequences from our surveys. Two hundred and ninety-two OTUs belonged to EcM species with /russula-lactarius, /boletus, /tomentella-telephora, /cortinarius, and /amanita being the most abundant EcM lineages. Overall, 60% of all fungi and 81% of the EcM species from Madagascar appear to be endemic. We conducted a phylogenetic analysis using all the OTUs in Amanitaceae, Boletaceae, and Russulaceae families to elucidate their relative timing of arrival in Madagascar. We found that most EcM species from Madagascar in the three families diverged less than 22 million years ago (mya), long after the separation of India and Madagascar (88 mya), which is consistent with a dispersal mediated process of arrival to the island. Our study provides the first comprehensive view of the overall DNA-based fungal diversity in Madagascar and the current state of knowledge of EcM fungi based on DNA sequences, useful for further ecological and evolutionary studies. Abstract in Malagasy is available with online material.  相似文献   

19.
Duan  Yulong  Wu  Fasi  He  Dongpeng  Gu  Ji-Dong  Feng  Huyuan  Chen  Tuo  Liu  Guangxiu  Wang  Wanfu 《Aerobiologia》2021,37(4):681-694

The deposition of the airborne microorganisms onto cultural heritage is associated closely with the subsequent biodeterioration. In this study, a systematic investigation was carried out to detect the seasonal variation and diversity of airborne fungal concentration at the World Cultural Heritage Site Maijishan Grottoes in western China. A bio-aerosol sampler was deployed to collect samples over four seasons in 2016. The culturable airborne fungi were isolated, purified and then identified with the extraction of genomic DNA, PCR amplification of ITS rRNA region, sequencing, and phylogenetic analysis. The concentrations of culturable fungi ranged from 216 to 1389 CFU/m3, which varied seasonally with significant differences among the sampling sites. Fifteen different fungal genera were confirmed, among them, Cladosporium was the most predominant fungal genus, followed by Penicillium. The fungal community structure and their relationship with environmental factors were also delineated. The spatial–temporal differences of airborne fungi at Maijishan Grottoes were mainly due to height, rainfall, relative humidity, and temperature. The dominant genera Cladosporium and Penicillium may pose potential threats to the ancient painted sculptures and murals, and monitoring of the airborne fungi at such a heritage site could provide supporting data for the pre-warning and control of fungal outbreaks inside the caves for better management.

  相似文献   

20.
杨丽平  常会会  李杰  张智斌  黄原 《生态学报》2017,37(20):6905-6913
利用DNA复合条形码技术,研究了11个样本的蝗虫肠道共生真菌的多样性。结果显示:ITS在所研究的物种中鉴定了5门16纲29目40属2786 OTU真菌。肠道真菌群落组成分析结果显示:所有物种肠道真菌类群中含量最高的是木耳菌目和银耳目,其中斑翅蝗科的真菌类群多样性相对最高,斑腿蝗科的真菌类群多样性相对最低,表明各蝗虫肠道之间存在着明显的菌群多样性变化。α多样性分析结果显示:斑翅蝗科的共生真菌群落丰富度和多样性最高,斑腿蝗科的则最低。β多样性分析结果显示:(1)同科的各个种的肠道真菌群落结构差异性较小,不同科的种的肠道真菌群落结构差异性较大;(2)剑角蝗科的肠道真菌群落结构与其他物种的相似性均相对较低,而且在两个不同取样地得到的中华剑角蝗的真菌群落结构相似性也相对较低。聚类分析结果显示:(1)同科的蝗虫肠道真菌首先聚到一起,且群落相似性也相对较高;(2)布勒掷孢酵母属、内疣衣属和外瓶霉属3个属在蝗虫肠道真菌中是优势菌属。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号