首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The previous studies showed that gangliosides modulated the ATPase activity of the PMCA from porcine brain synaptosomes [Yongfang Zhao, Xiaoxuan Fan, Fuyu Yang, Xujia Zhang, Arch. Biochem. Biophys. 427 (2004) 204-212]. The effects of gangliosides on the hydrolysis of p-nitrophenyl phosphate (pNPP) catalyzed by the erythrocyte plasma membrane Ca(2+)-ATPase, which was characterized as E(2) conformer of the enzyme, were studied. The results showed that pNPPase activity was stimulated up to seven-fold, depending upon the different gangliosides used with GD1b>GM1>GM2>GM3 approximately Asialo-GM1. Under the same conditions, the ATPase activity was also activated, suggesting that gangliosides should modify both E(1) and E(2) conformer of the enzyme. The Ca(2+), which drove the enzyme to E(1) conformation, inhibited the pNPPase activity, but with the similar half-maximal inhibitory concentrations (IC(50)) in the presence and the absence of gangliosides. Moreover, the pNPPase activity was also inhibited by the raise in ATP concentrations. Gangliosides caused a large increase in V(max), but had no effect on the apparent affinity (K(m)) of the enzyme for pNPP. The kinetic analysis indicated that gangliosides could modulate the erythrocyte PMCA through stabilizing E(2) conformer.  相似文献   

2.
We have previously demonstrated that gangliosides were able to modulate the plasma membrane Ca2+-ATPase (PMCA) from porcine brain synaptosomes and porcine erythrocytes [Y. Zhao, X. Fan, F. Yang, X. Zhang, Arch. Biochem. Biophys. 427 (2004) 204-212 and J. Zhang, Y. Zhao, J. Duan, F. Yang, X. Zhang, Arch. Biochem. Biophys. 444 (2005) 1-6]. The results indicated that the PMCA from porcine erythrocytes responded to gangliosides was different from that from synaptosomes, suggesting that the effects of gangliosides on the PMCA are isoform specific. Most interestingly, GM2 activated the PMCA from porcine erythrocytes at lower concentrations, but inhibited it at higher concentrations. In the present study, we found that GD1b, GM1 and GM3 did not affect the calpain digested PMCA from porcine erythrocytes or the intact enzyme in the presence of calmodulin, while GM2 inhibited it. Moreover, a synthetic peptide of 17 amino acid residues corresponding to the 'receptor' of the calmodulin-binding domain of the enzyme interfered with the inhibition of the enzyme by GM2 in competition assays. Taken together, our results suggested that gangliosides GD1b, GM1, GM2 (lower concentrations) and GM3 stimulated the PMCA by the interaction with calmodulin-binding domain, while the interaction of GM2 with the 'receptor' of the calmodulin-binding domain of the enzyme led to the inhibition of the enzyme.  相似文献   

3.
Our previous study showed an impaired regulation of Ca(2+) homeostasis in cultured cerebellar granule neurons (CGN) from neonatal mice lacking GM2, GD2 and all gangliotetraose gangliosides, due to disruption of the GM2/GD2 synthase (GalNAc-T) gene. In the presence of depolarizing concentration (55 mM) K(+), these cells showed persistent elevation of intracellular Ca(2+) ([Ca(2+)]( i )) leading to apoptosis and cell destruction. This was in contrast to CGN from normal littermates whose survival was enhanced by high K(+). In this study we demonstrate that glutamate has the same effect as K(+) on CGN from these ganglioside-deficient knockout (KO) mice and that apoptosis in both cases is averted by exogenous GM1. Even more effective rescue was obtained with LIGA20, a semi-synthetic derivative of GM1. LC(50) of glutamate in the KO cells was 3.1 microM, compared to 46 microM in normal CGN. [Ca(2+)]( i ) measurement with fura-2 revealed no difference in glutamate-stimulated Ca(2+) influx between the 2 cell types. However, reduction of [Ca(2+)]( i ) following application of Mg(2+) was significantly impaired in the mutant CGN. The rescuing effects of exogenous GM1 and LIGA20 corresponded to their ability to restore Ca(2+) homeostasis. The greater potency of LIGA20 is attributed to its greater membrane permeability with resultant ability to insert into both plasma and nuclear membranes at low concentration (相似文献   

4.
Ca(2+)-dependent ganglioside-binding protein was isolated from a soluble cytosol fraction of mouse brains using a ganglioside affinity column prepared with a mixture of bovine brain gangliosides. It was identified as calmodulin based on the following features identical with those of calmodulin: molecular weight, pI, chromatographic profile and amino acid sequences of lysyl-endopeptidase digests, and ability to activate cyclic nucleotide phosphodiesterase. Bovine brain calmodulin derivatized with 5-dimethylaminonaphthalene-1-sulfonyl (dansyl-calmodulin), tetramethylrhodamine isothiocyanate, or biotin was also shown to bind to the ganglioside affinity column Ca2+ dependently and elute with gangliosides GD1a, GD1b, GT1b, GQ1b, GM1, and GM2, melittin, and trifluoperazine but not with GgOse4Cer and oligosaccharides of GM1, GD1a, and GT1b. Modification of the Lys94 residue of calmodulin by biotinylation drastically reduced the capacity for ganglioside binding. Ganglioside GD1b caused a blue shift and increase in intensity of the fluorescence emission spectrum of dansyl-calmodulin in the presence of Ca2+. The increment in fluorescence was proportional to the amount of GD1b added and was maximal at the molar ratio of GD1b to calmodulin, approximately 7.8. Gangliosides are thus shown to specifically bind to calmodulin, and this binding may be a general mechanism for regulating calmodulin-dependent enzymes with consequent cellular response, such as cell differentiation.  相似文献   

5.
Causes of cellular immunodeficiency frequently associated with cancer remain poorly understood. One possible mechanism is tumor cell membrane shedding of immunosuppressive molecules, such as the sialic acid-containing glycosphingolipids, gangliosides. To explore this interesting hypothesis and establish structure-activity relationships, we examined the effects of a series of highly purified human gangliosides on T cell function. In all, ten individual molecular species of two major biosynthetic pathways were compared for their ability to inhibit human T cell proliferative responses. They include GM1, GD1a, GD1b, and GT1b (the predominant normal brain species), and GM4, GM3, GM2, GD3, GD2 and GQ1b. Strikingly, each HPLC-purified molecule, from the simplest monosialoganglioside to the most complex polysialoganglioside, had potent inhibitory activity; even the ganglioside with the most elemental carbohydrate structure (GM4, one sialic acid linked to a monosaccharide) strongly inhibits T cell proliferative responses to tetanus toxoid (ID90 = 1.5 microM). The data also reveal a complex interplay between elements of oligosaccharide structure in determining immunosuppressive activity. Sialic acid is critical to maximal activity, and (i) immunosuppression is most potent in gangliosides containing a terminal sialic acid. (ii) Total desialylation almost abolishes activity and (iii) partial alteration (lactone formation) reduces activity. (iv) Activity is generally but not always higher with higher numbers of sialic acid residues/molecule, and (v) some larger neutral glycosphingolipids retain measurable immunosuppressive activity. Overall, the potent inhibition by gangliosides supports the hypothesis that shedding of these molecules by tumors creates a highly immunosuppressive microenvironment around the tumor, thereby inhibiting the function of infiltrating host leukocytes and contributing to diminished T cell responses in cancer.  相似文献   

6.
GM1 ganglioside binding to the crude mitochondrial fraction of rat brain and its effect on (Na+, K+)-ATPase were studied, the following results being obtained: (a) the binding process followed a biphasic kinetics with a break at 50 nM-GM1; GM1 at concentrations below the break was stably associated, while over the break it was loosely associated; (b) stably bound GM1 activated (Na+, K+)-ATPase up to a maximum of 43%; (c) the activation was dependent upon the amount of bound GM1 and was highest at the critical concentration of 20 pmol bound GM1 X mg protein-1; (d) loosely bound GM1 suppressed the activating effect on (Na+, K+)-ATPase elicited by firmly bound GM1; (e) GM1-activated (Na+, K+)-ATPase had the same pH optimum and apparent Km (for ATP) as normal (Na+, K+)-ATPase but a greater apparent Vmax; (f) under identical binding conditions (2 h, 37 degrees C, with 40 nM substance) all tested gangliosides (GM1, GD1a, GD1b, GT1b) activated (Na+, K+)-ATPase (from 26-43%); NeuNAc, sodium dodecylsulphate, sulphatide and cerebroside had only a very slight effect. It is suggested that the ganglioside activation of (Na+-K+)-ATPase is a specific phenomenon not related to the amphiphilic and ionic properties of gangliosides, but due to modifications of the membrane lipid environment surrounding the enzyme.  相似文献   

7.
Isolated sarcoplasmic reticulum vesicles in the presence of Mg(2+) and absence of Ca(2+) retain significant ATP hydrolytic activity that can be attributed to the Ca(2+)-ATPase protein. At neutral pH and the presence of 5 mM Mg(2+), the dependence of the hydrolysis rate on a linear ATP concentration scale can be fitted by a single hyperbolic function. MgATP hydrolysis is inhibited by either free Mg(2+) or free ATP. The rate of ATP hydrolysis is not perturbed by vanadate, whereas the rate of p-nitrophenyl phosphate hydrolysis is not altered by a nonhydrolyzable ATP analog. ATP binding affinity at neutral pH and in a Ca(2+)-free medium is increased by Mg(2+) but decreased by vanadate when Mg(2+) is present. It is suggested that MgATP hydrolysis in the absence of Ca(2+) requires some optimal adjustment of the enzyme cytoplasmic domains. The Ca(2+)-independent activity is operative at basal levels of cytoplasmic Ca(2+) or when the Ca(2+) binding transition is impeded.  相似文献   

8.
Human plasma trans-sialidase donor and acceptor specificity   总被引:1,自引:0,他引:1  
Earlier we have isolated from human plasma desialylated low density lipoproteins (dLDL) and showed that, first, dLDL induce cholesterol esters accumulation—the main process accompanying atherosclerosis development. Second, the process of lipoprotein desialylation took place in plasma, and, finally, sialic acids removed from LDL are transferred to other serum glycoconjugates. In this study we have isolated from human plasma an enzyme transferring sialic acid residues (trans-sialidase) by affinity chromatography and studied its donor and acceptor specificity. Isolated enzyme in the presence of saccharide acceptor can remove sialic acids from different lipoproteins, glycoproteins (fetuin, transferrin), and gangliosides (GM3, GD3, GM1, GD1a, GD1b). Plasma enzyme translocates 2-6, 2-3 and to a lower extent 2-8 bonded sialic acids. Sialoglycoconjugates of human serum erythrocytes, serum lipoproteins, glycoproteins, and gangliosides can serve as donors of sialic acid for trans-sialidase. Desialylated lipoproteins, especially dLDL,are more preferable sialic acid acceptors. Transferred sialic acid is found to be 2-6, 2-3,and 2-8 connected.  相似文献   

9.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In order to assess metabolic recycling of sialic acid, GM1 ganglioside [nomenclature of Svennerholm (1964) J. Lipid. Res. 5, 145-155; IUPAC-IUB Recommendations (1977) Lipids 12, 455-468], 14C-radiolabelled at the acetyl group of sialic acid, was intravenously injected into Wistar rats, and the presence of radioactive sialic acid in liver sialoglycolipids (gangliosides) and sialoglycoproteins was ascertained. A time-course study (20 min-72 h) showed that the radioactivity present in the liver distributed in the following fractions, with reciprocal proportion varying with time: the protein (glycoprotein) fraction, the ganglioside fraction and the diffusible fraction, which contained low-Mr compounds, including sialic acid. Ganglioside-linked radioactivity gradually decreased with time; protein-linked radioactivity appeared soon after injection (20 min), reached a maximum around 20 h, then slowly diminished; diffusible radioactivity provided a sharp peak at 4 h, then rapidly decreased till disappearing after 40 h. The behaviour of bound radioactivity in the individual liver gangliosides was as follows: (a) rapid diminution with time in GM1, although with a lower rate at the longer times after injection; (b) early appearance (20 min) with a peak at 1 h, followed by continuous diminution, in GM2; (c) early appearance (20 min), peak at 1 h, diminution till 4 h, followed by a plateau, in GM3; (d) appearance at 60 min, maximum around 40 h and slow diminution thereafter, in GD1a, GD1b and GT1b. A detailed study, accomplished at 40 h after injection, demonstrated that almost all radioactivity present in the protein fraction was released by mild acid treatment and recovered in purified sialic acid; most of radioactive glycoprotein-bound sialic acid was releasable by sialidase action. In addition, the radioactivity present in the different gangliosides was exclusively carried by sialic acid and present in both sialidase-resistant and sialidase-labile residues. Only in the case of GD1a was the specific radioactivity of sialidase-resistant sialic acid superior to that of sialidase-releasable sialic acid. The results obtained lead to the following conclusions: (a) radioactive GM3 and GM2 were produced by degradation of GM1 taken up; GM3 originated partly by a process of neosynthesis; (b) radioactive GM1 consisted in part of residual exogenous GM1 and in part of a neosynthetized product; (c) radioactive GD1a originated in part by direct sialylation of GM1 taken up and in part by a neosynthetic process; (d) radioactive GD1b and GT1b resulted only from neosynthesis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Oehler C  Kopitz J  Cantz M 《Biological chemistry》2002,383(11):1735-1742
A ganglioside-specific sialidase that controls cellular functions such as growth, differentiation, and adhesion has been observed in a variety of cells, but its characterization proved difficult due to firm membrane attachment and lability of the purified enzyme. Here we report on the specificity toward gangliosides and susceptibility to certain inhibitors of a ganglioside sialidase solubilized and purified 5100-fold from human brain. The sialidase removed terminal sialic acids from gangliosides GM3, GM4, GD3, GD2, GD1 a, GD1 b, GT1 b and GQ1 b, but was inactive toward gangliosides with sialic acid in a branching position (as in GM1 and GM2). Lyso-GM3 and -GD1a were good substrates, too, whereas O-acetylation of the sialic acid as in 9-O-acetyl-GD3 caused strongly reduced cleavage. The new influenza virus drug 4-guanidino-2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Zanamivir) exhibited an IC50 value of about 7 x 10(-5) M that was in the range of the 'classical' sialidase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid; the bacterial sialidase inhibitor 4-nitrophenyloxamic acid, however, was ineffective. The glycosaminoglycans heparan sulfate, heparin, chondroitin sulfates A and B, as well as dextran sulfate and suramin, were all strongly inhibitory, suggesting that glycosaminoglycans present on the cell surface or in the extracellular matrix may influence the ability of the sialidase to alter the ganglioside composition of the membrane.  相似文献   

12.
Interactions among four natural neutral sphingolipids (ceramide, glucosyl-ceramide, lactosyl-ceramide and asialo-GM1) and six gangliosides (GM3, GM2, GM1, GD3, GD1a and GT1b) were studied in binary Langmuir monolayers at the air-buffer interface in terms of their molecular packing, compressibility, dipole potential and mixing behavior. The changes of surface organization can be grouped into three sets: (a) binary films of neutral GSLs, and of the latter with ceramide, exhibit thermodynamically unfavorable mixing with mean molecular area expansions and dipole moment hyperpolarization; (b) mixed monolayers of ceramide, or of GlcCer, and gangliosides occur with thermodynamically favorable interactions leading to mean molecular area condensation and depolarisation; (c) binary mixtures of LacCer or Gg4Cer with gangliosides, and all ganglioside species among them, revealed molecular immiscibility characterized by additive mean molecular area and dipole potential, with composition-independent constant collapse pressure. These results disclose basic tendencies of GSLs to molecularly mix or demix, leading to their surface segregation, which may underlay vectorial separation of their specific biosynthetic pathways.  相似文献   

13.
The plasma membrane Ca(2+)-ATPase (PMCA) is an ATP-driven pump that is critical for the maintenance of low resting [Ca(2+)](i) in all eukaryotic cells. Metabolic stress, either due to inhibition of mitochondrial or glycolytic metabolism, has the capacity to cause ATP depletion and thus inhibit PMCA activity. This has potentially fatal consequences, particularly for non-excitable cells in which the PMCA is the major Ca(2+) efflux pathway. This is because inhibition of the PMCA inevitably leads to cytosolic Ca(2+) overload and the consequent cell death. However, the relationship between metabolic stress, ATP depletion and inhibition of the PMCA is not as simple as one would have originally predicted. There is increasing evidence that metabolic stress can lead to the inhibition of PMCA activity independent of ATP or prior to substantial ATP depletion. In particular, there is evidence that the PMCA has its own glycolytic ATP supply that can fuel the PMCA in the face of impaired mitochondrial function. Moreover, membrane phospholipids, mitochondrial membrane potential, caspase/calpain cleavage and oxidative stress have all been implicated in metabolic stress-induced inhibition of the PMCA. The major focus of this review is to challenge the conventional view of ATP-dependent regulation of the PMCA and bring together some of the alternative or additional mechanisms by which metabolic stress impairs PMCA activity resulting in cytosolic Ca(2+) overload and cytotoxicity.  相似文献   

14.
Human placental sialidase: partial purification and characterization   总被引:1,自引:0,他引:1  
A sialidase [EC 3.2.1.18] has been partially purified from human placenta by means of procedures comprising Con A-Sepharose adsorption, ammonium sulfate precipitation, sucrose density gradient centrifugation, and high-pressure liquid chromatography on a Shim pack Diol 300 column. On high-pressure liquid chromatography, most of the beta-galactosidase that comigrated with the sialidase on sucrose density gradient centrifugation was removed. The sialidase was purified 3,600-fold from the preparation obtained by Con A-Sepharose adsorption. The enzyme liberated the sialic acid residues from (alpha 2-3) and (alpha 2-6) sialyllactose, colomic acid, fetuin, and transferrin, but not from bovine submaxillary mucin. The enzyme also hydrolyzed gangliosides GM3, GD1a, and GD1b in the presence of sodium cholate as a detergent, but GM1 and GM2 were less susceptible to the enzyme. The optimum pHs for 4-methylumbelliferyl-N-acetylneuraminate, sialyllactose, fetuin, and GM3 lay between 4.0 and 5.0.  相似文献   

15.
Prior development of a unique androgen-receptor (AR)-negative cell line (HH870) from organ-confined (T2b) human prostate cancer (CaP) enabled comparison of the gangliosides associated with normal and neoplastic prostate epithelial cells, organ-confined versus metastatic (DU 145, PC-3), and AR-negative versus AR-positive CaP cell lines. Resorcinol-HCl and specific monoclonal antibodies were used to characterize gangliosides on 2D-chromatograms, and to visualize them on the cell surface with confocal-fluorescence microscopy. AR-negative cells expressed GM1b, GM2, GD2, GD1a, and GM3. GM1a, GD1b, and GT1b were undetectable. GM1b and GD1a were more prominent in AR-negative than in AR-positive cells. PC-3 and HH870 cells were unique in the expression of O-acetylGD2 (O-AcGD2) and two alpha2,3-sialidase-resistant, alkali-susceptible GMR17-reactive gangliosides. Expression of GD1a, GM1b, doublets of GD3, GD2, and O-AcGD2, and the presence of an additional alkali-labile-14.G2a-reactive ganglioside, two alkali-susceptible, and three alkali-resistant GMR17-reactive gangliosides makes HH870 a potential component of a polyvalent-vaccine for active-specific immunotherapy of CaP.  相似文献   

16.
Composition of gangliosides from ovine testis and spermatozoa   总被引:1,自引:0,他引:1  
Gangliosides were extracted and purified from ovine testis and ejaculated spermatozoa which contained, respectively, 57 and 9 nmol lipid-bound sialic acid per gram wet weight. Fourteen gangliosides were resolved by thin-layer chromatography of testicular gangliosides, of which eleven were purified in sufficient quantity to enable a complete compositional analysis of the carbohydrate residues to be performed. None of the gangliosides contained fucose, but several contained N-glycolylneuraminic acid as a component of the sialic acid species. Relative migration on thin-layer chromatograms relative to known standards, compositional analysis, and selective degradation by specific enzymes were used as the basis for identification. Testis contained members of the ganglio series (GM1, GD1a, GD1b, GT1b, GQ1b), hematoside series (GM3, GD3), and sialosylparagloboside in the molar ratio of 54:40:6, respectively. Testicular GM3, GM1, GD3, GD1a, GD1b and GT1b ran as double bands on thin-layer chromatography which could be accounted for by observed differences in the fatty acid moiety. In addition, the slower migrating band of each pair contained some or all of its sialic acid residues as N-glycolylneuraminic acid, whereas the faster migrating band contained exclusively N-acetylneuraminic acid, except for GM3 where N-acetylneuraminic acid was the sole species in both bands. Thin-layer chromatography of sperm gangliosides revealed seven bands comigrating with equivalent testicular gangliosides. These coincided with the slower migrating bands of testicular GM3, GM1, GD3, GD1a, both bands of GD1b, and possibly both bands of GT1b. Sperm contained only trace amounts of sialosylparagloboside but, in addition, two unidentified bands which were absent from testis were also observed. The molar ratio of the ganglio series to the hematoside series in sperm was 42:58 with GM3 accounting for 42% of total gangliosides.  相似文献   

17.
We examined ganglioside modulation of the activity of the millimolar Ca2(+)-sensitive form (mCANP) of calcium-activated neutral proteinase (CANP), which is enriched in myelin, from brain. GM1, GD1a, GT1a, GM2, and GM4 produced a concentration-dependent increase of mCANP activity. GD1a stimulated the greatest increase of enzyme activity (107%), followed by GT1a, whereas GD1b was inhibitory (56%). GM1, GM2, and GM4 stimulated but less so than GD1a and GT1a. Free N-acetylneuraminic acid, asialo-GM1, GM3, and a ganglioside mixture containing GM1, GD3, GD1a, and GD1b had no effect. The ganglioside-mediated modulation was not affected by trifluoperazine and chlorpromazine (phospholipid-binding antagonists). The mCANP Ca2+ requirement was significantly reduced in the presence of stimulatory gangliosides, and this increased sensitivity varied (10-50-fold) with ganglioside structure. Gangliosides may interact with membrane mCANP and modulate its proteolytic action.  相似文献   

18.
Two major gangliosides from pig spleen lymphocytes, accounting for 57% of the total lipid-bound sialic acids, were isolated and purified to homogeneity by column chromatography on DEAE-Sephadex and silica gel. They were identified as GM3 (II3Neu5GcLacCer), and GD3 (II3(Neu5Gc)2LacCer), by thin-layer chromatography in comparison with standards and by analysis of the constituent sugars. The major fatty acids of these gangliosides were stearic acid and myristic acid, respectively. In addition to these gangliosides, GD2 and bands comigrating on thin-layer chromatography with authentic GM2, GM1, GD1a and GD1b were found. These compounds also occur in pig peripheral blood lymphocytes, where, however, GD3 represents about 70% of the total lipid-bound sialic acid.  相似文献   

19.
The purified PMCA supplemented with phosphatidylcholine was able to hydrolyze pNPP in a reaction media containing only Mg(2+) and K(+). Micromolar concentrations of Ca(2+) inhibited about 75% of the pNPPase activity while the inhibition of the remainder 25% required higher Ca(2+) concentrations. Acidic lipids increased 5-10 fold the pNPPase activity either in the presence or in the absence of Ca(2+). The activation by acidic lipids took place without a significant change in the apparent affinities for pNPP or K(+) but the apparent affinity of the enzyme for Mg(2+) increased about 10 fold. Thus, the stimulation of the pNPPase activity of the PMCA by acidic lipids was maximal at low concentrations of Mg(2+). Although with differing apparent affinities vanadate, phosphate, ATP and ADP were all inhibitors of the pNPPase activity and their effects were not significantly affected by acidic lipids. These results indicate that (a) the phosphatase function of the PMCA is optimal when the enzyme is in its activated Ca(2+) free conformation (E2) and (b) the PMCA can be activated by acidic lipids in the absence of Ca(2+) and the activation improves the interaction of the enzyme with Mg(2+).  相似文献   

20.
A murine monoclonal antibody (mAb), designated mAb 202, was generated using a human melanoma cell line, UCLASO-M14 as the immunogen. mAb 202 reacted with two (GM2 and GM3) of the four (GM2, GM3, GD2, and GD3) gangliosides expressed by M14. Several authentic monosialogangliosides, including GM4, GM3, GM2, GM1, GM1b, and sialylparagloboside were then tested for their binding to 202 mAb by the immune adherence inhibition assay, TLC-enzyme immunostaining, and enzyme-linked immunosorbent assay. All showed positive binding but in varying degrees. GM4 showed the strongest affinity. No significant differences of reactivity were observed between the sialic acid derivatives, N-acetyl and N-glycolyl, in these gangliosides. Disialogangliosides such as GD3, GD2, GD1a, and GD1b, trisialoganglioside GT1b, and neutral glycolipids including GlcCer, GalCer, LacCer, GbOs3Cer, GbOs4Cer, GgOs3Cer, GgOs4Cer, and nLcOs4Cer were all negative. These results indicate that the 202 mAb detects sialyl alpha 2----3Gal residue in the monosialoganglioside, irrespective of the internal structure. Since GM4 is not expressed by M14 cells, the terminal disaccharide (sialyl alpha 2----3Gal) in GM3 and/or GM2 must have been the epitope responsible for the generation of the antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号