首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kao CC  Yang X  Kline A  Wang QM  Barket D  Heinz BA 《Journal of virology》2000,74(23):11121-11128
The RNA-dependent RNA polymerase (RdRp) from hepatitis C virus (HCV), nonstructural protein 5B (NS5B), has recently been shown to direct de novo initiation using a number of complex RNA templates. In this study, we analyzed the features in simple RNA templates that are required to direct de novo initiation of RNA synthesis by HCV NS5B. NS5B was found to protect RNA fragments of 8 to 10 nucleotides (nt) from RNase digestion. However, NS5B could not direct RNA synthesis unless the template contained a stable secondary structure and a single-stranded sequence that contained at least one 3' cytidylate. The structure of a 25-nt template, named SLD3, was determined by nuclear magnetic resonance spectroscopy to contain an 8-bp stem and a 6-nt single-stranded sequence. Systematic analysis of changes in SLD3 revealed which features in the stem, loop, and 3' single-stranded sequence were required for efficient RNA synthesis. Also, chimeric molecules composed of DNA and RNA demonstrated that a DNA molecule containing a 3'-terminal ribocytidylate was able to direct RNA synthesis as efficiently as a sequence composed entirely of RNA. These results define the template sequence and structure sufficient to direct the de novo initiation of RNA synthesis by HCV RdRp.  相似文献   

2.
In contrast to the synthesis of minus-strand genomic and plus-strand subgenomic RNAs, the requirements for brome mosaic virus (BMV) genomic plus-strand RNA synthesis in vitro have not been previously reported. Therefore, little is known about the biochemical requirements for directing genomic plus-strand synthesis. Using DNA templates to characterize the requirements for RNA-dependent RNA polymerase template recognition, we found that initiation from the 3' end of a template requires one nucleotide 3' of the initiation nucleotide. The addition of a nontemplated nucleotide at the 3' end of minus-strand BMV RNAs led to initiation of genomic plus-strand RNA in vitro. Genomic plus-strand initiation was specific since cucumber mosaic virus minus-strand RNA templates were unable to direct efficient synthesis under the same conditions. In addition, mutational analysis of the minus-strand template revealed that the -1 nontemplated nucleotide, along with the +1 cytidylate and +2 adenylate, is important for RNA-dependent RNA polymerase interaction. Furthermore, genomic plus-strand RNA synthesis is affected by sequences 5' of the initiation site.  相似文献   

3.
Initiation of genomic plus-strand RNA synthesis by the brome mosaic virus (BMV) replicase in vitro requires a 26-nucleotide (nt) RNA sequence at the 3' end of the minus-strand RNA and a nontemplated nucleotide 3' of the initiation cytidylate [ Sivakumaran, K. and Kao, C.C. (1999) J. Virol. 64 , 6415–6423]. At the 5' end of this RNA is a 9-nt sequence called the cB box, the complement of the previously defined B box. The cB box can not be functionally replaced by the B box and has specific positional and sequence requirements. The portion of the cB box that is required for RNA synthesis in vitro is well-conserved in species in the Bromoviridae family. An equivalent RNA from Cucumber mosaic virus was unable to direct efficient RNA synthesis by the BMV replicase until the cB box was positioned at the same site relative to the BMV RNA and guanylates were present at positions +6 and +7 from the initiation cytidylate. These results further define the elements required for the recognition and initiation of viral genomic plus-strand RNA synthesis and suggest that a sequence important for minus-strand RNA synthesis is also required for plus-strand RNA synthesis.  相似文献   

4.
Shim JH  Larson G  Wu JZ  Hong Z 《Journal of virology》2002,76(14):7030-7039
De novo RNA synthesis by hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase has been investigated using short RNA templates. Various templates including those derived from the HCV genome were evaluated by examining the early steps of de novo RNA synthesis. NS5B was shown to be able to produce an initiation dinucleotide product from templates as short as 4-mer and from the 3'-terminal sequences of both plus and minus strands of the HCV RNA genome. GMP, GDP, and guanosine were able to act as an initiating nucleotide in de novo RNA synthesis, indicating that the triphosphate moiety is not absolutely required by an initiating nucleotide. Significant amounts of the initiation product accumulated in de novo synthesis, and elongation from the dinucleotide was observed when large amounts of dinucleotide were available. This result suggests that NS5B, a template, and incoming nucleotides are able to form an initiation complex that aborts frequently by releasing the dinucleotide product before transition to an elongation complex. The transition is rate limiting. Furthermore, we discovered that the secondary structure of a template was not essential for de novo initiation and that 3'-terminal bases of a template conferred specificity in selection of an initiation site. Initiation can occur at the +1, +2, or +3 position numbered from the 3' end of a template depending on base composition. Pyrimidine bases at any of the three positions are able to serve as an initiation site, while purine bases at the +2 and +3 positions do not support initiation. This result implies that HCV possesses an intrinsic ability to ensure that de novo synthesis is initiated from the +1 position and to maintain the integrity of the 3' end of its genome. This assay system should be an important tool for investigating the detailed mechanism of de novo initiation by HCV NS5B as well as other viral RNA polymerases.  相似文献   

5.
The brome mosaic virus (BMV) RNA-dependent RNA polymerase (RdRp) directs template-specific synthesis of (-)-strand genomic and (+)-strand subgenomic RNAs in vitro. Although the requirements for (-)-strand RNA synthesis have been characterized previously, the mechanism of subgenomic RNA synthesis has not. Mutational analysis of the subgenomic promoter revealed that the +1 cytidylate and the +2 adenylate are important for RNA synthesis. Unlike (-)-strand RNA synthesis, which required only a high GTP concentration, subgenomic RNA synthesis required high concentrations of both GTP and UTP. Phylogenetic analysis of the sequences surrounding the initiation sites for subgenomic and genomic (+)-strand RNA synthesis in representative members of the alphavirus-like superfamily revealed that the +1 and +2 positions are highly conserved as a pyrimidine-adenylate. GDP and dinucleotide primers were able to more efficiently stimulate (-)-strand synthesis than subgenomic synthesis under conditions of limiting GTP. Oligonucleotide products of 6-, 7-, and 9-nt were synthesized and released by RdRp in 3-20-fold molar excess to full-length subgenomic RNA. Termination of RNA synthesis by RdRp was not induced by template sequence alone. Our characterization of the stepwise mechanism of subgenomic and (-)-strand RNA synthesis by RdRp permits comparisons to the mechanism of DNA-dependent RNA synthesis.  相似文献   

6.
Chen MH  Roossinck MJ  Kao CC 《Journal of virology》2000,74(23):11201-11209
We defined the minimal core promoter sequences responsible for efficient and accurate initiation of cucumber mosaic virus (CMV) subgenomic RNA4. The necessary sequence maps to positions -28 to +15 relative to the initiation cytidylate used to initiate RNA synthesis in vivo. Positions -28 to -5 contain a 9-bp stem and a 6-nucleotide purine-rich loop. Considerable changes in the stem and the loop are tolerated for RNA synthesis, including replacement with a different stem-loop. In a template competition assay, the stem-loop and the initiation cytidylate are sufficient to interact with the CMV replicase. Thus, the mechanism of core promoter recognition by the CMV replicase appears to be less specific in comparison to the minimal subgenomic core promoter of the closely related brome mosaic virus.  相似文献   

7.
8.
Classical swine fever virus nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase, a key enzyme of the viral replication complex. To better understand the initiation of viral RNA synthesis and to establish an in vitro replication system, a recombinant NS5B protein, lacking the C-terminal 24-amino acid hydrophobic domain, was expressed in Escherichia coli. The truncated fusion protein (NS5Bdelta24) was purified on a Ni-chelating HisTrap affinity column and demonstrated to initiate either plus- or minus-strand viral RNA synthesis de novo in a primer-independent manner but not by terminal nucleotidyle transferase activity. De novo RNA synthesis represented the preferred mechanism for initiation of classical swine fever virus RNA synthesis by RNA-dependent RNA polymerase in vitro. Both Mg2+ and Mn2+ supported de novo initiation, however, RNA synthesis was more efficient in the presence of Mn2+ than in the presence of Mg2+. De novo initiation of RNA synthesis was stimulated by preincubation with 0.5 mm GTP, and a 3'-terminal cytidylate on the viral RNA template was preferred for de novo initiation. Furthermore, the purified protein was also shown, by North-Western blot analysis, to specifically interact with the 3'-end of both plus- and minus-strand viral RNA templates.  相似文献   

9.
RNA-dependent RNA polymerases (RdRps) that initiate RNA synthesis by a de novo mechanism should specifically recognize the template initiation nucleotide, T1, and the substrate initiation nucleotide, the NTPi. The RdRps from hepatitis C virus (HCV), bovine viral diarrhea virus (BVDV), and GB virus-B all can initiate RNA synthesis by a de novo mechanism. We used RNAs and GTP analogs, respectively, to examine the use of the T1 nucleotide and the initiation nucleotide (NTPi) during de novo initiation of RNA synthesis. The effects of the metal ions Mg(2+) and Mn(2+) on initiation were also analyzed. All three viral RdRps require correct base pairing between the T1 and NTPi for efficient RNA synthesis. However, each RdRp had some distinct tolerances for modifications in the T1 and NTPi. For example, the HCV RdRp preferred an NTPi lacking one or more phosphates regardless of whether Mn(2+) was present or absent, while the BVDV RdRp efficiently used GDP and GMP for initiation of RNA synthesis only in the presence of Mn(2+). These and other results indicate that although the three RdRps share a common mechanism of de novo initiation, each has distinct preferences.  相似文献   

10.
RNA synthesis during viral replication requires specific recognition of RNA promoters by the viral RNA-dependent RNA polymerase (RdRp). Four nucleotides (−17, −14, −13, and −11) within the brome mosaic virus (BMV) subgenomic core promoter are required for RNA synthesis by the BMV RdRp (R. W. Siegel et al., Proc. Natl. Acad. Sci. USA 94:11238–11243, 1997). The spatial requirements for these four nucleotides and the initiation (+1) cytidylate were examined in RNAs containing nucleotide insertions and deletions within the BMV subgenomic core promoter. Spatial perturbations between nucleotides −17 and −11 resulted in decreased RNA synthesis in vitro. However, synthesis was still dependent on the key nucleotides identified in the wild-type core promoter and the initiation cytidylate. In contrast, changes between nucleotides −11 and +1 had a less severe effect on RNA synthesis but resulted in RNA products initiated at alternative locations in addition to the +1 cytidylate. The results suggest a degree of flexibility in the recognition of the subgenomic promoter by the BMV RdRp and are compared with functional regions in other DNA and RNA promoters.  相似文献   

11.
The 65 kDa RNA-dependent RNA polymerase (NS5B), encoded by the hepatitis C virus (HCV) genome, is a key component involved in viral replication. Here we provide the direct evidence that purified HCV polymerase catalyzed de novo RNA synthesis in a primer-independent manner using homopolymers and HCV RNA as templates. The enzyme could utilize both polyC and polyU as templates for de novo RNA synthesis, suggesting that NS5B specifically recognized pyrimidine bases for initiation. More importantly, NS5B also catalyzed de novo RNA synthesis with an HCV RNA template; the resulting nascent RNA products, smaller than the template used, contained ATP as the first nucleotide. These results indicate that the newly synthesized RNAs did not result from template self-priming and suggest that a replication initiation site in the HCV RNA genome is a uridylate.  相似文献   

12.
The approximately 150 nt tRNA-like structure present at the 3' end of each of the brome mosaic virus (BMV) genomic RNAs is sufficient to direct minus-strand RNA synthesis. RNAs containing mutations in the tRNA-like structure that decrease minus-strand synthesis were tested for their ability to interact with RdRp (RNA-dependent RNA polymerase) using a template competition assay. Mutations that are predicted to disrupt the pseudoknot and stem B1 do not affect the ability of the tRNA-like structure to interact with RdRp. Similarly, the +1 and +2 nucleotides are not required for stable template-RdRp interaction. Mutations in the bulge and hairpin loops of stem C decreased the ability of the tRNA-like structure to interact with RdRp. Furthermore, in the absence of the rest of the BMV tRNA, stem C is able to interact with RdRp. The addition of an accessible initiation sequence containing ACCA3' to stem C created an RNA capable of directing RNA synthesis. Synthesis from this minimal minus-strand template is dependent on sequences in the hairpin and bulged loops.  相似文献   

13.
Completion of RNA synthesis by viral RNA replicases   总被引:1,自引:0,他引:1  
Tayon R  Kim MJ  Kao CC 《Nucleic acids research》2001,29(17):3576-3582
How the 5′-terminus of the template affects RNA synthesis by viral RNA replicases is poorly understood. Using short DNA, RNA and RNA–DNA chimeric templates that can direct synthesis of replicase products, we found that DNA templates tend to direct the synthesis of RNA products that are shorter by 1 nt in comparison to RNA templates. Template-length RNA synthesis was also affected by the concentration of nucleoside triphosphates, the identity of the bases at specific positions close to the 5′-terminus and the C2′-hydroxyl of a ribose at the third nucleotide from the 5′-terminal nucleotide. Similar requirements are observed with two bromoviral replicases, but not with a recombinant RNA-dependent RNA polymerase. These results begin to define the interactions needed for the viral replicase to complete synthesis of viral RNA.  相似文献   

14.
Positive-strand RNA viruses within the Picornaviridae family express an RNA-dependent RNA polymerase, 3D(pol), that is required for viral RNA replication. Structures of 3D(pol) from poliovirus, coxsackievirus, human rhinoviruses, and other picornaviruses reveal a putative template RNA entry channel on the surface of the enzyme fingers domain. Basic amino acids and tyrosine residues along this entry channel are predicted to form ionic and base stacking interactions with the viral RNA template as it enters the polymerase active site. We generated a series of alanine substitution mutations at these residues in the poliovirus polymerase and assayed their effects on template RNA binding, RNA synthesis initiation, rates of RNA elongation, elongation complex (EC) stability, and virus growth. The results show that basic residues K125, R128, and R188 are important for template RNA binding, while tyrosines Y118 and Y148 are required for efficient initiation of RNA synthesis and for EC stability. Alanine substitutions of tyrosines 118 and 148 at the tip of the 3D(pol) pinky finger drastically decreased the rate of initiation as well as EC stability, but without affecting template RNA binding or RNA elongation rates. Viable poliovirus was recovered from HeLa cells transfected with mutant RNAs; however, mutations that dramatically inhibited template RNA binding (K125A-K126A and R188A), RNA synthesis initiation (Y118A, Y148A), or EC stability (Y118A, Y148A) were not stably maintained in progeny virus. These data identify key residues within the template RNA entry channel and begin to define their distinct mechanistic roles within RNA ECs.  相似文献   

15.
Noton SL  Fearns R 《RNA (New York, N.Y.)》2011,17(10):1895-1906
There is limited knowledge regarding how the RNA-dependent RNA polymerases of the nonsegmented negative-strand RNA viruses initiate genome replication. In a previous study of respiratory syncytial virus (RSV) RNA replication, we found evidence that the polymerase could select the 5'-ATP residue of the genome RNA independently of the 3' nucleotide of the template. To investigate if a similar mechanism is used during antigenome synthesis, a study of initiation from the RSV leader (Le) promoter was performed using an intracellular minigenome assay in which RNA replication was restricted to a single step, so that the products examined were derived only from input mutant templates. Templates in which Le nucleotides 1U, or 1U and 2G, were deleted directed efficient replication, and in both cases, the replication products were initiated at the wild-type position, at position -1 or -2 relative to the template, respectively. Sequence analysis of the RNA products showed that they contained ATP and CTP at the -1 and -2 positions, respectively, thus restoring the mini-antigenome RNA to wild-type sequence. These data indicate that the RSV polymerase is able to select the first two nucleotides of the antigenome and initiate at the correct position, even if the 3'-terminal two nucleotides of the template are missing. Substitution of positions +1 and +2 of the template reduced RNA replication and resulted in increased initiation at positions +3 and +5. Together these data suggest a model for how the RSV polymerase initiates antigenome synthesis.  相似文献   

16.
Osman TA  Coutts RH  Buck KW 《Journal of virology》2006,80(21):10743-10751
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.  相似文献   

17.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) initiates RNA synthesis in vivo by a de novo mechanism. In vitro, however, the HCV RdRp can initiate de novo or extend from a primed template. A novel beta-loop near the RdRp active site was previously found to prevent the use of primed templates. We found that, in addition to the beta-loop, the C-terminal tail of the HCV RdRp and the de novo initiation GTP are required to exclude the use of primed-templates. GTP binding to the NTPi site of the HCV RdRp orchestrates the participation of other structures. The interactions of the beta-loop, C-terminal tail, and GTP provide an elegant solution to ensure de novo initiation of HCV RNA synthesis.  相似文献   

18.
19.
20.
Replication of positive strand flaviviruses is mediated by the viral RNA-dependent RNA polymerases (RdRP). To study replication of dengue virus (DEN), a flavivirus family member, an in vitro RdRP assay was established using cytoplasmic extracts of DEN-infected mosquito cells and viral subgenomic RNA templates containing 5'- and 3'-terminal regions (TRs). Evidence supported that an interaction between the TRs containing conserved stem-loop, cyclization motifs, and pseudoknot structural elements is required for RNA synthesis. Two RNA products, a template size and a hairpin, twice that of the template, were formed. To isolate the function of the viral RdRP (NS5) from that of other host or viral factors present in the cytoplasmic extracts, the NS5 protein was expressed and purified from Escherichia coli. In this study, we show that the purified NS5 alone is sufficient for the synthesis of the two products and that the template-length RNA is the product of de novo initiation. Furthermore, the incubation temperature during initiation, but not elongation phase of RNA synthesis modulates the relative amounts of the hairpin and de novo RNA products. A model is proposed that a specific conformation of the viral polymerase and/or structure at the 3' end of the template RNA is required for de novo initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号