首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase change in lily bulblets regenerated in vitro   总被引:1,自引:0,他引:1  
During the development of the lily ( Lilium ), three phases can be distinguished: the juvenile, the vegetative adult and the flowering phase. Juvenile bulblets sprout with one or a few leaves whereas vegetative adult bulblets sprout with a stem with elongated internodes. The transition to the vegetative adult phase was studied in lily ( Lilium  × cv. Star Gazer) bulblets regenerating on bulb scale segments in vitro. The phase change was marked by the development of a tunica-corpus structure in the apical meristem which leads to the formation of an actively growing stem primordium. This structure is absent in juvenile bulblets. Juvenile bulblets first developed competence for phase change during a culture period of at least 6 weeks at 25°C. Subsequent induction of the phase change occurred during a period of 2 weeks at lower temperature (15°C). A major factor influencing phase transition was bulblet weight. Small bulblets never formed a stem whereas large bulblets always formed a stem under inducing conditions. Large bulblets more often formed a stem than small ones but the relation between bulb growth and phase transition was not absolute. A high sucrose concentration, a large explant and a prolonged period for competence development stimulated bulb growth but also phase transition independently of growth. Lowering the concentration of MS-minerals reduced bulb growth but did not affect phase transition. Under these conditions, phase change was correlated with a low phosphorus content.  相似文献   

2.
Many South African medicinal plants are over-collected for use in traditional medicines. This necessitates developing methods for increasing production. Micropropagation can be used as an alternative to conventional propagation methods. Twin-scales, cut from large parent bulbs, were cultured on MS medium (Murashige and Skoog, 1962) supplemented with 25 plant growth regulator combinations. Bulblets formed on twin-scales in 24 of the treatments. All explants formed bulblets on plant growth regulator-free medium. The effect of plant growth regulators, activated charcoal, explant orientation, explant origin and photoperiod on bulblet production was investigated. Bulblet formation was greatest when twin-scales were excised from the middle of the parent bulb, placed adaxial side down on plant growth regulator-free medium and kept in a 16 h photoperiod.  相似文献   

3.
In vitro propagation protocol for Lilium oxypetalum, a high altitude Himalayan endemic lily, has been developed. Effect of explant types (i.e., callus and in vitro bulblet scales) and sucrose concentration [0–6.0% (w/v)] on in vitro bulblet regeneration of L. oxypetalum was tested in previously optimized Murashige and Skoog basal medium supplemented with 2.0 μM 6-benzyladenine and 0.1 μM α-naphthaleneacetic acid. Callus explants produced significantly (P < 0.01) higher number of bulblets per explant than bulblet scale explants. Of the different concentrations of sucrose tested, 4.5% (w/v) sucrose showed significantly (P < 0.01) higher percentage regeneration (i.e., 70.8 ± 4.2 and 79.2 ± 4.2% regeneration on callus and bulblet scale explants, respectively), and produced higher number of bulblets per explant (i.e., 9.0 ± 0.4 and 5.4 ± 0.5 bulblets on callus and bulblet scale explants, respectively). Regenerated bulblets developed 2–3 leaves when subcultured for 4 weeks and were subsequently transferred ex vitro with a survival rate of 66.7% after 6 weeks. Leaves of the survived plantlets became dry after growing ex vitro for 10 weeks, amongst which 86.4% re-sprouted after remaining dormant for 5–6 weeks and produced 1.5 bulblets per explant. Findings of the present study hold promise for efficiently multiplying the target species in view of its potential economic and conservation significance.  相似文献   

4.
A somatic embryogenesis (SE) protocol was established for the regeneration of Lilium ledebourii (Baker) Boiss. whole plants using new vegetative bulblet microscales and transverse thin cell layers (tTCLs) of young bulblet roots as the explant sources. Bulblets were induced from bulb scale explants cultured for at least 3 months in the dark on Murashige and Skoog (MS) medium containing 3% sucrose, 0.8% agar, and different concentrations of α-naphthaleneacetic acid (NAA), 6-benzyladenine (BA), and thidiazuron. Embryo-like structures were obtained from tTCL explants of 3-month-old bulblets (excised from bulb scale explants) following culture on solid MS medium containing 3% sucrose and various concentrations of NAA and BA for 3 months in the dark. Both the explant source and the type of plant growth regulators affected the differentiation of somatic embryos. The highest percentage (65.55%) of embryogenesis was obtained from bulblet microscale tTCLs cultured on solid MS medium containing 0.54 μM NAA and 0.44 μM BA. Plants with normal shoots and roots were obtained following a 3-month culture of embryos on growth regulator-free MS medium at 25 ± 1°C under a 16/8-h light/dark photoperiod (light intensity 40 μmol m−2 s−1, cool-white fluorescent light). The plants were successfully acclimatized in the growth chamber.  相似文献   

5.
Lilies regenerating on scale segments may develop dormancy in vitro depending on the culture conditions. The dormancy is broken by storage for several weeks at a low temperature (5 °C). The effect of the low temperature on sprouting, time of leaf emergence and further bulb growth was studied. Dormant and non-dormant bulblets were regenerated in vitro on bulb scale segments cultured at 20 °C or 15 °C, respectively. The low temperature not only affected the number of sprouted bulblets but also the time of emergence. The longer the cold storage, the faster and more uniform leaf emergence occurred. Both dormant and non-dormant bulblets grew faster after a low temperature treatment of six weeks. Thus, during dormancy breaking the tissue is prepared not only for sprouting but also for subsequent bulb growth. These processes are rather independent as low temperature stimulates growth in non-dormant bulblets whereas these bulblets sprout also without treatment at low temperature. Moreover, the hormone gibberellin induces rapid sprouting but has no influence on further bulb growth. Good growth in bulblets exposed to the low temperature coincided with production of an increased leaf weight. However, the relationship is not absolute as bulblets that were cold-treated for six weeks grew larger than bulblets cold-treated for four weeks but the formation of leaf biomass was similar. During storage at low temperature starch was hydrolyzed in the bulb scales and sugars accumulated. This indicates that during this period, preparation for later bulb growth involves mobilization of carbohydrate reserves which play a role in leaf growth and development of the photosynthetic apparatus. Starch hydrolysis proceeded in the outer scales after planting. Approximately six weeks later, the switch from source to sink took place in the bulblet, which became visible as a deposition of starch in the middle scales.  相似文献   

6.
Summary A simple, rapid and cost-effective in vitro scheme has been proposed for mass propagating two cultivars of Asiatic lily hybrids. An average of seven bulblets was formed after 17 d when 1×1 cm2 bulb scale segments (explants) were cultured on Murashige and Skoog (MS) medium with 3% sucrose and 0.5 μM α-naphthaleneacetic acid (NAA). On MS medium containing 0.5 μM NAA and 6 or 9% sucrose, depending on the cultivar, large numbers of bulblets of increased size (3.5–5.0 cm in circumference) were formed under a 16/8 h photoperiod. A continuous system of mass propagation of bulblets was achieved through in vitro scale formation (secondary explants) on MS medium supplemented with 23 μM kinetin and 0.5 μM NAA, as well as scale proliferation on MS basal liquid stationary medium. Upon transplantation all bulblets sprouted, of which 40% flowered in the first season. Under ideal conditions, ca. 9.68×105 bulblets can be produced from a single scale segment in 1 yr by following the systematic propagation steps proposed here.  相似文献   

7.
Tissue cultures of Lilium auratum Lindl. and L. speciosum Thunb., which were derived from bulbscales, all appeared to differentiate organs. The effect of cultural conditions on the differentiation of bulblets and roots was examined. The best material for bulblet formation was bulbscales of intact or in vitro produced bulblets. The optimum temperature was 20°C and optimum pH was 6. Effect of irradiance on organ formation was not obvious but leaf emergence was stimulated. Higher kinetin concentrations stimulate the formation of numerous bulbscalcs. High NAA concentrations induce roots. On the other hand kinetin inhibits the NAA effect on root formation. A high sucrose concentration stimulated organ formation, but the number of bulblets was at a constant level in the medium containing between 10 and 90 g/l of sucrose. The formation of bulblets and their growth were stimulated at increasing strength of Murashige-Skoog's (MS) medium, but the length of roots was inhibited. Inter action of strength of MS medium and sucrose concentration was examined. High concentration of both components stimulated bulb lei growth, but the second strength of MS medium containing 90 or 120 g/l sucrose stimulated callus induction and inhibited the growth of bulblets. Maximum growth took 100 days for bulblets and about 50 days for roots. The change of fresh weight/dry weight ratio during differentiation is also discussed.  相似文献   

8.
In vitro bulblet formation and subsequent transplanting of bulblets to soil were studied in order to develop a cost-effective method for the mass production of three Lachenalia varieties. Clumps of adventitious shoots regenerated from leaf explants were used. Bulblet formation was initiated after 2 weeks when shoots were subjected to low temperature (4–15 °C). The size (age) of the adventitious shoot affected the bulblet size, and shoots shorter than 4 mm did not form bulblets. Larger bulblets formed on medium containing 6% sucrose compared to 3% sucrose. Following bulblet initiation, illumination was not necessary for the completion of bulblet formation. Bulblets went into dormancy 3–4 months after they had been initiated or when the culture medium dried out, and they were released from dormancy when the natural night temperatures started to decrease in the late summer. The survival rate of the bulblets after transplanting was directly correlated to the size of the bulblets.The most important factors influencing in vitro bulblet formation of Lachenalia were sucrose concentration, temperature and length of explant shoots. Received: 12 June 1998 / Revision received: 8 September 1998 / Accepted: 23 September 1998  相似文献   

9.
The activation of oxygen stress-related enzymes was compared in regenerating and non-regenerating tulip bulb scale explants and regenerating stalk explants. The phospholipid composition of scale explants showed an increase of linolenic acid (1–15%) and a decrease in linoleic acid (70–55%). After incubation it was comparable to that of stalk explants in which no changes were observed. In all tested systems an increase in activity of catalase, peroxidase, SOD, lipoxygenase, polyphenoloxidase and phenylalanine ammonia lyase, was observed during incubation of the explants. The reaction can be divided into two phases. The first one (observed for scale explant lipoxygenase and to a lesser extent for SOD) occurs rapidly (1–2 h) after cutting the explants and appears to be wounding related. In the second phase (observed for all enzymes), starting during the first week of incubation, wound healing and regeneration can be observed. The activation of catalase, peroxidase and phenylalanine ammonia lyase was comparable in all tested systems and appears not to be related with the differences in tissue culture performance. In the second phase, the activity of lipoxygenase, peroxidase, catalase and phenylalanine ammonia lyase decreases in regenerating explants, while in non-regenerating explants they remain high. Our conclusion from these results is that oxidative damage is not the prime cause of the low regenerability of tulip bulb scale explants.  相似文献   

10.
Eucomis species having considerable horticultural potential are used in African traditional medicine to treat various ailments. The effects of environmental and physiological parameters on the initiation and growth of bulblets using leaf explants were investigated. These included the effect of temperature (10, 15, 20, 25 and 30 °C), photoperiod (8 h light, 16 h light, continuous light and continuous dark), carbohydrates (sucrose, fructose and glucose) at different concentrations and combinations as well as various plant growth regulators; gibberellic acid (GA3), indole-3-butyric acid (IBA), napthaleneacetic acid (NAA), N6-benzyladenine (BA), zeatin and others. Liquid shake and liquid static cultures versus solid cultures were investigated. Maximum number of bulblets per leaf explant was obtained at 20 °C, with an average of 3 bulbs per leaf explants and a bulblet mass of 57 mg. An 8 h light cycle produced 1.38 bulbs per leaf explant, at a mass of 42 mg. Fructose at 3% produced an average of 1.18 bulbs per leaf explant, 3.39 mm wide and weighing 56.6 mg. Of the plant growth regulators, 4.90 µM IBA was found to be the optimum treatment for bulblet induction, with an average bulb diameter of 4.36 mm and a mean bulblet mass of 79.07 mg. Liquid shake cultures exhibited poor growth while bulblet, leaf and root growth was improved in liquid static cultures. Successful micropropagation from leaf explants established that leaf explants can be used as an alternative explant source to bulbs. This protocol allows for the fast and economic mass propagation of Eucomis plants.  相似文献   

11.
Direct shoot regeneration was induced from leaf explants of Alstroemeria. The explants contained a leaf blade and a small portion of stem node, which were cut from the erect shoots of in vitro multiplicated plantlets. The shoot regeneration capacity of the excised leaf explants was significantly related to the position of the explant on the stem. The youngest explant which was located closest to the shoot apex gave the highest response. A gradient response toward the shoot apex was observed in percentage of shoot regeneration and in the number of shoots per regenerating explant. Histological studies revealed that the shoots were initiated at the leaf axils. The origin of the adventitious buds was located at the epidermal layer of stem peripheral cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The origin of bulblets formed on excised twin scales ofNerine bowdenii was investigated anatomically. At the start of the in vitro experiments pre-existing meristems were present in the axils of the bulb scales. However, in the axils of the scale explants there were also groups of meristematic cells which developed in vitro rather quickly by mitotic divisions into thickenings and ultimately into bulb meristems. It is concluded that the formation of bulblets on excised twin scales is the result both of the outgrowth of pre-existing axillary meristems and of the regeneration of adventitious bulblets in the axils of the scales. Because more bulblets were initiated than ultimately developed, further studies to optimalize the outgrowth of primordia are needed. From an anatomical point of view there is a large potential source of in vitro bulblets.  相似文献   

13.
The efficiency ofAgrobacterium-based transformation technique in oilseed rape and cauliflower was influenced by cultivar specificity, donor plant age and explant type. Marked differences in demands for plant hormone contents in the regeneration medium were recorded already among different types of nontransformed explants. The highest regeneration capacity was recorded with stem and leaf segments isolated from one-month-old aseptically grown plants. The regeneration was markedly species-dependent. Regeneration of transformed plants from stem segments and thin layers isolated from field-grown oilseed rape plants (at the most 2% of regenerating explants) and from oilseed rape hypocotyls (0.8% of regenerating explants) and cauliflower (1.2% of explant regenerated transformed shoots) was achieved after disarmedAgrobacterium treatment. Hypersensitive reaction of explants could be prevented by using prolongedin vitro precultivation and delayed application of the selective agent.  相似文献   

14.
Production of bulblets of Muscari armeniacum through tissue culture is enhanced when 1 g/l activated charcoal is added to a modified Murashige and Skoog (MS) medium. Bulblet regeneration is direct from bulb scale explants with no intermediate callus growth. Bulblets can be transferred successfully to a greenhouse environment directly from aseptic culture.  相似文献   

15.
Endemic Muscari muscarimi Medikus is the most fragrant plant among Muscari species and has a high ornamental potential. The natural populations of M. muscarimi, are severely affected by increased environmental pollution and urbanization. There is a need to develop a micropropagation method that should serve effectively for commercial propagation and conservation. Therefore, the study targeted to set up a strategy for efficient in vitro bulblet regeneration system of M. muscarimi using twin scale bulb explants on 1.0 × MS medium containing 4.44, 8.88, 17.76 μM BAP (6-Benzylaminopurine) plus 2.685, 5.37, 10.74 μM NAA (α-Naphthalene acetic acid). Maximum number of 19 daughter axillary bulblets and 16 daughter adventitious bulblets per twin bulb scale explant was regenerated on 1.0 × MS medium containing 17.76 μM BAP plus 10.74 μM NAA and 17.76 μM BAP plus 2.685 μM NAA respectively. The daughter bulblets regenerated on twin bulb scales on 8 out of 9 regeneration treatment could be easily rooted on 1.0 × MS medium containing 4.9 μM IBA (Indole-3-butyric acid). The daughter bulblets regenerated on 9th treatment (1.0 × MS medium containing 17.76 μM BAP plus 10.74 μM NAA) were transferred to 1.0 × MS medium containing 30 g/l sucrose to break negative carry over effect of this dose of BAP–NAA, where they grew 2–3 roots of variable length. Daughter bulblet diameter was increased by culturing them on 1.0 × MS medium containing 4.44 μM BAP plus 5.37 μM NAA. The results verified that both age and the source of explants had significant effect on regeneration. In another set of experiments, twin scales were obtained from in vitro regenerated daughter bulblets, although they induced bulblets, yet their bulblet regeneration percentage, mean number of bulblets per explant and their diameter were significantly reduced. In vitro regenerated bulblets were acclimatized in growth chamber under ambient conditions of temperature and humidity on peat moss, where they flowered. The study provides important information about selection of suitable micropropagation medium, strategies to improve bulblet diameter and rooting of M. muscarimi which offers a scope for commercial propagation.Abbreviations: MS medium, Murashige Skoog medium; BAP, 6-Benzylaminopurine; NAA, α-Naphthalene acetic acid; IBA, Indole-3-butyric acid  相似文献   

16.
The present study assessed the rooting response of lentil nodal segments in relation to explant polarity, hormone, salt and carbohydrate concentrations of the medium. Nodal segments of lentil with an axillary bud cultured in an inverted orientation (apical end in medium) showed higher rooting frequencies than explants cultured in a normal orientation (basal end in medium). The highest rooting percentage (95.35%) and average number of shoots regenerated per explant (2.4) were obtained from explants placed in an inverted orientation on Murashige and Skoog (MS) medium salts with 3% sucrose, supplemented with 5 microM indole acetic acid (IAA) and 1 microM kinetin (KN). Reducing or increasing phytohormone concentration did not alter significantly root regeneration of inverted explants. Sucrose at 3% allowed higher root regeneration frequencies compared to 1.5% sucrose. MS full concentration permitted regeneration of longer shoots with more nodes per regenerated shoot, compared to MS half-strength, which regenerated more shoots of shorter length and with less nodes. Inverted nodal segments of other hypogeous legumes (pea, chickpea and Lathyrus) also exhibited higher rooting frequencies than explants cultured in a normal orientation on MS medium with 3% sucrose and supplemented with 5 microM IAA and 1 microM KN. The most novel application of this study is the culture of nodal segments of hypogeous legumes in an inverted orientation. This procedure is a considerable improvement over other published procedures concerning in vitro rooting of lentil, pea, chickpea and Lathyrus.  相似文献   

17.
The effectiveness of X-radiation on regeneration of adventitious buds on in vitro leaf explants of three Rosa hybrida L. genotypes was studied. In vitro leaflet explants of roses produced adventitious buds when cultured in the dark for 1 week on Murashige and Skoog (MS) induction medium containing 6.8 μM thidiazuron (TDZ) + 0.49 μM indole-3-butyric acid (IBA) and subsequently transferred to MS regeneration medium containing 2.2 μM benzyladenine (BA) + 0.049 μM IBA in the presence of reduced light, at 15 μmol m-2 s-1 photosynthetically active radiation (PAR). Analysis of radiosensitivity by irradiating leaf explants with increasing doses of X-rays between 25 and 100 Gray (Gy) resulted in a decreasing rate of leaf explants regenerating buds from 47% to 0% respectively. The lethal dose for 50% of the regenerating explants (LD50) in all the three genotypes was estimated to be 25 Gy at a dose rate 2 Gy/s. For the main experiment, doses of 5 and 15 Gy were selected and variations were observed between genotypes. Clone RUI 317 had the highest rate of adventitious bud regeneration, with 83.6% (2.5 buds/explant) at 5 Gy and 64% (1.8 buds/explant) at 15 Gy, compared to 89% (3.4 buds/explant) with the untreated control. Significant differences in the percentage of bud regeneration of the three genotypes were only observed at 15 Gy in comparison to the control and the number of buds formed per regenerating explant varied between 1 to 4. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Sternbergia fischeriana is an endangered geophyte and therefore in vitro micropropagation of this plant will have great importance for germplasm conservation and commercial production. Bulb scale and immature embryo explants of S. fischeriana were cultured on different nutrient media supplemented with various concentrations of plant growth regulators. Immature embryos produced higher number of bulblets than bulb scales. Large numbers of bulblets were regenerated (over 80 bulblets/explants) from immature embryos on Murashige and Skoog (MS) medium supplemented with 4 mg l–1 6-benzylaminopurine (BA) and 0.25 mg l–1 -naphthaleneacetic (NAA) or 2 mg l–12,4-dichlorophenoxyacetic acid (2,4-D) after 14 months of culture initiation. Regenerated bulblets were kept at 5 °C for 5 weeks and then transplanted to a potting mixture.  相似文献   

19.
In vitro shoot proliferation and bulblet production of garlic (Allium sativum L.) was studied in liquid cultures. Shoots grown in vitro were used as explants and were cultured in MS medium supplemented with 2% (w/v) sucrose and 0.5 mg l–1 2-iP. Three culture methods (semi-solid, liquid-immersion and raft) were compared for shoot proliferation. Explants in liquid (immersion) culture exhibited an increased multiplication rate and fresh weight of shoots after 3 weeks of culture as compared with the other treatments. Bulblet formation and growth were studied in liquid medium with different concentrations of sucrose (2–13%). MS medium containing 11% (w/v) sucrose was optimal for bulblet development and bulblets developed in this medium within 9 weeks in culture. The highest multiplication rate was (135 bulblets/explant) found when explants were cultured in bulbing medium (MS medium containing 0.1 mg l–1 NAA+11% (w/v) sucrose) supplemented with 10 M JA. Growth retardants CCC, B-9, ABA also promoted induction and growth of bulblets. Darkness promoted the bulblet induction and growth compared to light conditions (16-h photoperiod of 50 mol m–2 s–1). The dormancy of bulblets was broken by cold treatment at 4 °C for 8 weeks.  相似文献   

20.
Methods for long-term preservation of lily germplasm were examined. t In vitro regenerated bulblets of 10 lily (t Lilium L.) genotypes (Asiatic hybrids, Oriental hybrids, t L. longiflorum and t L. henryi) were stored for 28 months at -2 °C and 25 °C on four different media: 1/4 or full strength Murashige and Skoog nutrients with 9% (w/v) or 6% sucrose. Sprout growth, bulb growth, and viability were determined. The combination of 1/4 strength MS nutrients and 9% sucrose gave the highest reduction in sprout and bulb growth, the highest viability and the highest percentage of regrowth after 28 months of storage. At 25 °C, all lily genotypes survived 28 months of storage under these conditions. At -2 °C, Asiatic and Oriental hybrids survived 28 months of storage, whereas genotypes of t L. longiflorum and t L. henryi survived 6 months of storage, but died during prolonged storage. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号