首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of the Fab fragment of monoclonal antibody NC10 to influenza virus N9 neuraminidase, isolated from tern and whale, was measured using an optical biosensor. Both neuraminidases, homotetramers of 190 kDa, were immobilized to avoid multivalent binding, and the binding of the monovalent NC10 Fab to immobilized neuraminidase was analyzed using the 1:1 Langmuir binding model. A contribution of mass transport to the kinetic constants was demonstrated at higher surface densities and low flow rates, and was minimized at low ligand densities and relatively high flow rates (up to 100 microl/min). Application of a global fitting algorithm to a 1:1 binding model incorporating a correction term for mass transport indicated that mass transport was minimized under appropriate experimental conditions; analysis of binding data with a mass transport component, using this model, yielded kinetic constants similar to those obtained with the 1:1 Langmuir binding model applied to binding data where mass transport had been minimized experimentally. The binding constant for binding of NC10 Fab to N9 neuraminidase from tern influenza virus (K(A) = 6.3 +/- 1.3 x 10(7) M(-1)) was about 15-fold higher than that for the NC10 Fab binding to N9 neuraminidase from whale influenza virus (K(A) = 4.3 +/- 0.7 x 10(6) M(-1)). This difference in binding affinity was mainly attributable to a 12-fold faster dissociation rate constant of the whale neuraminidase-NC10 Fab complex and may be due to either (i) the long-range structural effects caused by mutation of two residues distant from the binding epitope or (ii) differences in carbohydrate residues, attached to Asn(200), which form part of the binding epitope on both neuraminidases to which NC10 Fab binds.  相似文献   

2.
Sedimentation equilibrium centrifugation has been applied to determine the affinity and stoichiometry of the interaction between Fab fragments, derived from monoclonal antibodies NC10 and NC41, with influenza virus neuraminidase N9 isolated from either tern or whale. Although the two neuraminidase epitopes recognized by NC10 and NC41 Fab overlap, crystal-lographic studies have shown that the modes of binding of each Fab are different. The sedimentation equilibrium experiments described here reveal that the binding affinities are also different, with NC10 Fab binding more strongly to each neuraminidase. Furthermore, comparison of the affinity of binding of each antibody fragment reveals a stronger interaction with tern neuraminidase than with whale neuraminidase. Although the respective epitopes recognized by each antibody on the two antigens are similar, this technique shows that they do nevertheless possess sufficient differences to affect significantly the binding of antibody.  相似文献   

3.
Crystalline monoclonal antibody Fabs complexed to hen egg white lysozyme   总被引:3,自引:0,他引:3  
The Fab of a monoclonal anti-lysozyme antibody (HyHEL-10) has been crystallized as the free Fab and as the Fab-antigen complex. Crystals have also been grown of the antigen complex of the Fab of another monoclonal anti-lysozyme antibody (HyHEL-9), which recognizes a different binding surface of lysozyme. All three crystals diffract to at least 3 A resolution and are suitable for X-ray diffraction studies.  相似文献   

4.
The crystal structure of the complex between neuraminidase from influenza virus (subtype N9 and isolated from an avian source) and the antigen-binding fragment (Fab) of monoclonal antibody NC41 has been refined by both least-squares and simulated annealing methods to an R-factor of 0.191 using 31,846 diffraction data in the resolution range 8.0 to 2.5 A. The resulting model has a root-mean-square deviation from ideal bond-length of 0.016 A. One fourth of the tetrameric complex comprises the crystallographic model, which has 6577 non-hydrogen atoms and consists of 389 protein residues and eight carbohydrate residues in the neuraminidase, 214 residues in the Fab light chain, and 221 residues in the heavy chain. One putative Ca ion buried in the neuraminidase, and 73 water molecules, are also included. A remarkable shape complementarity exists between the interacting surfaces of the antigen and the antibody, although the packing density of atoms at the interface is somewhat looser than in the interior of a protein. Similarly, there is a high degree of chemical complementarity between the antigen and antibody, mediated by one buried salt-link, two solvated salt-links and 12 hydrogen bonds. The antibody-binding site on neuraminidase is discontinuous and comprises five chain segments and 19 residues in contact, whilst 33 neuraminidase residues in eight segments have 899 A2 of surface area buried by the interaction (to a 1.7 A probe), including two hexose units. Seventeen residues in NC41 Fab lying in five of the six complementarity determining regions (CDRs) make contact with the neuraminidase and 36 antibody residues in seven segments have 916 A2 of buried surface area. The interface is more extensive than those of the three lysozyme-Fab complexes whose crystal structures have been determined, as judged by buried surface area and numbers of contact residues. There are only small differences (less than 1.5 A) between the complexed and uncomplexed neuraminidase structures and, at this resolution and accuracy, those differences are not unequivocal. The main-chain conformations of five of the CDRs follow the predicted canonical structures. The interface between the variable domains of the light and heavy chains is not as extensive as in other Fabs, due to less CDR-CDR interaction in NC41. The first CDR on the NC41 Fab light chain is positioned so that it could sterically hinder the approach of small as well as large substrates to the neuraminidase active-site pocket, suggesting a possible mechanism for the observed inhibition of enzyme activity by the antibody.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
An Fab fragment from a monoclonal antibody (NTS10/1) has been crystallized. The antigen, influenza virus A/Tokyo/3/67 (N2) neuraminidase, is also crystalline and its structure analysis is in progress. The Fab crystals are trigonal, space group P3121 with cell dimensions a = 132·3 A?, c = 73·8 A?. This crystalline material forms a complex with the neuraminidase with an equilibrium binding constant in excess of 1011m?1. The molecular weight of the complex is 406,000 ± 20,000 indicating that four Fab fragments are attached to each neuraminidase tetramer. The separate crystallization of antigen and Fab fragment opens the way to map, for the first time, the complementary surfaces of an antigen-antibody complex.  相似文献   

6.
Leptin regulates energy homeostasis, fertility, and the immune system, making it an important drug target. However, due to a complete lack of structural data for the obesity receptor (ObR), leptin's mechanism of receptor activation remains poorly understood. We have crystallized the Fab fragment of?a leptin-blocking monoclonal antibody (9F8), both in its uncomplexed state and bound to the leptin-binding domain (LBD) of human ObR. We describe the structure of the LBD-9F8 Fab complex and the conformational changes in 9F8 associated with LBD binding. A molecular model of the putative leptin-LBD complex reveals that 9F8 Fab blocks leptin binding through only a small (10%) overlap in their binding sites, and that leptin binding is likely to involve an induced fit mechanism. This crystal structure of the leptin-binding domain of the obesity receptor will facilitate the design of therapeutics to modulate leptin signaling.  相似文献   

7.
BACKGROUND: Elucidating the structural basis of antigen-antibody recognition ideally requires a structural comparison of free and complexed components. To this end we have studied a mouse monoclonal antibody, denoted 13B5, raised against p24, the capsid protein of HIV-1. We have previously described the first crystal structure of intact p24 as visualized in the Fab13B5-p24 complex. Here we report the structure of the uncomplexed Fab13B5 at 1.8 A resolution and analyze the Fab-p24 interface and the conformational changes occurring upon complex formation. RESULTS: Fab13B5 recognizes a nearly continuous epitope comprising a helix-turn-helix motif in the C-terminal domain of p24. Only 4 complementarity-determining regions (CDRs) are in contact with p24 with most interactions being by the heavy chain. Comparison of the free and complexed Fab reveals that structural changes upon binding are localized to a few side chains of CDR-H1 and -H2 but involve a larger, concerted displacement of CDR-H3. Antigen binding is also associated with an 8 degrees relative rotation of the heavy and light chain variable regions. In p24, small conformational changes localized to the turn between the two helices comprising the epitope result from Fab binding. CONCLUSIONS: The relatively small area of contact between Fab13B5 and p24 may be related to the fact that the epitope is a continuous peptide rather than a more complex protein surface and correlates with a relatively low affinity of antigen and antibody. Despite this, a significant quaternary structural change occurs in the Fab upon complex formation, with additional smaller adaptations of both antigen and antibody.  相似文献   

8.
The crystal structure of the complex between neuraminidase (NA) of influenza virus A/Memphis/31/98 (H3N2) and Fab of monoclonal antibody Mem5 has been determined at 2.1A resolution and shows a novel pattern of interactions compared to other NA-Fab structures. The interface buries a large area of 2400 A2 and the surfaces have high complementarity. However, the interface is also highly hydrated. There are 33 water molecules in the interface>or=95% buried from bulk solvent, but only 13 of these are isolated from other water molecules. The rest are involved in an intricate network of water-mediated hydrogen bonds throughout the interface, stabilizing the complex. Glu199 on NA, the most critical side-chain to the interaction as previously determined by escape mutant analysis and site-directed mutation, is located in a non-aqueous island. Glu199 and three other residues that contribute the major part of the antigen buried surface of the complex have mutated in human influenza viruses isolated after 1998, confirming that Mem5 identifies an epidemiologically important antigenic site. We conclude that antibody selection of NA variants is a significant component of recent antigenic drift in human H3N2 influenza viruses, supporting the idea that influenza vaccines should contain NA in addition to hemagglutinin.  相似文献   

9.
Cellular signaling via binding of the cytokines IL‐36α, β, and γ along with binding of the accessory protein IL‐36RAcP, to their cognate receptor IL‐36R is believed to play a major role in epithelial and immune cell‐mediated inflammation responses. Antagonizing the signaling cascade that results from these binding events via a directed monoclonal antibody provides an opportunity to suppress such immune responses. We report here the molecular structure of a complex between an extracellular portion of human IL‐36R and a Fab derived from a high affinity anti‐IL‐36R neutralizing monoclonal antibody at 2.3 Å resolution. This structure, the first of IL‐36R, reveals similarities with other structurally characterized IL‐1R family members and elucidates the molecular determinants leading to the high affinity binding of the monoclonal antibody. The structure of the complex reveals that the epitope recognized by the Fab is remote from both the putative ligand and accessory protein binding interfaces on IL‐36R, suggesting that the functional activity of the antibody is noncompetitive for these binding events.  相似文献   

10.
Understanding the structural basis of recognition between antigen and antibody requires the structural comparison of free and complexed components. Previously, we have reported the crystal structure of the complex between Fab fragment of murine monoclonal antibody 2A8 (Fab2A8) and Plasmodium vivax P25 protein (Pvs25) at 3.2 Å resolution. We report here the crystallization and X-ray structure of native Fab2A8 at 4.0 Å resolution. The 2A8 antibody generated against Pvs25 prevents the formation of P. vivax oocysts in the mosquito, when assayed in membrane feeding experiment.Comparison of native Fab2A8 structure with antigen bound Fab2A8 structure indicates the significant conformational changes in CDR-H1 and CDR-H3 regions of VH domain and CDR-L3 region of VL domain of Fab2A8. Upon complex formation, the relative orientation between VL and VH domains of Fab2A8 is conserved, while significant differences are observed in elbow angles of heavy and light chains. The combing site residues of complexed Fab2A8 exhibited the reduced temperature factor compared to native Fab2A8, suggesting a loss of conformational entropy upon antigen binding.  相似文献   

11.
The site on influenza virus N9 neuraminidase recognized by NC41 monoclonal antibody comprises 19 amino acid residues that are in direct contact with 17 residues on the antibody. Single sequence changes in some of the neuraminidase residues in the site markedly reduce antibody binding. However, two mutants have been found within the site, Ile368 to Arg and Asn329 to Asp selected by antibodies other than NC41, and these mutants bind NC41 antibody with only slightly reduced affinity. The three-dimensional structures of the two mutant N9-NC41 antibody complexes as derived from the wild-type complex are presented. Both structures show that some amino acid substitutions can be accommodated within an antigen-antibody interface by local structural rearrangements around the mutation site. In the Ile368 to Arg mutant complex, the side-chain of Arg368 is shifted by 2.9 A from its position in the uncomplexed mutant and a shift of 1.3 A in the position of the light chain residue HisL55 with respect to the wild-type complex is also observed. In the other mutant, the side-chain of Asp329 appears rotated by 150 degrees around C alpha-C beta with respect to the uncomplexed mutant, so that the carboxylate group is moved to the periphery of the antigen-antibody interface. The results provide a basis for understanding some of the potential structural effects of somatic hypermutation on antigen-antibody binding in those cases where the mutation in the antibody occurs at antigen-contacting residues, and demonstrate again the importance of structural context in evaluating the effect of amino acid substitutions on protein structure and function.  相似文献   

12.
The murine monoclonal antibody 26-2F neutralizes the angiogenic and ribonucleolytic activities of human angiogenin (ANG) and is highly effective in preventing the establishment and metastatic dissemination of human tumors in athymic mice. Here we report a 2.0 A resolution crystal structure for the complex of ANG with the Fab fragment of 26-2F that reveals the detailed interactions between ANG and the complementarity-determining regions (CDRs) of the antibody. Surprisingly, Fab binding induces a dramatic conformational change in the cell binding region of ANG at the opposite end of the molecule from the combining site; crosslinking experiments indicate that this rearrangement also occurs in solution. The ANG-Fab complex structure should be invaluable for designing maximally humanized versions of 26-2F for potential clinical use.  相似文献   

13.
X-ray diffraction analysis of crystals of a monoclonal Fab fragment NC41 bound to a viral antigen, influenza virus neuraminidase, shows an epitope involving five surface loops of the antigen. In addition it reveals an unusual pairing pattern between the domains of light and heavy chains in the variable module of the antibody. We interpret this result to imply that association with antigen can induce changes in the quaternary structure of the Fab, through a sliding of domains at the variable light/variable heavy chains (VL-VH) interface. In addition, Fab binding has altered the conformation of some of the surface loops of the antigen. The structure of the NC10 Fab-neuraminidase complex has now also been solved. It binds an epitope that overlaps the NC41 epitope. In this structure, there is no electron density for the C-module of the Fab fragment, implying it is disordered in the crystal lattice. The implications of these, and other antibody-antigen structures, for immune recognition are discussed.  相似文献   

14.
We previously determined, by X-ray crystallography, the three-dimensional structure of a complex between influenza virus N9 neuraminidase (NA) and the Fab fragments of monoclonal antibody NC-41 [P. M. Colman, W. G. Laver, J. N. Varghese, A. T. Baker, P. A. Tulloch, G. M. Air, and R. G. Webster, Nature (London) 326:358-363, 1987]. This antibody binds to an epitope on the upper surface of the NA which is made up of four polypeptide loops over an area of approximately 600 A2 (60 nm2). We now describe properties of NC-41 and other monoclonal antibodies to N9 NA and the properties of variants selected with these antibodies (escape mutants). All except one of the escape mutants had single amino acid sequence changes which affected the binding of NC-41 and which therefore are located within the NC-41 epitope. The other one had a change outside the epitope which did not affect the binding of any of the other antibodies. All the antibodies which selected variants inhibited enzyme activity with fetuin (molecular weight, 50,000) as the substrate, but only five, including NC-41, also inhibited enzyme activity with the small substrate N-acetylneuramin-lactose (molecular weight, 600). These five probably inhibited enzyme activity by distorting the catalytic site of the NA. Isolated, intact N9 NA molecules form rosettes in the absence of detergent, and these possess high levels of hemagglutinin activity (W.G. Laver, P.M. Colman, R.G. Webster, V.S. Hinshaw, and G.M. Air, Virology 137:314-323, 1984). The enzyme activity of N9 NA was inhibited efficiently by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, whereas hemagglutinin activity was unaffected. The NAs of several variants with sequence changes in the NC-41 epitope lost hemagglutinin activity without any loss of enzyme activity, suggesting that the two activities are associated with separate sites on the N9 NA head.  相似文献   

15.
The structure of the antigen-binding fragment (Fab) of an anti-p-azophenylarsonate monoclonal antibody, 36-71, bearing a major cross-reactive idiotype of A/J mice has been refined to an R factor of 24.8% at a resolution of 1.85 A. The previously solved partial structure of this Fab at a resolution of 2.9 A (Rose et al., 1990) was used as an initial model for refinement against the high-resolution data. The complex with hapten has been modeled by docking the small-molecule crystal structure of phenylarsonic acid into the structure of the native Fab on the basis of a low-resolution electron density map of the complex. In this model, residue Arg-96 in the light chain and residues Asn-35, Trp-47, and Ser-99 in the heavy chain contact the arsonate moiety of the hapten; an additional bond is found between the arsonate group and a tightly bound water molecule. The phenyl moiety of the hapten packs against two tyrosine side chains at positions 50 and 106 in the heavy chain. Residue Arg-96 in the light chain had been implicated as involved in hapten binding on the basis of previous experiments, and indeed, this residue appears to play a crucial role in this model. Experiments employing site-directed mutagenesis directly support this conclusion. The heavy-chain complementarity-determining regions have novel conformations not previously observed in immunoglobulins except for the recently solved anti-p-azophenylarsonate Fab R 19.9 (Lascombe et al., 1989).  相似文献   

16.
The three-dimensional structure of the Fab fragment of a monoclonal antibody (LNKB-2) to human interleukin-2 (IL-2) complexed with a synthetic antigenic nonapeptide, Ac-Lys-Pro-Leu-Glu-Glu-Val-Leu-Asn-Leu-OMe, has been determined at 3.0 A resolution. In the structure, four out of the six hypervariable loops of the Fab (complementarity determining regions [CDRs] L1, H1, H2, and H3) are involved in peptide association through hydrogen bonding, salt bridge formation, and hydrophobic interactions. The Tyr residues in the Fab antigen binding site play a major role in antigen-antibody recognition. The structures of the complexed and uncomplexed Fab were compared. In the antigen binding site the CDR-L1 loop of the antibody shows the largest structural changes upon peptide binding. The peptide adopts a mostly alpha-helical conformation similar to that in the epitope fragment 64-72 of the IL-2 antigen. The side chains of residues Leu 66, Val 69, and Leu 70, which are shielded internally in the IL-2 structure, are involved in interactions with the Fab in the complex studied. This indicates that antibody-antigen complexation involves a significant rearrangement of the epitope-containing region of the IL-2 with retention of the alpha-helical character of the epitope fragment.  相似文献   

17.
We have characterized monoclonal antibodies raised against the neuraminidase (NA) of a Sydney-like influenza virus (A/Memphis/31/98, H3N2) in a reassortant virus A/NWS/33(HA)-A/Mem/31/98(NA) (H1N2) and nine escape mutants selected by these monoclonal antibodies. Five of the antibodies use the same heavy chain VDJ genes and may not be independent. Another antibody, Mem5, uses the same V(H) and J genes with a different D gene and different isotype. Sequence changes in escape mutants selected by these antibodies occur in two loops of the NA, at amino acid 198, 199, 220, or 221. These amino acids are located on the opposite side of the NA monomer to the major epitopes found in N9 and early N2 NAs. Escape mutants with a change at 198 have reduced NA activity compared to the wild-type virus. Asp198 points toward the substrate binding pocket, and we had previously found that a site-directed mutation of this amino acid resulted in a loss of enzyme activity (M. R. Lentz, R. G. Webster, and G. M. Air, Biochemistry 26:5351-5358, 1987). Mutations at residue 199, 220, or 221 did not alter the NA activity significantly compared to that of wild-type NA. A 3.5-A structure of Mem5 Fab complexed with the Mem/98 NA shows that the Mem5 antibody binds at the sites of escape mutation selected by the other antibodies.  相似文献   

18.
Myasthenia gravis is a neuromuscular disorder caused by an antibody-mediated autoimmune response to the muscle-type nicotinic acetylcholine receptor (AChR). The majority of monoclonal antibodies (mAbs) produced in rats immunized with intact AChR compete with each other for binding to an area of the alpha-subunit called the main immunogenic region (MIR). The availability of a complex between the AChR and Fab198 (Fab fragment of the anti-MIR mAb198) would help understand how the antigen and antibody interact and in designing improved antibody fragments that protect against the destructive activity of myasthenic antibodies. In the present study, we modeled the Torpedo AChR/Fab198 complex, based primarily on the recent 4A resolution structure of the Torpedo AChR. In order to computationally dock the two structures, we used the ZDOCK software. The total accessible surface area change of the complex compared to those of experimentally determined antigen-antibody complexes indicates an intermediate size contact surface. CDRs H3 and L3 seem to contribute most to the binding, while L2 seems to contribute least. These data suggest mutagenesis experiments aimed at validating the model and improving the binding affinity of Fab198 for the AChR.  相似文献   

19.
Preliminary crystallographic data are given for a complex between the cyclic undecapeptide cyclosporin and the Fab fragment of an anti-cyclosporin monoclonal antibody. Crystals of the complex are orthorhombic with space group P2(1)2(1)2(1) and diffract to 2.7 A resolution. The unit cell dimensions are a = 52.6 A, b = 70.2 A and c = 118.4 A. A native data set to 2.7 A resolution has been collected.  相似文献   

20.
The neuraminidase of influenza virus   总被引:22,自引:0,他引:22  
G M Air  W G Laver 《Proteins》1989,6(4):341-356
It is the enzyme neuraminidase, projecting from the surface of influenza virus particles, which allows the virus to leave infected cells and spread in the body. Antibodies which inhibit the enzyme limit the infection, but antigenic variation of the neuraminidase renders it ineffective in a vaccine. This article describes the crystal structure of influenza virus neuraminidase, information about the active site which may lead to development of specific and effective inhibitors of the enzyme, and the structure of epitopes (antigenic determinants) on the neuraminidase. The 3-dimensional structure of the epitopes was obtained by X-ray diffraction methods using crystals of neuraminidase complexed with monoclonal antibody Fab fragments. Escape mutants, selected by growing virus in the presence of monoclonal antibodies to the neuraminidase, possess single amino acid sequence changes. The crystal structure of two mutants showed that the change in structure was restricted to that particular sidechain, but the change in the epitope was sufficient to abolish antibody binding even though it is known in one case that 21 other amino acids on the neuraminidase are in contact with the antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号