首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary function of the monomorphic MHC class Ib molecule Qa-1(b) is to present peptides derived from the leader sequences of other MHC class I molecules for recognition by the CD94-NKG2 receptors expressed by NK and T cells. Whereas the mode of peptide presentation by its ortholog HLA-E, and subsequent recognition by CD94-NKG2A, is known, the molecular basis of Qa-1(b) function is unclear. We have assessed the interaction between Qa-1(b) and CD94-NKG2A and shown that they interact with an affinity of 17 μM. Furthermore, we have determined the structure of Qa-1(b) bound to the leader sequence peptide, Qdm (AMAPRTLLL), to a resolution of 1.9 ? and compared it with that of HLA-E. The crystal structure provided a basis for understanding the restricted peptide repertoire of Qa-1(b). Whereas the Qa-1(b-AMAPRTLLL) complex was similar to that of HLA-E, significant sequence and structural differences were observed between the respective Ag-binding clefts. However, the conformation of the Qdm peptide bound by Qa-1(b) was very similar to that of peptide bound to HLA-E. Although a number of conserved innate receptors can recognize heterologous ligands from other species, the structural differences between Qa-1(b) and HLA-E manifested in CD94-NKG2A ligand recognition being species specific despite similarities in peptide sequence and conformation. Collectively, our data illustrate the structural homology between Qa-1(b) and HLA-E and provide a structural basis for understanding peptide repertoire selection and the specificity of the interaction of Qa-1(b) with CD94-NKG2 receptors.  相似文献   

2.
Influenza pneumonia results in considerable lung injury, a significant component of which is mediated by CD8+ T cell Ag recognition in the distal airways and alveoli. TNF-alpha produced by Ag-specific CD8+ T cells appears primarily responsible for this immunopathology, and we have examined the negative regulation of CD8+ TNF production by CD94/NKG2A engagement with its receptor, Qa-1b. TNF production by antiviral CD8+ T cells was significantly enhanced by NKG2A blockade in vitro, and mice deficient in the NKG2A ligand, Qa-1b, manifested significantly greater pulmonary pathology upon CD8+ T cell-mediated clearance in influenza pneumonia. Furthermore, blockade of NKG2A ligation resulted in the enhancement of lung injury induced by CD8+ effector cell recognition of alveolar Ag in vivo in the absence of infectious virus. These data demonstrate that CD94/NKG2A transduces a biologically important signal in vivo to activated CD8+ T cells that limits immunopathology in severe influenza infection.  相似文献   

3.
The MHC class Ib molecule Qa-1 is the primary ligand for mouse CD94/NKG2A inhibitory receptors expressed on NK cells, in addition to presenting Ags to a subpopulation of T cells. CD94/NKG2A receptors specifically recognize Qa-1 bound to the MHC class Ia leader sequence-derived peptide Qdm. Qdm is the dominant peptide loaded onto Qa-1 under physiological conditions and this peptide has an optimal sequence for binding to Qa-1. Peptide dissociation experiments demonstrated that Qdm dissociates from soluble or cell surface Qa-1(b) molecules with a t(1/2) of approximately 1.5 h at 37 degrees C. In comparison, complexes of an optimal peptide (SIINFEKL) bound to the MHC class Ia molecule H-2K(b) dissociated with a t(1/2) in the range from 11 to 31 h. In contrast to K(b), the stability of cell surface Qa-1(b) molecules was independent of bound peptides, and several observations suggested that empty cell surface Qa-1(b) molecules might be unusually stable. Consistent with the rapid dissociation rate of Qdm from Qa-1(b), cells become susceptible to lysis by CD94/NKG2A(+) NK cells under conditions in which new Qa-1(b)/Qdm complexes cannot be continuously generated at the cell surface. These results support the hypothesis that Qa-1 has been selected as a specialized MHC molecule that is unable to form highly stable peptide complexes. We propose that the CD94/NKG2A-Qa-1/Qdm recognition system has evolved as a rapid sensor of the integrity of the MHC class I biosynthesis and Ag presentation pathway.  相似文献   

4.
NK cells express several families of receptors that play central roles in target cell recognition. These NK cell receptors are also expressed by certain memory phenotype CD8(+) T cells, and in some cases are up-regulated in T cells responding to viral infection. To determine how the profile of NK receptor expression changes in murine CD8(+) T cells as they respond to intracellular pathogens, we used class I tetramer reagents to directly examine Ag-specific T cells during lymphocytic choriomeningitis virus and Listeria monocytogenes infections. We found that the majority of pathogen-specific CD8(+) T cells initiated expression of the inhibitory CD94/NKG2A heterodimer, the KLRG1 receptor, and a novel murine NK cell marker (10D7); conversely, very few Ag-specific T cells expressed Ly49 family members. The up-regulation of these receptors was independent of IL-15 and persisted long after clearance of the pathogen. The expression of CD94/NKG2A was rapidly initiated in naive CD8(+) T cells responding to peptide Ags in vitro and on many of the naive T cells that proliferate when transferred into lymphopenic (Rag-1(-/-)) hosts. Thus, CD94/NKG2A expression is a common consequence of CD8(+) T cell activation. Binding of the CD94/NKG2A receptor by its ligand (Qa-1(b)) did not significantly inhibit CD8(+) T cell effector functions. However, expression of CD94 and NKG2A transgenes partially inhibited early events of T cell activation. These subtle effects suggest that CD94/NKG2A-mediated inhibition of T cells may be limited to particular circumstances or may synergize with other receptors that are similarly up-regulated.  相似文献   

5.
Dendritic cells (DC) trigger activation and IFN-gamma release by NK cells in lymphoid tissues, a process important for the polarization of Th1 responses. Little is known about the molecular signals that regulate DC-induced NK cell IFN-gamma synthesis. In this study, we analyzed whether the interaction between Qa-1(b) expressed on DC and its CD94/NKG2A receptor on NK cells affects this process. Activation of DC using CpG-oligodeoxynucleotides in Qa-1(b)-deficient mice, or transfer of CpG-oligodeoxynucleotide-activated Qa-1(b)-deficient DC into wild-type mice, resulted in dramatically increased IFN-gamma production by NK cells, as compared with that induced by Qa-1(b)-expressing DC. Masking the CD94/NKG2A inhibitory receptor on NK cells in wild-type mice similarly enhanced the IFN-gamma response of these cells to Qa-1(b)-expressing DC. Furthermore, NK cells from CD94/NKG2A-deficient mice displayed higher IFN-gamma production upon DC stimulation. These results demonstrate that Qa-1(b) is critically involved in regulating IFN-gamma synthesis by NK cells in vivo through its interaction with CD94/NKG2A inhibitory receptors. This receptor-ligand interaction may be essential to prevent unabated cytokine production by NK cells during an inflammatory response.  相似文献   

6.
T cell-dependent autoimmune diseases are characterized by the expansion of T cell clones that recognize immunodominant epitopes on the target antigen. As a consequence, for a given autoimmune disorder, pathogenic T cell clones express T cell receptors with a limited number of variable regions that define antigenic specificity. Qa-1, a MHC class I-like molecule, presents peptides from the variable region of TCRs to Qa-1-restricted CD8+ T cells. The induction of Vß-specific CD8+ T cells has been harnessed in an immunotherapeutic strategy known as the “T cell vaccination” (TCV) that comprises the injection of activated and attenuated CD4+ T cell clones so as to induce protective CD8+ T cells. We hypothesized that Qa-1-restricted CD8+ regulatory T cells could also constitute a physiologic regulatory arm of lymphocyte responses upon expansion of endogenous CD4+ T cells, in the absence of deliberate exogenous T cell vaccination. We immunized mice with two types of antigenic challenges in order to sequentially expand antigen-specific endogenous CD4+ T cells with distinct antigenic specificities but characterized by a common Vß chain in their TCR. The first immunization was performed with a non-self antigen while the second challenge was performed with a myelin-derived peptide known to drive experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. We show that regulatory Vß-specific Qa-1-restricted CD8+ T cells induced during the first endogenous CD4+ T cell responses are able to control the expansion of subsequently mobilized pathogenic autoreactive CD4+ T cells. In conclusion, apart from the immunotherapeutic TCV, Qa-1-restricted specialized CD8+ regulatory T cells can also be induced during endogenous CD4+ T cell responses. At variance with other regulatory T cell subsets, the action of these Qa-1-restricted T cells seems to be restricted to the immediate re-activation of CD4+ T cells.  相似文献   

7.
Preferential survival of CD8 T and NK cells expressing high levels of CD94   总被引:4,自引:0,他引:4  
The Qa-1(b)/Qdm tetramer binds to CD94/NKG2 receptors expressed at high levels on approximately 50% of murine NK cells. Although very few CD8 T cells from naive mice express CD94/NKG2 receptors, approximately 50% of CD8 T cells taken from mice undergoing a secondary response against Listeria monocytogenes (LM) are CD94(high) and bind the tetramer. Although CD94(int) NK cells do not bind the tetramer, CD94(int) CD8 T cells do, and this binding is dependent on the CD8 coreceptor. We found that the extent of apoptosis in CD8 T and NK cells was inversely related to the expression of CD94, with lower levels of apoptosis seen in CD94(high) cells after 1-3 days of culture. The difference in CD8 T cell survival was evident as early as 6 h after culture and persisted until nearly all the CD94(neg/int) cells were apoptotic by 48 h. In contrast, expression of inhibitory Ly-49A,G2,C/I molecules was associated with higher levels of apoptosis. Cross-linking CD94/NKG2 receptors on CD8 T cells from a mouse undergoing an LM infection further reduced the percentage of apoptotic cells on the CD94-expressing populations, while cross-linking Ly-49I had no effect on CD8 T cells expressing Ly-49I. Cross-linking CD3 on CD8 T cells from a mouse undergoing a secondary LM infection increases the extent of apoptosis, but this is prevented by cross-linking CD94/NKG2 receptors at the same time. Similar results were observed with NK cells in that the CD94(high) population displayed less apoptosis than CD94(int) cells after 1-3 days in culture. Therefore, the expression of CD94/NKG2 is correlated with a lower level of apoptosis and may play an important role in the maintenance of CD8 T and NK cells.  相似文献   

8.
After HSV-1 infection, CD8(+) T cells accumulate in the trigeminal ganglion (TG) and participate in the maintenance of latency. However, the mechanisms underlying intermittent virus reactivation are poorly understood. In this study, we demonstrate the role of an inhibitory interaction between T cell Ig and mucin domain-containing molecule 3 (Tim-3)-expressing CD8(+) T cells and galectin 9 (Gal-9) that could influence HSV-1 latency and reactivation. Accordingly, we show that most K(b)-gB tetramer-specific CD8(+) T cells in the TG of HSV-1-infected mice express Tim-3, a molecule that delivers negative signals to CD8(+) T cells upon engagement of its ligand Gal-9. Gal-9 was also upregulated in the TG when replicating virus was present as well during latency. This could set the stage for Gal-9/Tim-3 interaction, and this inhibitory interaction was responsible for reduced CD8(+) T cell effector function in wild-type mice. Additionally, TG cell cultures exposed to recombinant Gal-9 in the latent phase caused apoptosis of most CD8(+) T cells. Furthermore, Gal-9 knockout TG cultures showed delayed and reduced viral reactivation as compared with wild-type cultures, demonstrating the greater efficiency of CD8(+) T cells to inhibit virus reactivation in the absence of Gal-9. Moreover, the addition of recombinant Gal-9 to ex vivo TG cultures induced enhanced viral reactivation compared with untreated controls. Our results demonstrate that the host homeostatic mechanism mediated by Gal-9/Tim-3 interaction on CD8(+) T cells can influence the outcome of HSV-1 latent infection, and manipulating Gal-9 signals might represent therapeutic means to inhibit HSV-1 reactivation from latency.  相似文献   

9.
The MHC Ag Qa-2 is a glycolipid anchored class I molecule expressed at high levels on all peripheral T lymphocytes. In this study we found that anti-Qa-2 antibodies could stimulate the proliferation of murine T cells in vitro. Anti-Qa-2-induced proliferation required secondary cross-linking with anti-Ig antibody and the presence of PMA. Only Qa-2+ strains could be induced to proliferate by anti-Qa-2 antibody, but under the conditions employed, anti-CD3 could induce proliferation in Qa-2+ and Qa-2-strains. Interestingly, only anti-Qa-2 reagents directed against the alpha 3 domain of the Qa-2 class I molecule were effective in inducing proliferation. Furthermore, unlike purified CD4+ cells, purified CD8+ cells were unable to be stimulated by the anti-Qa-2 antibodies. These results lead to the inclusion of Qa-2 in a group of physiologically relevant, glycolipid-anchored, cell-surface molecules, mobilization of which can generate signals that initiate the proliferation of T cells. Such molecules may play a secondary role in cellular activation after the primary engagement of the TCR.  相似文献   

10.
Inhibitory receptors expressed on NK cells recognize MHC class I molecules and transduce negative signals to prevent the lysis of healthy autologous cells. The lectin-like CD94/NKG2 heterodimer has been studied extensively as a human inhibitory receptor. In contrast, in mice, another lectin-like receptor, Ly-49, was the only known inhibitory receptor until the recent discovery of CD94/NKG2 homologues in mice. Here we describe the expression and function of mouse CD94 analyzed by a newly established mAb. CD94 was detected on essentially all NK and NK T cells as well as small fractions of T cells in all mouse strains tested. Two distinct populations were identified among NK and NK T cells, CD94(bright) and CD94(dull) cells, independent of Ly-49 expression. The anti-CD94 mAb completely abrogated the inhibition of target killing mediated by NK recognition of Qa-1/Qdm peptide on target cells. Importantly, CD94(bright) but not CD94(dull) cells were found to be functional in the Qa-1/Qdm-mediated inhibition. In the presence of the mAb, activated NK cells showed substantial cytotoxicity against autologous target cells as well as enhanced cytotoxicity against allogeneic and "missing self" target cells. These results suggest that mouse CD94 participates in the protection of self cells from NK cytotoxicity through the Qa-1 recognition, independent of inhibitory receptors for classical MHC class I such as Ly-49.  相似文献   

11.
Previous studies have identified murine and human regulatory CD8+ T cells specific for TCR-Vbeta families expressed on autologous activated CD4+ T cells. In the mouse, these regulatory CD8+ T cells were shown to be restricted by the MHC class Ib molecule, Qa-1. In the present study, we asked whether HLA-E, the human functional equivalent of Qa-1, binds Vbeta peptides and whether the HLA-E/Vbeta-peptide complex induces and restricts human CD8+ CTLs. We first created stable HLA-E gene transfectants of the C1R cell line (C1R-E). Two putative HLA-E binding nonapeptides identified in human TCR Vbeta1 and Vbeta2 chains (SLELGDSAL and LLLGPGSGL, respectively) were shown to bind to HLA-E. CD8+ T cells could be primed in vitro by C1R-E cells loaded with the Vbeta1 (C1R-E/V1) or Vbeta2 (C1R-E/V2) peptide to preferentially kill C1R-E cells loaded with the respective inducing Vbeta peptide, compared with targets loaded with the other peptides. Priming CD8+ T cells with untreated C1R-E cells did not induce Vbeta-specific CTLs. Of perhaps more physiological relevance was the finding that the CD8+ CTLs primed by C1R-E/V1 also preferentially killed activated autologous TCR Vbeta1+. Similar results were observed in reciprocal experiments using C1R-E/V2 for priming. Furthermore, anti-CD8 and anti-MHC class I mAbs inhibited this Vbeta-specific killing of C1R-E and CD4+ T cell targets. Taken together, the data provide evidence that certain TCR-Vbeta peptides can be presented by HLA-E to further induce Vbeta-specific CD8+ CTLs.  相似文献   

12.
Regulation of the cytotoxic T lymphocyte response against Qa-1 alloantigens   总被引:2,自引:0,他引:2  
Spleen cells from B6.Tlaa (Qa-1a) mice primed against C57BL/6 (Qa-1b) splenocytes in vivo generate Qa-1-specific CTL when rechallenged with Qa-1b Ag in vitro. The addition of unirradiated Qa-1b splenocytes to these cultures inhibits the generation of Qa-1-specific CTL. By using highly purified cell populations, we demonstrate that the only cell population in resting spleen capable of causing this inhibition is NK1.1+. Although resting CD8 cells lack inhibitory activity, purified CD8 cells precultured with Con A and IL-2 inhibit anti-Qa-1 CTL. This inhibition is specific for the Qa-1b Ag expressed on the inhibitor cells, is not due to cold target competition, and is thus similar to that ascribed to veto cells. Although NK cells from resting spleen inhibit the generation of Qa-1-specific CTL, NK cells precultured in the presence of Con A and IL-2 show an approximate 30-fold increase in veto activity. Thus, NK cells represent the most likely cell population for down-regulating anti-self class I-reactive CTL.  相似文献   

13.
The majority of CD4+8- thymocytes are functionally immature.   总被引:5,自引:0,他引:5  
The thymus is the major site of T cell development and repertoire selection. During these processes, T cells segregate into two subsets that express either CD4 or CD8 accessory molecules, the phenotype of peripheral T cells. Analysis of CD4+8- thymocytes revealed that the majority of these cells express the heat-stable Ag (HSA) but not the nonclassical class I Ag, Qa-2. This HSA+, Qa-2- phenotype is similar to that of the less mature, CD4+8+ thymocytes. The remaining CD4+8- thymocytes possess the HSA-, Qa-2+ phenotype of peripheral T cells. To determine whether the Qa-2-, CD4+8- thymic subset is fully mature, we have analyzed the functional status of these CD4+8- subpopulations. The results indicate that only those thymocytes which express Qa-2 are fully responsive to anti-TCR stimulation in a manner analogous to peripheral T cells. The Qa-2- subset is nonresponsive to stimulation by anti-TCR antibodies that have been immobilized to plastic, even in the presence of lymphokines or syngeneic APC. This subset is, however, capable of proliferating to allogeneic cells or to anti-TCR on the surface of syngeneic APC, although not to the levels achieved by Qa-2+ thymocytes. Thus, the Qa-2- subset appears to require additional interactions which are not necessary for peripheral T cells or Qa-2+ thymocytes. Relevant to this issue, the Qa-2+ thymocyte subset does not appear until relatively late in development, and does not reach adult frequencies until several weeks after birth. These results would suggest that there is a progression from HSA+, Qa-2- to HSA-, Qa-2+ which parallels the maturation of functional responsiveness. These findings are important to understanding T cell selection since thymocytes with such a decreased responsiveness may have a differential capacity for tolerance induction. The results presented suggest that the bulk of CD4+8- thymocytes are not fully mature and that Qa-2 may serve as a marker for T cells with a more complete functional competence.  相似文献   

14.
Some T lymphocytes express the CD94 Ag, which is known to form heterodimers with members of the NKG2 family. We have studied the expression pattern and function of CD94 heterodimers in different alphabeta or gammadelta T cell clones. Most of the CD94+NKG2A- T cells have a low to intermediate expression of CD94 Ag. The cross-linking of the CD94/NKG2 heterodimer in one of these CD8 alphabeta CD94+NKG2A- T cell clones (K14B06) was able to: 1) increase the intracellular concentration of Ca2+, 2) induce the up-regulation of CD25 Ag expression and the secretion of IFN-gamma, and 3) trigger redirected cytotoxicity in a TCR-independent manner. This activatory property was not shared by any other costimulatory molecule expressed by the K14B06 T cell clone, including CD8, CD28, CD45, CD69, or CD2 Ags. The immunoprecipitation of CD94 heterodimer showed a 39-kDa band with a similar m.w. to the activatory heterodimer found on some NK clones. A novel form of the NKG2 family (NKG2H) was identified in K14B06. NKG2H protein represents an alternative spliced form of the NKG2E gene, displaying a charged residue in the transmembrane portion and a cytoplasmic tail that lacks immunoreceptor tyrosine-based inhibitory motifs. The expression of NKG2H in the cell membrane through its association to CD94 and DAP-12 molecules supports that it could form part of the activatory CD94/Kp39 heterodimer present on K14B06 cells.  相似文献   

15.
H2-M3-restricted CD8+ T cells provide early protection against bacterial infections. In this study, we demonstrate that activated H2-M3-restricted T cells provide early signals for efficient CD4+ T cell priming. C57BL/6 mice immunized with dendritic cells coated with the MHC class II-restricted listeriolysin O peptide LLO(190-201) (LLO) generated CD4+ T cells capable of responding to Listeria monocytogenes (LM) infection. Inclusion of a H2-M3-restricted formylated peptide fMIGWII (fMIG), but not MHC class Ia-restricted peptides, during immunization with LLO significantly increased IFN-gamma-producing CD4+ T cell numbers, which was associated with increased protection against LM infection. Studies with a CD4+ T cell-depleting mAb indicate that the reduction in bacterial load in fMIG plus LLO immunized mice is likely due to augmented numbers of LLO-specific CD4+ T cells, generated with the help of H2-M3-restricted CD8+ T cells. We also found that augmentation of LLO-specific CD4+ T lymphocytes with H2-M3-restricted T cells requires presentation of LLO and fMIG by the same dendritic cells. Interestingly, the augmented CD4+ T cell response generated with fMIG also increased primary LM-specific responses by MHC class Ia-restricted CD8 T cells. Coimmunization with LLO and fMIG also increases the number of memory Ag-specific CD4+ T cells. We also demonstrate that CD8 T cells restricted to another MHC class Ib molecule, Qa-1, whose human equivalent is HLA-E, are also able to enhance Ag-specific CD4+ T cell responses. These results reveal a novel function for H2-M3- and Qa-1-restricted T cells; provision of help to CD4+ Th cells during the primary response.  相似文献   

16.
Murine CD4+CD8- (CD4SP) thymocyte subset is a heterogeneous population, in which the Qa-2- cells are less functional, whereas the Qa-2+ cells are fully functional. Evidence is provided here that the transition from Qa-2- to Qa-2+ CD4SP thymocytes is an intrathymic process of differentiation induced by thymic medullary-type epithelial cells. The separated Qa-2-CD4SP could be induced to express Qa-2 molecules up to 84%- 89% of the total viable celb after cocultured for 3d with MTEC1 cells, a murine thymic medullary type epithelial cell line established in our laboratory. Kinetic study showed that both the percentage of Qa-2+ cells and the density of the expressed Qa-2 molecules on CD4SP thymocytes induced by MTEC1 were progressively increasing in 72-h cultures. The MTECl-induced Qa-2+CD4SP thymocytes were fully functional, which exhibited capabilities of proliferation and cytokine secretion in response to Con A stimulation as high as those of freshly isolated Qa-2+CD4SP thymocytes. The profile of cytokine  相似文献   

17.
The outcome of viral infections is dependent on the function of CD8+ T cells which are tightly regulated by costimulatory molecules. The NK cell receptor 2B4 (CD244) is a transmembrane protein belonging to the Ig superfamily which can also be expressed by CD8+ T cells. The aim of this study was to analyze the role of 2B4 as an additional costimulatory receptor regulating CD8+ T cell function and in particular to investigate its implication for exhaustion of hepatitis C virus (HCV)-specific CD8+ T cells during persistent infection. We demonstrate that (i) 2B4 is expressed on virus-specific CD8+ T cells during acute and chronic hepatitis C, (ii) that 2B4 cross-linking can lead to both inhibition and activation of HCV-specific CD8+ T cell function, depending on expression levels of 2B4 and the intracellular adaptor molecule SAP and (iii) that 2B4 stimulation may counteract enhanced proliferation of HCV-specific CD8+ T cells induced by PD1 blockade. We suggest that 2B4 is another important molecule within the network of costimulatory/inhibitory receptors regulating CD8+ T cell function in acute and chronic hepatitis C and that 2B4 expression levels could also be a marker of CD8+ T cell dysfunction. Understanding in more detail how 2B4 exerts its differential effects could have implications for the development of novel immunotherapies of HCV infection aiming to achieve immune control.  相似文献   

18.
Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a “mimic” of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a “polymorphic hot spot” within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors.  相似文献   

19.
The generation of CTL against Qa-1 Ag in C57BL/6 (B6) (Qa-1b) and B6.Tlaa (Qa-1a) congenic strains requires in vivo priming with the Qa-1 alloantigen together with a helper Ag, such as H-Y. The primed precursors obtained from these female mice generate Qa-1-specific CTL activity upon culture in vitro. Although the presence of the H-Y helper Ag is not required for the in vitro sensitization, no response occurs in the absence of CD4 cells. Addition of unprimed B6.Tlaa CD4 cells from Qa-1 incompatible radiation bone marrow chimeras (B6.Tlaa----B6), that are presumably tolerant to Qa-1b, provide helper activity for Qa-1b-specific CTL. This indicates that although CD4 cells are obligatory for the Qa-1 response, they need not be specific for alloantigens on the APC to generate helper activity in in vitro cultures. Addition of unirradiated B6 CD8-depleted spleen cells to CD4-depleted B6.Tlaa anti-B6 cultures in the presence of either B6.Tlaa CD4 cells or rIL-2 prevents the generation of Qa-1 specific CTL. This inhibition is not due to an anti-idiotypic Ts cell since B6.Tlaa----B6 chimeric cells do not suppress an anti-Qa-1b response. Rather, this finding is consistent with that of a veto cell mechanism. To determine whether CD4 cells themselves exhibit veto activity, highly purified CD4 populations were tested for their ability to inhibit the generation of Qa-1-specific CTL. CD4 cells precultured for 2 to 3 days with Con A and rIL-2 specifically inhibit CTL activity whereas resting cells do not, similar to that noted for CD8 veto cells. The relative efficiency of activated CD4 cells is greater than that of resting NK cells but is less than that of activated CD8 or NK cells. Thus, CD4 cells not only provide helper activity for CTL precursors, but also act as veto cells to prevent the generation of CTL activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号