首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J L Portis  F J McAtee 《Immunogenetics》1981,12(1-2):101-115
The differential expression of H-2 specificities recognized by antibody and by cytotoxic T lymphocytes (CTL) has been studied using a clone (FY7) of the C57BL/6 leukemia cell line FBL-3 (H-2b/H-2b). Unlike C57BL/10 spleen cells, EL-4 lymphoma cells and Y57-2C leukemia cells (all H-2b/H-2b), FY7 failed to induce the primary in vitro generation of anti-H-2b CTL by (B10.A x A)F1 (H-2a/H-2a) or B10.D2 x BALB/c)F1 (H-2d/H-2d) responder spleen cells. In addition, FY7 was not lysed by, and did not competitively inhibit anti-H-2b CTL. Quantitative absorption tests with H-2Kb and H-2Db antisera revealed that FY7 expressed these antigens in quantitatively similar amounts to EL-4. The H-2Kb product of FY7 appeared to be identical with that of C57BL/10 spleen cells both in apparent molecular weight and isoelectric point. Yet FY7 failed to inhibit anti-H-2Kb CTL competitively in a cold target inhibition assay. Possible mechanisms are discussed for the lack of T-lymphocyte recognition of the H-2Kb-gene product expressed by FY7.  相似文献   

2.
Cytotoxic T lymphocytes (CTL) were induced in C57BL/6 and (C57BL/6 X DBA/2)F1 mice after immunization with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV-Arm) and were cloned by limiting dilution in vitro. The cytotoxic activity of these clones was LCMV specific and H-2 restricted. All clones induced in C57BL/6 (H-2b) mice with LCMV-Arm lysed target cells infected with each of five distinct strains of LCMV (Arm, Traub , WE, Pasteur, and UBC ), suggesting recognition of common regions of viral proteins in association with H-2b molecules. In contrast, one clone obtained from (B6 X D2)F1 mice and restricted to the H-2d haplotype only lysed cells infected with one of three strains of virus (Arm, Traub , WE) but not two others (Pasteur, UBC ), suggesting recognition of variable regions of viral proteins in the context of H-2d molecules. To assess the fine specificity for H-2 molecules, we tested H-2Kb-restricted CTL clones for their ability to kill LCMV-infected target cells bearing mutations in their H-2Kb, and we tested clones presumed to be restricted to the H-2Db region for their ability to all LCMV targets cells bearing a mutation in the H-2Db region. Several different patterns of killing of the mutant targets were observed, indicating that a number of different epitopes on the H-2b molecules were used as restricting determinants for LCMV antigen recognition by CTL. Thus, cross-reactive viral determinants were recognized in the context of several different restricting determinants. Mutations in the N or C1 domains of the H-2 molecule affected recognition by a single LCMV specific CTL clone. One implication of this result is that CTL recognize a conformational determinant on the H-2 molecule formed by the association of virus antigen(s) with H-2. An alternate explanation is that one site on the H-2 molecule is involved in the interaction of viral antigens with H-2, whereas another may serve as a binding site for the CTL receptor.  相似文献   

3.
Previous study demonstrated that anti-H-43a cytotoxic T lymphocyte (CTL) response of H-43b CWB (H-2b) stain carrying non-major histocompatability complex (MHC) genes of C3H and F1 strains raised by crossing CWB with various H-43b strains was restricted exclusively by self H-2Kb (Kb). In the present study, newly produced C3W strain (H-2k, H-43b), which is H-43-congenic to C3H/HeN (H-2k, H-43a), was used as H-43b mice, and possibility of immunodominance of Kb was examined. No anti-H-43a CTL response could be induced in C3W strain and F1 strains raised by crossing C3W with other H-43b strains not carrying Kb. Thus, the possibility of immunodominance of Kb over the other MHC class I alleles could not be supported. We also examined possibility of epistatic effect of I region genes and non-MHC genes on the Kb restriction. (C3W x C57BL/6)F1(I-Ak/b) and (C3W x B6.CH-2bm12)F1(I-Ak/bm12)mice showed equally anti-H-43a CTL response restricted exclusively by self Kb, and (C3W x B10.MBR)F1(Ik/k) mice also showed anti-H-43a CTL response restricted solely by self Kb. Cold target competition experiments demonstrated that H-43b C57BL/10 or A.BY mice, which do not have non-MHC genes of C3H mounted anti-H-43a CTL response restricted solely by self Kb. Thus, no relation of I region genes or non-MHC genes to the Kb restriction was shown. All the results indicate that H-43b mouse strains, including F1, can not achieve anti-H-43a CTL response unless they carry Kb allele. Notably, (C3W x C57BL/6)F1 mice mounted self Kb-restricted anti-H-43a CTL response, whereas (C3W x B6.CH-2bm1)F1 mice carrying mutated Kb could not mount anti-H-43a CTL response at all. These findings indicate strongly that Kb itself is classical Ir gene of anti-H-43a CTL response and directs self Kb restriction of the response.  相似文献   

4.
The Ag specificity and MHC restriction of the CTL response to adenovirus 5 (Ad5) in three strains of mice, C57BL/10 (H-2b), BALB/c (H-2d), and C3H/HeJ (H-2k), were tested. Polyclonal Ad5-specific CTL were prepared by priming mice in vivo with live Ad5 virus followed by secondary in vitro stimulation of the spleen cells with virus-infected syngeneic cells. The Ad5-specific CTL were Db restricted in C57BL/10 and Kk restricted in C3H/HeJ. In BALB/c mice both Kd- and Dd/Ld-restricted CTL were detected. The polyclonal Ad5-specific CTL response in C57BL/10 mice is directed exclusively against the products of the E1A region, which comprises only 5% of the Ad5 genome. In BALB/c mice E1A is at best a very minor target Ag and in C3H/HeJ mice E1A is not recognized at all. Using the H-2 congenic mouse strains B10.BR (H-2k) and C3H.SW (H-2b) it was shown that the immunodominance of E1A is H-2 dependent. The 19-kDa glycoprotein encoded in the E3 region of Ad5, which binds to class I MHC in the endoplasmic reticulum and prevents its translocation to the cell surface, does not affect the specificity of the CTL response in C57BL/10 mice toward E1A. However, it affects the MHC restriction of the Ad5-specific response in BALB/c mice, selectively inhibiting generation of Kd-restricted CTL.  相似文献   

5.
We previously described a system in which H-2Kb-restricted C57BL/6 (B6) cytotoxic T lymphocytes (CTL) could be raised that were specific for tumors, such as the thymic lymphoma AKR.H-2b SL1, that were induced by endogenous AKR/Gross murine leukemia virus and that expressed the Gross cell surface antigen. In this study, certain normal lymphoid cells from AKR.H-2b mice were also found to express target antigens defined by such anti-AKR/Gross virus CTL. AKR.H-2b spleen, but surprisingly not thymus, cells stimulated the production of anti-AKR/Gross virus CTL when employed at either the in vivo priming phase or the in vitro restimulation phase of anti-viral CTL induction. This selective stimulation by spleen vs thymus cells was not dependent on the age of the mice over the range (3 to 28 wk) tested. Both AKR.H-2b spleen and thymus cells, however, were able to stimulate the generation of H-2-restricted B6 anti-AKR minor histocompatibility (H) antigen-specific CTL. Thus, AKR.H-2b spleen cells appeared to display the same sets (minor H and virus-associated) of cell surface antigens recognized by CTL as the AKR.H-2b SL1 tumor, whereas AKR.H-2b thymocytes were selectively missing the virus-associated target antigens, a situation analogous to that of cl. 18-5, a variant subclone of AKR.H-2b SL1 insusceptible to anti-AKR/Gross virus CTL. Like AKR.H-2b thymocytes, neither AKR spleen cells or thymocytes nor B6.GIX + thymocytes were able to stimulate the generation of anti-AKR/Gross virus CTL from primed B6 responder cell populations. In contrast, both T cell-enriched and B cell-enriched preparations derived from AKR.H-2b spleen cells were able to stimulate at the in vitro phase of induction, although B cell-enriched preparations were considerably more efficient. The discordant results obtained with AKR.H-2b spleen cells vs thymocytes were confirmed and extended in experiments in which these cells were employed as target cells to directly assess the cell surface expression of virus-associated, CTL-defined antigens. Thus, AKR.H-2b spleen cells, but not thymocytes, were recognized by anti-AKR/Gross virus CTL when fresh normal cells were tested as unlabeled competitive inhibitors, or when mitogen blasts were tested as labeled targets. Fresh or lipopolysaccharide-stimulated B cell-enriched spleen cells were as efficiently recognized as unseparated spleen cell preparations. Unexpectedly, fresh or Lens culinaris hemagglutinin-stimulated T cell-enriched spleen cell preparations, although susceptible to anti-minor H CTL, were almost as poor as targets for anti-viral CTL as were thymocytes. Together, these results demonstrate the H-2-restricted expression of CTL-defined, endogenous, AKR/Gross virus-associated target antigens by normal AKR.H-2b splenic B cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Although it is well known that an H-2-restricted cytotoxic T cell response to minor histocompatibility antigens (MIHA) can be primed in vivo with H-2 disparate spleen cells, it has not been previously possible to induce cytotoxic T lymphocyte (CTL) precursors (CTLp) in vitro by this type of challenge. In this work, we demonstrate that the inability to cross challenge in vitro is due to the existence of inhibitory effects that can be obviated by cell fractionation, and to insufficient priming in vivo. BALB/c CTLp (H-2d) that have been repeatedly primed in vivo with B10.D2 can be challenged in vitro with C57BL10/J (H-2b) or B10.BR (H-2k)-adherent cells to generate CTL able to lyse B10.D2 (H-2d) target cells. The H-2 restriction properties of the cross-challenged CTL specific for MIHA were analyzed by using the technique of cold target competition. Within the limits of detection in bulk cultures, the entire response appeared to be H-2 unrestricted, whether the cross challenge was with intact C57BL10/J-adherent cells, or with membrane fragments of C57BL10/J presented by BALB/c adherent cells. The frequency of CTLp responsive to cross challenge was analyzed by limiting dilution, with cold target competition at each cell number to establish the restriction properties of the MIHA-specific CTL induced. We were able to detect two subsets of H-2-unrestricted CTLp responsive to intact C57BL10/J-adherent cells; one present at high frequency (1/250 T cells) and subject to suppressive effects at high cell number, and a second present at lower frequency (1/9800 T cells). There appeared to be a relatively infrequent subset of H-2-restricted CTLp as well (1/52,500 T cells). The frequency of CTLp responsive to cross challenge is of comparable magnitude to the frequency of H-2-restricted CTLp responsive to H-2-matched cells bearing MIHA. These observations are discussed in relationship to immunodominance and clonal dominance effects in the response to MIHA.  相似文献   

7.
Spleen cells from C57BL/6 (B6) mice generate a strong in vitro cytotoxic T-lymphocyte (CTL) response specific for vesicular stomatitis virus (VSV). Spleen cells from VSV-primed B6-H-2bm3 (bm3) mice, which have a mutation in H-2Kb, require approximately 10-fold more UV-inactivated VSV to generate in vitro secondary anti-VSV CTL, compared with spleen cells from primed B6 mice. Anti-VSV CTL elicited in both bm3 and B6 mice are primarily specific for the viral nucleocapsid protein (N protein), as demonstrated by using recombinant vaccinia viruses that express the VSV N protein. bm3 CTL were found to exhibit only a very low level of lytic activity when tested against autologous VSV-infected concanavalin A spleen cell blasts as well as several H-2b tumor cell lines. The weak anti-VSV response of bm3 CTL was found to be the result of a combination of inefficient recognition of VSV-infected target cells and decreased elicitation of secondary effector cells. VSV-infected bm3 target cells were not killed as well as B6 targets by either bm3 or B6 effectors. This is because of the inefficient recognition of targets, as demonstrated by the fact that VSV-infected bm3 cells were unable to competitively inhibit the lysis of VSV-infected B6 target cells by either bm3 or B6 effectors. By using cells from recombinant mice, it was shown that the CTL response restricted by H-2Kb was low in the bm3 mice, compared with that of the B6 mice. However, the H-2Db-restricted CTL activity was similarly low in both the B6 and bm3 mice. The possibility that the low response to VSV-infected bm3 cells is caused by differences between the bm3 and B6 cells in expression of either viral antigens or H-2K was investigated by radiolabeling and immunoprecipitation. VSV-infected B6 and bm3 cells were found to express equivalent levels of both viral antigens and H-2K. These results indicate that the bm3 mutation alters a functional site on the H-2Kb molecule that is involved in the recognition of VSV-infected cells. The observation that elicitation of bm3 CTL can occur at high antigen doses further suggests that the bm3 mutation results in a lower affinity of H-2K either for viral antigen or for receptor sites on the CTL.  相似文献   

8.
Jessen B  Faller S  Krempl CD  Ehl S 《Journal of virology》2011,85(19):10135-10143
Susceptibility to respiratory syncytial virus (RSV) infection in mice is genetically determined. While RSV causes little pathology in C57BL/6 mice, pulmonary inflammation and weight loss occur in BALB/c mice. Using major histocompatibility complex (MHC)-congenic mice, we observed that the H-2(d) allele can partially transfer disease susceptibility to C57BL/6 mice. This was not explained by altered viral elimination or differences in the magnitude of the overall virus-specific cytotoxic T lymphocyte (CTL) response. However, H-2(d) mice showed a more focused response, with 70% of virus-specific CTL representing Vβ8.2(+) CTL directed against the immunodominant epitope M2-1 82, while in H-2(b) mice only 20% of antiviral CTL were Vβ9(+) CTL specific for the immunodominant epitope M187. The immunodominant H-2(d)-restricted CTL lysed target cells less efficiently than the immunodominant H-2(b) CTL, probably contributing to prolonged CTL stimulation and cytokine-mediated immunopathology. Accordingly, reduction of dominance of the M2-1 82-specific CTL population by introduction of an M187 response in the F1 generation of a C57BL/6N × C57BL/6-H-2(d) mating (C57BL/6-H-2(dxb) mice) attenuated disease. Moreover, disease in H-2(d) mice was less pronounced after infection with an RSV mutant failing to activate M2-1 82-specific CTL or after depletion of Vβ8.2(+) cells. These data illustrate how the MHC-determined diversity and functional avidity of CTL responses contribute to disease susceptibility after viral infection.  相似文献   

9.
The immunization of C57BL/6 responder mice with spleen cells from H-2-matched BALB.B donors, which differ by multiple non-H-2 histocompatibility (H) antigens, results in the generation of cytotoxic T lymphocytes (CTL) that are specific for only a limited number of immunodominant antigens. Previous analysis of the genes encoding these dominant antigens has not mapped these genes to any of the non-H-2 H loci defined by congenic strains. It would have been expected that the histogenetic techniques employed for congenic strain selection would have preferentially identified the "strongest" H antigens. Therefore, we have investigated the possibility that immunodominant antigens do not belong to the class of non-H-2 H antigens encoded by genes mapping to H loci defined and mapped by congenic strains. The first experiments were aimed at identifying antigens that were expressed by independently derived inbred strains and were cross-reactive with the immunodominant cytotoxic T cell target (CTT-1) antigen of BALB.B. Strong cross-reaction with the C3H.SW (H-2b) strain was observed; the C3H gene encoding this antigen was mapped with BXH recombinant inbred strains. Contrary to the mapping of the CTT-1 gene to chromosome 1 in BALB.B, the C3H gene was shown to map to either chromosome 4 or chromosome 7. This result indicates that identical, or at least extensively cross-reactive, non-H-2 antigens may be encoded by genes mapping to independently segregating loci in different inbred strains. The tissue distribution of immunodominant antigens was approached by determining the reactivity of CTL specific for these antigens with either lymphoid-derived or fibroblast-derived targets. These CTL effectively lysed lymphoblast and lymphoid tumor targets but did not lyse an SV40-transformed fibroblast line that was shown to be efficiently lysed by CTL specific for non-H-2 H antigens defined by congenic strains. Therefore, it was concluded that immunodominant antigens detected by B6 anti-BALB.B CTL have a restricted tissue distribution in comparison to non-H-2 H antigens defined by congenic strains. The implications of these results for our understanding of the origin and heterogeneity of non-H-2 cell-surface antigen recognized by effector T cells are discussed.  相似文献   

10.
Cytotoxic T lymphocytes, generated in C57BL/6 mice in response to herpes simplex virus type 1 (HSV) and known to be restricted in their recognition of HSV-encoded antigen(s) in association with the class I H-2Kb gene product, were consistently found to contain a subpopulation that recognized and lysed uninfected, SV40-transformed cells that expressed the H-2Kbm3 and H-2Kbm11 mutant class I gene products on their cell surface. The mutant cell lines, designated Lgbm3SV and Kbm11SV, share a common amino acid substitution at position 77, with the bm3 mutation having an additional amino acid substitution at position 89. Cross-reactive lysis was observed only after in vivo priming with HSV, suggesting an important role for an antigen-dependent driving step in the expansion of these cross-reactive CTL. The phenotype of the cross-reactive effector population was further confirmed as a T lymphocyte by negative-selection techniques. Limiting dilution analysis of the frequency of cross-reactive CTL precursors suggested that cross-reactivity was mediated by a subpopulation of HSV-specific CTL, and this was confirmed by clonal analysis of the reactivity patterns of short-term, HSV-specific CTL clones. However, analysis of the specificity of the cross-reactive CTL population by cold-target inhibition of bulk culture-derived CTL, or by Spearman ranking analysis of limiting dilution-derived CTL, indicated that the specificity of the cross-reactive population for HSV-infected H-2b target cells and for uninfected bm3 or bm11 target cells was quite distinct. These findings suggested that the cross-reactive CTL population played little, if any, role in the HSV-specific CTL response as measured in vitro. The findings also suggested that the HSV-specific CTL clones able to mediate cross-reactive recognition of the bm3 and bm11 targets had a higher intrinsic avidity for the foreign target than for the inducing antigen.  相似文献   

11.
The B10.STA12 mouse congenic line inherited from the wild mouse parent not only the H-2w13 haplotype but also an allele at a minor H locus, which we designate H-41. This allele (H-41a) differentiates the B10.STA12 line from B10.STA10 and B10.LIB55, which carry identical H-2w13 haplotypes but a different H-41 allele (the H-41b, also present in the background strain C57BL/10Sn). The B10.STA12 and B10.STA10 lines reject each other's skin grafts and generate cytolytic T lymphocytes (CTL) after in vivo immunization and in vitro restimulation with cells of the partner strain. The B10.STA12 anti-B10.STA10 CTL react with B10.STA10, B10.LIB55, and B10.STA39 target cells and with cells of F1 hybrids between the responder strain B10.STA12 and strains C57BL/6, C57BL/10, C57L, BALB/c, A, AKR, WB, DBA/1, and DBA/2 but fail to react with (C3H x B10.STA12) F1 and (CBA x B10.STA12) F1 cells. The B10.STA10 anti-B10.STA12 CTL react with B10.STA12, B10.P, and C3H.NB cells but fail to react to (B6 x B10.STA10) F1 target cells. The CTL reactivity in both combinations is Dp restricted. The B10.STA10 anti-B10.STA12 CTL exhibit, in addition, a cross-reactivity with B10.SAA48 cells that may be directed at one of the alloantigens controlled by the H-2 haplotype of this strain.  相似文献   

12.
The specificity of H-2 unrestricted cytotoxic T cells was analyzed in secondary CML responses. A/J strain effector cells, sensitized against A.Tlab lymphoid cells, lysed target cells from strains with differing H-2 haplotypes but all sharing Qa-1b/Tlab alleles; whereas, target cells from strains with Qa-1a/Tlaa were not. When B6.Tlaa animals were in vivo-primed and challenged in vitro with B6 stimulator cells, no cytotoxic effector cell activity was generated. However, if B6.Tlaa animals were primed in vivo with A.BY cells and then rechallenged in vitro with either A.BY or B6 stimulator cells, cytotoxic effector cells were generated that lysed target cells from strains with Qa-1b/Tlab alleles. This suggests that factors in addition to Qa/Tla may play a role in the generation of anti-Qa/Tla effector cell activity. It was also noted that targets from strains with Qa-1a/Tlaa alleles were killed, although to a much lesser extent than the Qa-1b/Tlab targets. SWR anti-DBA/1 efffector cells strongly lysed target cells frrom strains with Qa-1b/Tlab, lysed Qa-1a/Tlaa targets to a lesser extent, and produced no cytotoxic effect on B6.Tlaa target cells. These data suggest that in addition to a CML target antigen associated with Qa-1b/Tlab, there may be an additional specificity recognized by cytotoxic T cells controlled by a gene outside of Qa-1b/Tlab.  相似文献   

13.
The antigenic requirements for in vitro proliferation of several cloned continuous lines of H-2-restricted influenza virus-specific cytotoxic T lymphocytes (CTL) has been examined. The cloned CTL lines were established from individual splenic CTL precursors obtained from A/JAPAN/305/57 (H2N2)-immune F1 (C57BL/6 X BALB/c) donors. The lines were isolated (by limiting dilution in liquid culture) and expanded in the presence of A/JAPAN/305/57-infected irradiated syngeneic (F1) spleen cells and T cell growth factor (TCGF) of rat spleen origin. Optimal proliferation (and long-term in vitro cultivation) of these H-2-restricted CTL lines required both specific antigenic stimulation in the form of virus-infected syngeneic spleen cells and an exogenous source of TCGF. In addition, the antigenic requirements for proliferation of these lines directly reflected the pattern of H-2-restricted influenza virus-specific recognition at the level of target cell recognition and lysis.  相似文献   

14.
H-2Kb mutations limit the CTL response to SV40 TASA   总被引:2,自引:0,他引:2  
The cytotoxic T lymphocyte (CTL) responses directed towards SV40 tumor-associated specific antigen (TASA) in nine strains of spontaneously arising Kb mutant mice were analyzed. All nine mutants generated normal levels of H-2Db-restricted response, but the K-end-restricted CTL response varied. B6.C-H-2bm1 (bm1) did not produce K-end-restricted SV40 TASA-specific CTL upon immunization, and SV40-transformed bm1 cells were not lysed by intra-H-2 recombinant Kb [B10.A(5R)] CTL. Nonreciprocal cross-reactive lysis was seen between B6-H-2bm8 (bm8) and B10.A(5R). Strain B6-H-2bm8 mice produce highly specific Kbm8-restricted CTL that lyse SV40-transformed bm8 cells (Kbm8SV) but not B10.A(5R) target cells (K5RSV), although Kbm8SV targets can be partially lysed by B10.A(5R) CTL. The other seven Kb mutants cross-react with B10.A(5R). These experiments definitively show that genes mapping to the K and/or D region directly control the H-2-restricted CTL response to SV40 TASA.  相似文献   

15.
H-2k-heterozygous F1 hybrid mouse spleen cells cultured with irradiated H-2k-homozygous stimulator cells generated specific anti-parent cytolytic effectors. The parental antigenic determinants recognized by responder cells during induction (afferent arm) and by effector cells during cytolysis (efferent arm) were coded for, or regulated by, the H-2K-Hh3 region of the MHC, according to recombinant analysis. There were no detectable influences by other linked or unlinked genes on the phenotypic expression of parental antigens; however, the anti-parent responsiveness was modulated by background genes of responder cells. These experiments establish that the K end of H-2 controls determinants of F1 anti-parental H-2k CML, like the D end controls those of F1 anti-parental H-2b CML, thus confirming the basic symmetry of the H-2 complex. The relationship of this primary in vitro cell-mediated response with natural in vivo resistance to parental and allogeneic bone marrow grafts is discussed.  相似文献   

16.
It is well established that cytotoxic T lymphocytes (CTL) specific for the male minor histocompatibility antigen (H-Y) are generated by restimulation in vitro of in vivo primed spleen cells from C57BL/6 (H-2b) female mice with syngeneic male spleen cells. When tested on target cells from H-2 different strains, the male-specific C57BL/6 CTL populations exhibited significant lysis of DBA/2 (H-2d), A (H-2a), but not C3H (H-2k), male and female target cells. In an attempt to document this cross-reactivity further at the clonal level, a sensitive technique of limiting dilution analysis was used to determine the specificity of C57BL/6 individual CTL precursors (CTL-P) reactive against the male antigen. The mean frequency of anti-H-Y CTL-P in spleens of primed female mice was about 1/3500. Between one-third to one-tenth of these CTL-P produced a progeny that cross-reacted with H-2d (allogeneic) female target cells. These findings were confirmed by the analysis of the reactivity pattern exhibited by male-specific CTL clones derived by limiting dilution. Of 99 clones tested, 13 were found to cross-react with female DBA/2 target cells. These results thus indicate that a relatively large proportion (greater than 10%) of H-2b CTL-P directed against the H-Y antigen cross-react with target cells expressing H-2d alloantigens in the absence of H-Y antigen.  相似文献   

17.
H-2 restriction in cytolytic T lymphocyte (CTL)-mediated lysis of syngeneic murine Moloney leukemia virus (MoLV)-induced tumor cells was studied at the clonal level by testing the inhibitory effect of monoclonal anti-H-2 antibodies on the lytic interaction between CTL clones and target cells. Large numbers of MoLV-specific CTL clones were generated by placing limiting numbers of C57BL/6 regressor (responder) spleen cells into micro-mixed leukocyte-tumor cell cultures. The clonal CTL populations thus obtained were split into 5 aliquots and tested for lytic activity in the presence (or absence) of 1 of 3 monoclonal antibodies or of an anti-whole H-2b haplotype antiserum. Two of the monoclonal antibodies were directed against H-2Db and one against H-2Kb determinants. Specificity of these reagents had been verified by demonstrating inhibition of lysis by CTL populations directed against H-2Db and H-2Kb alloantigens. In 44 of a total of 51 clones tested, results showed selective inhibition by the anti-H-2Db (and the anti-whole haplotype) reagents, and lack of inhibition by the anti-H-2Kb antibody., Of the remaining 7 clones, none was inhibited by the anti-H-2Db antibody, and 3 were inhibited by the anti-whole haplotype antiserum. These studies show that the recognition of MoLV-associated antigens by the majority of CTL clones was restricted to the H-2Db region, and that there exists limited heterogeneity in the H-2 restriction of such clones.  相似文献   

18.
The present study investigates the effect of trinitrophenyl- (TNP) modified H-2Kk (TNP-Kk) antigens on the generation of anti-TNP-Dk restricted cytotoxic T lymphocyte (CTL) responses. C3H.OH mice were primed to TNP-self by skin-painting with trinitrochlorobenzene, and spleen cells from these primed mice were subsequently stimulated in vitro with TNP-self. The effector cells generated exhibited appreciable lysis of TNP-modified C3H.OH blast target cells. Cold target inhibition studies demonstrated the generation of two effector cell populations: one that recognizes TNP in association with unique Dk self determinants, and one that recognizes TNP in association with self determinants shared between TNP-Kk and TNP-Dk. This was in contrast to primed C3H/He spleen cells, which did not generate CTL that recognized TNP in association with unique Dk self determinants. When spleen cells from (C3H/He x C3H.OH)F1 mice primed to TNP were stimulated in vitro with TNP-C3H.OH cells, unique Dk self determinants were recognized in association with TNP. However, in vitro stimulation of the same F1 responding cells with TNP-C3H/He or TNP-F1 cells failed to elicit CTL that utilized these Dk-unique self determinants. The findings of this study demonstrate that unique or shared H-2Dk determinants can be differentially utilized by CTL populations, depending on the H-2 alleles expressed by the stimulator cells.  相似文献   

19.
Spleen cells from an SJL mouse immunized with B10.S spleen cells were fused with the nonsecretor myeloma line NS.1. One established hybrid cell line continuously secreted antibody that recognized a new antigenic specificity, tentatively called "Ly-m11." This newly found antigen is detectable on nearly 100 percent of spleen and lymph-node cells, 70 percent of bone-marrow cells, and 20 percent of thymus cells by direct cytotoxicity assays, and on the cells derived from kidney and liver. Strains that are Ly-m11 (+) include C57BL/6, C57BL/10J, B10.S, C57BR/cdJ, C57L/J, and C57BL/KsJ. Other mouse strains so far tested are Ly-m11 (-). The strain distribution pattern distinguished Ly-m11 from any known murine lymphocyte alloantigens, but it follows the H-3 alpha haplotype which is defined by skin transplantation. Linkage tests of nine congenic strains of H-3 and/or H-13/alpha loci and five recombinant inbred lines including CXB, BXH, AKXL, SWXL, and BXD revealed no recombinations between H-3 and Ly-m11 loci on chromosome 2. This newly discovered Ly-m11 alloantigen could itself constitute a minor histocompatibility antigen detectable by serological means.  相似文献   

20.
Five distinct cytotoxic T-lymphocyte (CTL) recognition sites were identified in the simian virus 40 (SV40) T antigen by using H-2b cells that express the truncated T antigen or antigens carrying internal deletions of various sizes. Four of the CTL recognition determinants, designated sites I, II, III, and V, are H-2Db restricted, while site IV is H-2Kb restricted. The boundaries of CTL recognition sites I, II, and III, clustered in the amino-terminal half of the T antigen, were further defined by use of overlapping synthetic peptides containing amino acid sequences previously determined to be required for recognition by T-antigen site-specific CTL clones by using SV40 deletion mutants. CTL clone Y-1, which recognizes epitope I and whose reactivity is affected by deletion of residues 193 to 211 of the T antigen, responded positively to B6/PY cells preincubated with a synthetic peptide corresponding to T-antigen amino acids 205 to 219. CTL clones Y-2 and Y-3 lysed B6/PY cells preincubated with large-T peptide LT220-233. To distinguish further between epitopes II and III, Y-2 and Y-3 CTL clones were reacted with SV40-transformed cells bearing mutations in the major histocompatibility complex class I antigen. Y-2 CTL clones lysed SV40-transformed H-2Dbm13 cells (bm13SV) which carry several amino acid substitutions in the putative antigen-binding site in the alpha 2 domain of the H-2Db antigen but not bm14SV cells, which contain a single amino acid substitution in the alpha 1 domain. Y-3 CTL clones lysed both mutant transformants. Y-1 and Y-5 CTL clones failed to lyse bm13SV and bm14SV cells; however, these cells could present synthetic peptide LT205-219 to CTL clone Y-1 and peptide SV26(489-503) to CTL clone Y-5, suggesting that the endogenously processed T antigen yields fragments of sizes or sequences different from those of synthetic peptides LT205-219 and SV26(489-503).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号