首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complementary DNAs that encode two forms of the alpha subunit (Gs alpha) of the guanine nucleotide-binding protein responsible for stimulation of adenylate cyclase (Gs) have been inserted into plasmid vectors for expression in Escherichia coli. Following transformation of either of these plasmids into E. coli K38, Gs alpha accumulates to 0.4-0.8 mg/liter (approximately 0.1% of total protein), as judged by immunoblot analysis with specific antisera. Based on deduced amino acid sequence, the two cDNAs should encode proteins with molecular weights of 44,500 and 46,000, respectively (Robishaw, J.D., Smigel, M. D., and Gilman, A. G. (1986) J. Biol. Chem. 261, 9587-9590). Expression of these cDNAs in E. coli yields proteins that co-migrate on sodium dodecyl sulfate-polyacrylamide gels with the Gs alpha subunits from S49 lymphoma cell membranes, with apparent molecular weights of 45,000 and 52,000, respectively. Low levels of activity are detected in the 100,000 X g supernatant after lysis and fractionation of E. coli expressing either form of Gs alpha. Partial purification of Gs alpha from E. coli lysates yields preparations in which significant and stable activity can be assayed. Both forms of Gs alpha migrate through sucrose gradients as soluble, monodisperse species in the absence of detergent. As expressed in E. coli, both forms of Gs alpha can reconstitute isoproterenol-, guanine nucleotide-, and fluoride-stimulated adenylate cyclase activity in S49 cyc-cell membranes to approximately the same degree and can be ADP-ribosylated with [32P]NAD+ and cholera toxin. However, based on the specific activity of purified rabbit liver Gs, only 1-2% of the Gs alpha expressed in E. coli appears to be active. Incubation of partially purified fractions of recombinant Gs alpha with guanosine 5'-(3-O-thio)triphosphate and resolved beta gamma subunits isolated from purified bovine brain G proteins results in a 7-10-fold increase in Gs activity. Incubation of bovine brain beta gamma with recombinant Gs alpha also leads to a dramatic increase in observed levels of cholera toxin-catalyzed [32P]ADP-ribosylation.  相似文献   

2.
Cloning of complementary DNAs that encode either of two forms of the alpha subunit of the guanine nucleotide-binding regulatory protein (Gs) that stimulates adenylyl cyclase into appropriate plasmid vectors has allowed these proteins to be synthesized in Escherichia coli (Graziano, M.P., Casey, P.J., and Gilman, A.G. (1987) J. Biol. Chem. 262, 11375-11381). A rapid procedure for purification of milligram quantities of these proteins is described. As expressed in E. coli, both forms of Gs alpha (apparent molecular weights of 45,000 and 52,000) bind guanosine 5'-(3-O-thio)triphosphate stoichiometrically. The proteins also hydrolyze GTP, although at different rates (i.e. 0.13.min-1 and 0.34.min-1 at 20 degrees C for the 45- and the 52-kDa forms, respectively). These rates reflect differences in the rate of dissociation of GDP from the two proteins. Both forms of recombinant Gs alpha have essentially the same kcat for GTP hydrolysis, approximately 4.min-1. Recombinant Gs alpha interacts functionally with G protein beta gamma subunits and with beta-adrenergic receptors. The proteins can also be ADP-ribosylated stoichiometrically by cholera toxin. This reaction requires the addition of beta gamma subunits. Both forms of recombinant Gs alpha can reconstitute GTP-, isoproterenol + GTP-, guanosine 5'-(3-O-thio)triphosphate-, and fluoride-stimulated adenylyl cyclase activity in S49 cyc- membranes to maximal levels, although their specific activities for this reaction are lower than that observed for Gs purified from rabbit liver. Experiments with purified bovine brain adenylyl cyclase indicate that the affinity of recombinant Gs alpha for adenylyl cyclase is 5-10 times lower than that of liver Gs under these assay conditions; however, the intrinsic capacity of the recombinant protein to activate adenylyl cyclase is normal. These findings suggest that Gs alpha, when synthesized in E. coli, may fail to undergo a posttranslational modification that is crucial for high affinity interaction of the G protein with adenylyl cyclase.  相似文献   

3.
4.
5.
Pyruvate dehydrogenase kinase was purified about 2,700-fold to apparent homogeneity from extracts of bovine kidney mitochondria. The kinase consists of two subunits (alpha beta) with molecular weights of 48,000 (alpha) and 45,000 (beta) as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Kinase activity resides in the alpha subunit. The alpha subunit is sensitive to proteolysis by chymotrypsin, whereas the beta subunit is selectively modified by trypsin. These observations, together with the results of peptide mapping, indicate that the two subunits are distinctly different proteins. It is proposed that the beta subunit is a regulatory subunit.  相似文献   

6.
To elucidate the structural basis for membrane attachment of the alpha subunit of the stimulatory G protein (Gs alpha), mutant Gs alpha cDNAs with deletions of amino acid residues in the amino and/or carboxy termini were transiently expressed in COS-7 cells. The particulate and soluble fractions prepared from these cells were analyzed by immunoblot using peptide specific antibodies to monitor distribution of the expressed proteins. Transfection of mutant forms of Gs alpha with either 26 amino terminal residues deleted (delta 3-28) or with 59 amino terminal residues deleted (delta 1-59) resulted in immunoreactive proteins which localized primarily to the particulate fraction. Similarly, mutants with 10 (delta 385-394), 32 (delta 353-384), or 42 (delta 353-394) amino acid residues deleted from the carboxy terminus also localized to the particulate fraction, as did a mutant form of Gs alpha lacking amino acid residues at both the amino and carboxy termini (delta 3-28)/(delta 353-384). Mutant and wild type forms of Gs alpha demonstrated a similar degree of tightness in their binding to membranes as demonstrated by treatment with 2.5 M NaCl or 6 M urea, but some mutant forms were relatively resistant compared with wild type Gs alpha to solubilization by 15 mM NaOH or 1% sodium cholate. We conclude that: (a) deletion of significant portions of the amino and/or carboxyl terminus of Gs alpha is still compatible with protein expression; (b) deletion of these regions is insufficient to cause cytosolic localization of the expressed protein. The basis of Gs alpha membrane targeting remains to be elucidated.  相似文献   

7.
A factor (ARF) that is required for the cholera toxin-dependent ADP-ribosylation of the stimulatory, GTP-binding regulatory component (Gs) of adenylate cyclase has been purified about 2000-fold from cholate extracts of rabbit liver membranes. ARF is an intrinsic membrane protein with Mr = 21,000. The final product can be resolved into two polypeptides with very similar molecular weights; each of these has ARF activity. The ADP-ribosylation of Gs can now be studied with defined components. GTP and ARF are both necessary cofactors. The data imply that the substrates for the activated toxin are NAD and a GTP X Gs X ARF complex, and the reaction proceeds in a lipid environment. The apparent ability of ARF to bind to the alpha subunit of Gs suggests that it may play another, unknown role in the regulation of adenylate cyclase activity.  相似文献   

8.
We have utilized purified reactants and cofactors to examine the form of the stimulatory guanine nucleotide-binding regulatory component (Gs) of adenylate cyclase that serves as a substrate for ADP-ribosylation by cholera toxin; we have also investigated some of the consequences of that covalent modification. Activation of Gs with nonhydrolyzable analogs of GTP, which causes dissociation of its subunits, completely inhibits the toxin-catalyzed covalent modification. However, this effect cannot be explained by subunit dissociation, since activation of Gs by fluoride is not inhibitory and ADP ribosylation of the alpha (45,000-Da) subunit of Gs proceeds equally well in the presence and absence of the beta (35,000-Da) subunit. ADP-ribosylation of the alpha subunit of Gs decreases its apparent affinity for the beta subunit; however, the affinity of alpha and ADP-ribosyl-alpha for GTP appear to be approximately the same. ADP-ribosylation of Gs thus promotes the dissociation of its alpha and beta subunits. This effect may account for or contribute to the activation of adenylate cyclase by cholera toxin.  相似文献   

9.
10.
The mechanisms responsible for decreased levels of cAMP-dependent protein kinase activity in a mutant Chinese hamster ovary cell line have been examined. The cAMP-resistant Chinese hamster ovary 10260 cell line was found to possess only 20% of the cAMP-dependent protein kinase activity found in wild-type cells. The presence of decreased concentrations of the catalytic subunit in these cells was confirmed through binding studies using a radiolabeled, heat-stable inhibitor of the kinase. Cloned Chinese hamster ovary catalytic subunit cDNAs were isolated, characterized, and used as hybridization probes to examine the relative concentrations of catalytic subunit mRNAs in the wild-type and 10260 cell lines. A 40-50% decrease in the concentration of the mRNA for the C alpha isozyme of the catalytic subunit was observed in 10260 cells, as compared with wild-type. This decrease in catalytic subunit mRNA concentration probably accounts for a portion of the decreased kinase activity in the mutant cells. Further analysis of C alpha mRNA by polymerase chain reaction confirmed the decreased expression of C alpha mRNA in 10260 cells and further demonstrated the presence of two different species of C alpha mRNA in the 10260 cells. One species of C alpha cDNAs was indistinguishable from the wild-type cDNA, but the other species was shorter. Nucleotide sequence analysis of the amplified cDNAs led to the identification of a 191-base pair deletion in the shorter cDNA. Gene transfer studies using wild-type and 10260 C alpha cDNAs demonstrated that the longer cDNA from the 10260 cells produced wild-type activity, but the shorter cDNA was inactive. These studies suggest that at least two alterations in gene expression are responsible for decreased cAMP-dependent protein kinase activity in the 10260 cell line. One alteration results in an approximately 2-fold decrease in the concentrations of C alpha mRNA in the cells. The other change produces two species of C alpha mRNA; one of the C alpha mRNAs does not encode an active kinase.  相似文献   

11.
We have introduced two types of mutations into cDNAs that encode the alpha subunit of Gs, the guanine nucleotide-binding regulatory protein that stimulates adenylyl cyclase. The arginine residue (Arg187) that is the presumed site of ADP-ribosylation of Gs alpha by cholera toxin has been changed to Ala, Glu, or Lys. The rate constant for hydrolysis of GTP by all of these mutants is reduced approximately 100-fold compared with the wild-type protein. As predicted from this change, these proteins activate adenylyl cyclase constitutively in the presence of GTP. Despite these substitutions, cholera toxin still catalyzes the incorporation of 0.2-0.3 mol of ADP-ribose/mol of mutant alpha subunit. The sequence near the carboxyl terminus of Gs alpha was altered to resemble those in Gi alpha polypeptides, which are substrates for pertussis toxin. Despite this change, the mutant protein is a poor substrate for pertussis toxin. Although this protein has unaltered rates of GDP dissociation and GTP hydrolysis, its ability to activate adenylyl cyclase in the presence of GTP is enhanced by 3-fold when compared with the wild-type protein but only when these assays are performed after reconstitution of Gs alpha into cyc- (Gs alpha-deficient) S49 cell membranes.  相似文献   

12.
Biosynthesis and processing of rat alpha 1-antitrypsin   总被引:1,自引:0,他引:1  
Various biosynthetic forms of rat alpha 1-antitrypsin (alpha 1AT) have been isolated by immunoprecipitation of in vitro and in vivo synthesized products. Rat alpha 1AT is synthesized in a rabbit reticulocyte system as a 45,000-Da preprotein with a 23-amino acid signal sequence. The majority of the amino acids in the signal sequence have been identified and resemble the signal peptides of other secretory proteins with respect to the abundance and positions of hydrophobic amino acids. Evidence from the translation of rat liver RNA in the presence of dog pancreas microsomes, from the translation of rat liver polysomes, and from tunicamycin-treated rat hepatocytes established that cleavage of the signal peptide of pre-alpha 1AT results in the formation of a 42,000-Da protein, the polypeptide backbone of mature alpha 1AT. A 50,000-Da glycoprotein is immunoprecipitated from translations programmed with rat liver microsomes or with rat liver mRNA and dog pancreas microsomes. Cotranslational glycosylation of alpha 1AT appears to occur in a stepwise fashion since three glycosylated forms of alpha 1AT (approximately 45,000, 47,000, and 50,000 Da) can be detected in polysome translations. These proteins are susceptible to cleavage by endo-beta-N-acetylglucosaminidase H and are digested to the same product, indicating that they have identical polypeptide chains. Two intracellular forms of alpha 1AT were detected in cultured rat hepatocytes, a 50,000- and a 52,000-Da protein; only the larger protein was immunoprecipitated from the medium of these cells. Digestion with endo-beta-N-acetylglucosaminidase H indicated that the 50,000-Da protein is a core glycosylated processing intermediate, whereas the 52,000-Da protein, which comigrated with purified serum alpha 1AT, appears to contain complex carbohydrate sidechains. When glycosylation was inhibited by incubation of hepatocytes with tunicamycin, a nonglycosylated 42,000-Da protein was immunoprecipitated from the cells and the culture medium, indicating that glycosylation of alpha 1AT is not essential for its secretion.  相似文献   

13.
Membrane-bound and free polysomes have been isolated from Vibrio cholerae 569B. Nacent polypeptide chains were completed in a cell-free translation mixture containing Escherichia coli S-300 extracts and [3H]leucine or [35S]methionine. Cholera toxin-related polypeptides synthesized in vitro were immunologically detected after treatment with either anti-subunit A or anti-subunit B serum. Immunoreactive translation products were removed from reaction mixtures with formalinized Cowan's strain of Staphylococcus aureus, electrophoresed on sodium dodecyl sulfate-polyacrylamide gels, and visualized by fluorography. Anti-subunit A serum precipitated two major polypeptide species (molecular weights 52,000 and 45,000) from translation mixtures programed with free polysomes, whereas anti-subunit B serum precipitated only the 45,000-molecular-weight polypeptide. No cholera toxin-related polypeptides were detectable in translation mixtures programed with membrane-bound polysomes. Purified subunit A and cholera toxin competed for anti-subunit A binding sites and blocked the immunoprecipitation of the 35S-labeled 52,000- and 45,000-dalton polypeptides from in vitro translation mixtures. The data presented suggest that cholera toxin is synthesized in the cytoplasm in a precursor form on free polysomes and is secreted post-translationally.  相似文献   

14.
Alternative promoter and 5' exon generate a novel Gs alpha mRNA   总被引:4,自引:0,他引:4  
Several species of mRNA have been shown to encode the alpha subunit of the stimulatory GTP-binding regulatory protein, Gs alpha. The various Gs alpha mRNAs are generated through alternative splicing of a single precursor RNA and through the use of alternative acceptor splice sites. We now report the existence of a Gs alpha mRNA that uses a previously unidentified promoter and leading exon (termed exon 1'). In both the canine and human Gs alpha genes, exon 1' is located 2.5 kilobases 5' of exon 1. Exon 1' does not contribute an in-frame ATG, and thus its mRNA encodes a truncated form of Gs alpha. Initiation of translation is predicted to begin at an AUG in exon 2, as demonstrated both by in vitro translation and COS cell expression studies.  相似文献   

15.
Cloned cDNAs encoding two new beta subunits of the rat and bovine GABAA receptor have been isolated using a degenerate oligonucleotide probe based on a highly conserved peptide sequence in the second transmembrane domain of GABAA receptor subunits. The beta 2 and beta 3 subunits share approximately 72% sequence identity with the previously characterized beta 1 polypeptide. Northern analysis showed that both beta 2 and beta 3 mRNAs are more abundant in the brain than beta 1 mRNA. All three beta subunit encoding cDNAs were also identified in a library constructed from adrenal medulla RNA. Each beta subunit, when co-expressed in Xenopus oocytes with an alpha subunit, forms functional GABAA receptors. These results, together with the known alpha subunit heterogeneity, suggest that a variety of related but functionally distinct GABAA receptor subtypes are generated by different subunit combinations.  相似文献   

16.
Translation of poly(A)-containing RNA from the female fat body of Drosophila melanogaster in a rabbit reticulocyte cell-free system results in the synthesis of previtellogenin polypeptides (PVs) having higher apparent molecular weights (46,000 and 45,000) than the forms seen after an in vivo pulse labeling. However, when this RNA is translated in the presence of EDTA-stripped microsomal membranes from the dog pancreas, vitellogenin precursors are produced that, upon SDS- polyacrylamide gel electrophoresis, comigrate with the in vivo forms (apparent molecular weights, 45,000 and 44,000). These processed forms are sequestered within the microsomal lumen, as evidenced by their insensitivity to trypsin digestion. Neither processing nor sequestration occur posttranslationally. In addition, a microsomal membrane fraction derived from Drosophila embryos is able to cotranslationally process the PVs as well as a murine pre-light chain IgG. These observations support a signal-mediated mode of secretion in Drosophila, and suggest that signal sequence recognition and signal peptidase activities are conserved even between mammalian and insect systems.  相似文献   

17.
Isolated triads from rabbit skeletal muscle were shown to contain an intrinsic protein kinase which was neither Ca2+/calmodulin-dependent nor cAMP-dependent. The protein substrates phosphorylated by this protein kinase exhibited apparent molecular weights of 300,000, 170,000, 90,000, 80,000, 65,000, 56,000, 52,000, 51,000, 40,000, 25,000, 22,000, and 15,000. Purification of the 1,4-dihydropyridine receptor from phosphorylated triads has demonstrated that the 170,000- and 52,000-Da subunits of the 1,4-dihydropyridine receptor are phosphorylated by this intrinsic protein kinase in isolated triads. Monoclonal antibodies to the 170,000-Da subunit of the dihydropyridine receptor immunoprecipitated the 170,000-Da phosphoprotein from detergent extracts of phosphorylated triads. The mobility of the 170,000-Da phosphoprotein in sodium dodecyl sulfate-polyacrylamide gels was not changed with or without reduction, demonstrating that the 170,000-Da phosphoprotein is not the glycoprotein subunit of the receptor. Our results demonstrate that the 170,000- and 52,000-Da subunits of the dihydropyridine receptor are phosphorylated by an intrinsic protein kinase in isolated triads. In addition, our results also demonstrate that the 175,000-Da glycoprotein subunit of the dihydropyridine receptor is not phosphorylated in isolated triads by the intrinsic protein kinase, cAMP-dependent protein kinase, or endogenous Ca2+/calmodulin-dependent protein kinase.  相似文献   

18.
19.
RNA derived from bovine steer pituitary was translated in wheat germ cell-free extracts containing [35S]methionine. Antisera generated against purified denatured alpha and beta subunits of lutropin were used to demonstrate the synthesis of both proteins in vitro. The immunoprecipitated products of the cell-free system were resolved on sodium dodecyl sulfate/polyacrylamide gels and it was observed that the molecular weight of the immunoprecipitated alpha subunit protein was approximately 14,000, while that of the beta protein was estimated to be 16,000. Since the molecular weights of authentic alpha and beta subunits are 10,600 and 14,000 respectively, the cell-free products presumably represented their pre-protein forms. The ratio of the immunoprecipitated subunit pre-proteins was dependent on the magnesium concentration in the translation mixtures; at 2.1 mM, translation of lutropin alpha and beta mRNAs was comparable. RNA isolated from cow pituitary tissue directed the synthesis of fivefold less of the alpha and beta immunoprecipitated proteins than did steer RNA. Since the blood levels of gonadal steroids are higher in the cow, the results supported the hypothesis that lutropin alpha and beta mRNA biosynthesis is repressed by these steroids. The data also suggest that synthesis of lutropin alpha and beta subunits is coordinately expressed in certain physiological situations.  相似文献   

20.
cDNAs containing the entire coding regions of the alpha and beta subunits of calmodulin-dependent protein kinase II (CaM kinase II) were isolated from a rat cerebrum cDNA library, ligated into an expression vector under the control of SV40 early promoter and introduced into Chinese hamster ovary (CHO) cells. To investigate the role of the alpha and beta subunits and their functional domains in CaM kinase II activity, the properties of the kinases expressed in the transfected cells were studied. CaM kinase II activity was detected in the transfected cells when the alpha and beta cDNAs were introduced into CHO cells simultaneously. RNA transfer blot and protein immunoblot analyses demonstrated the expression of the mRNAs and proteins of both alpha and beta subunits in the cloned cells. When alpha or beta cDNA was introduced into CHO cells separately, a significant level of the enzyme activity was also expressed, indicating that the alpha and beta subunits exhibited enzyme activity individually. The apparent Km values for ATP and MAP 2 were almost the same for the alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II. However, there was a slight difference in the affinity for calmodulin between the expressed proteins. The alpha and beta subunits expressed in the same cells polymerized to form alpha beta complex of a size similar to that of brain CaM kinase II. The alpha subunit also polymerized to form an oligomer, which showed almost the same S value as that of alpha beta complex and brain CaM kinase II. In contrast, the beta subunit did not polymerize. The alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II were autophosphorylated with [gamma-32P]ATP in the presence of Ca2+ and calmodulin, which resulted in the appearance of Ca2+-independent activity. The Ca2+-independent activity was 60-75% of the total activity as measured in the presence of Ca2+ plus calmodulin. To examine the functional relationship of peptide domains of the subunits of CaM kinase II, deleted cDNAs were introduced into CHO cells and the properties of the expressed proteins were studied. In cells transfected with alpha or beta cDNA from which the association domain was deleted, a significant level of kinase activity was expressed. However, the expressed proteins showed hardly any autophosphorylation and the appearance of Ca2+-independent enzyme activity was very low, indicating that the association domain was essential for the autophosphorylation and for the appearance of the Ca2+-independent activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号