首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation frequency responses produced by ultraviolet light are compared in 4 closely related strains of E. coli B/r having the same tyr(Oc) allele and different excision-repair capabilities: uvr+ (excision repair initiated by wild-type UvrABC activity), uvrA (excision repair defective), uvrA/pdenV-7 (excision repair initiated by endonuclease V of bacteriophage T4, DenV activity), and uvr+/pdenV-7 (excision repair initiated by UvrABC and DenV activities). The production of Tyr+ prototrophic mutants is classified into back-mutations and de novo or converted glutamine tRNA suppressor mutations to indicate different mutation events. Cells transformed with the plasmid pdenV-7 require larger exposures than the parent strains to produce comparable mutation frequency responses, indicating that DenV activity can repair mutagenic photoproducts. When damage reduction by UvrABC or DenV is compared for each of the specific categories of mutation, the results are consistent with the idea that pyrimidine dimers infrequently or never target back-mutations of this allele, frequently target the de novo suppressor mutations, and extensively or exclusively target the converted suppressor mutations. This analysis is based on the distinction that UvrABC-initiated excision repair recognizes dimer and non-dimer (pyrimidine (6-4) pyrimidone) photoproducts but that DenV-initiated repair recognizes only pyrimidine dimers.  相似文献   

2.
Summary Ultraviolet radiation produces bacterial revertants that frequently are the result of suppressor mutation. When irradiated cells are incubated under conditions unfavorable for protein synthesis there may be a large decrease in the frequency of observed mutants (mutation frequency decline, or MFD). MFD occurs only in excision-proficient strains and is inhibited by inhibitors of pyrimidine dimer excision. It has therefore been interpreted as enhanced excision of some premutational lesions. Potential de novo UAG suppressor mutation is very susceptible to MFD. Potential conversion mutation, the conversion of a UAG to a UAA suppressor, is at least ten times less susceptible to MFD. A base pair transition at a GC target in a particular tRNA gene is suggested for both de novo suppressor mutation and for conversion mutation. We interpret these results as indicating differential repair of premutational UV photoproducts at two closely spaced sites in the same tRNA gene. The significant difference between these two types of mutation may be the orientation of this target base pair in double helical DNA. The C would be in the transcribed strand of DNA when a nucleic acid alteration produces de novo suppressor mutation. The C would be in the nontranscribed strand, two base pairs removed, when a mutagenic alteration produces suppressor conversion. A model involving facilitated incision by hybridization of the transcribed strand of DNA to its cognate tRNA, under conditions promoting MFD, is described to explain this differential repair.  相似文献   

3.
4.
Summary Cells defective in uracil-DNA glycosylase (ung:: Tn10) were used in two ways to reveal differences in select point mutations (GC to AT transitions) within the seven-tRNA operon of E. coli. The mutations were indicated as de novo or converted glutamine tRNA suppressor mutations in the genes glnU and/or glnV: (1) the kinetics of photoenzymatic monomerization of pyrimidine dimers quantitated by ung-dependent UV mutagenesis indicated more rapid repair of dimers at sites for converted suppressor mutation than of dimers at sites for de novo suppressor mutation, and (2) spontaneous deamination of cytosine was considerably more frequent at sites for converted suppressor mutation than at sites for de novo suppressor mutation. To explain these results we suggest the physical structure of the DNA in vivo is different at different sites in the seven-tRNA operon. The non-transcribed strand including specifically the anticodon region of the site for converted suppressor mutation may frequently be looped out in a single strand so that a T=C dimer is more accessible to DNA photolyase or a free cytosine residue of non-irradiated DNA is in an aqueous environment conducive to deamination. In addition, we analysed the spontaneous de novo suppressor mutation data to determine an estimate for the in vivo rate of cytosine deamination in double strand DNA of 3.2×1013/sec.  相似文献   

5.
6.
Mutation frequency decline (MFD) is an irreversible loss of newly-induced suppressor mutations occurring in excision-proficient Escherichia coli during a short period of incubation in minimal medium before plating on broth- or Casamino acids-enriched selective agar. It is known that MFD of UV-induced mutations may occur before DNA containing pre-mutagenic lesions is replicated, but we conclude that MFD can also occur after the damaged DNA has been replicated on the basis of the following evidence. (1) Mutation fixation in rich medium (i.e., loss of susceptibility to mutation frequency decline) with ethyl methanesulphonate mutagenesis begins immediately, whereas with UV it is delayed for 20--30 min. (2) The delay in mutation fixation after UV can be explained neither by inhibition of DNA replication nor by a delay in the appearance of error-prone repair activity in the irradiated population. (3) MFD at later times after UV irradiation is more rapid and is less strongly inhibited by caffeine than is MFD immediately after irradiation. (4) Excision is virtually complete 20 min after 3 J m-2 UV but at that time virtually all mutations are still susceptible to MFD. We have presented evidence elsewhere that in bacteria there is an alternative error-free excision-dependent type of post-replication repair of potentially mutagenic daughter strand gaps. We suggest that this process is inhibited at tRNA loci in the presence of nutrient broth or Casamino acids, possibly because of a broth-dependent change in the structure of the single-stranded region including the tRNA locus.  相似文献   

7.
8.
9.
Summary Mutagenesis by ultraviolet light was studied in a strain of E. coli ung, which lacks uracil-DNA glycosylase activity. Mutation potentiated by UV in cells already induced by nalidixic acid treatment was still photoreversible suggesting that pyrimidine dimers act directly as premutational photoproducts. Secondly, irradiated cells were held in buffer at 48°C for 0 to 135 min to allow for deamination of cytosines in pyrimidine dimers. The mutation frequencies for class 2 de novo suppressor mutation, for class 2 converted suppressor mutation and for backmutation were individually determined, before and after photoreactivation, as a function of this thermal treatment. Backmutation remained sensitive to photoreactivation throughout the treatment but de novo and converted suppressor mutations rapidly developed resistance to photoreactivation. This resistance was not seen in an ung + control. A model is proposed to account for the selective resistance based on the hypothesis that class 2 de novo and converted suppressor mutations normally result from UV by GC to AT transitions at T=C dimers. The model describes deamination of the cytosine residues in these dimers to become uracil residues. In consequence, monomerization by photoreactivation in cells that can not repair uracils in DNA no longer reverses mutation and GC to AT transitions are established at the sites of uracils.  相似文献   

10.
The frequency of UV-induced extragenic suppressor reversions to leucine independence in B. subtilis carrying a leu8 mutation decreased when irradiated cells were temporarily incubated in medium deprived of nitrogen sources. This mutation frequency decline (MFD) was inhibited by acriflavine and was poorly expressed in a uvr1 mutant. Consequently, MFD may be considered as the manifestation of an anti-mutagenic activity of excision repair. MFD was decelerated and even vanished in cells subjected to prolonged starvation of nitrogen sources before irradiation. MFD was accelerated in bacteria that were first irradiated and incubated in nutritional medium for at least 30 min. The stimulation of MFD by UV exposure was observed only in the uvr+ strain and depended on protein synthesis after irradiation. It is assumed that different rates of MFD in cells of various pre-radiation histories reflect different levels of the excision-repair activity inherent in these cells.  相似文献   

11.
Premutational lesions produced by ultraviolet radiation in the Gln2 tRNA genes of E. coli B/r show differing sensitivities to a mutation avoidance phenomenon known as mutation frequency decline (MFD). A mutation event that changes the wild-type gene to an amber (UAG) suppressor is normally sensitive to MFD. Mutation of this amber suppressor to an ochre (UAA) suppressor is not sensitive to MFD. These two mutation events occur in the same anticodon region of the DNA. The dissimilarity of MFD sensitivity between these two mutations may result because the respective premutational photoproducts for the two are located in opposite strands of duplex DNA. To examine the effect of strand position of the premutational lesions on MFD, recombinant lambda phage were constructed that contained the amber suppressor as a mutation target in the two possible orientations. Comparison of MFD in bacterial lysogens containing either of the two types of recombinant prophage indicated that reversing the orientation of the target sequence relative to adjacent bacterial DNA had no effect on MFD. Since rotational inversion of the target sequence did not alter the sensitivity to MFD of mutation occurring at the cloned target gene, the antimutation process inherent to MFD can not be attributed to an asymmetrical interaction between the template strands and the DNA-replication complex.  相似文献   

12.
Lin JQ  Xiao M  Long MT  Han B  Quian W  Du J 《Mikrobiologiia》2006,75(6):758-764
The pigment and auxotrophic mutants of Rhodobacter sphaeroides Y6 were obtained by treatment with ethyl methanesulfonate (EMS) followed by lithium chloride (LiCI). Treatment with 0.081 M EPS and subsequent treatment with 0.071 M LiCI resulted in 12% higher frequency of pigment mutations than application of 0.081 M EMS alone; the frequency of auxotrophic mutations increased 2.5-fold when treatment with lithium chloride was applied. A blue shift 10 nm was recorded in the absorption spectrum of carotenoids form YM5-3 green mutant; considerable accumulation of neurosporine was revealed by HPLC and mass spectrometry. The method is efficient for isolating mutants of photosynthetic bacteria.  相似文献   

13.
When a shuttle vector containing a tyrosine suppressor tRNA (supF) gene as a target for mutagenesis replicated in a monkey kidney cell line, the frequency of SupF+ mutations was 2.3 +/- 0.5 x 10(-3). When the host cells were treated with ethyl methanesulfonate 40 h before transfection, a 10-fold increase in SupF+ mutation frequency was observed. These results supported the hypothesis that a damage-inducible mutagenic pathway exists in mammalian cells and also demonstrated the utility of this shuttle vector for the study of mutagenesis in mammalian cells.  相似文献   

14.
This is a short survey of the adaptive mutation processes that arise in non- or slowly-dividing bacterial cells and includes: (i) bacterial models in which adaptive mutations are studied; (ii) the mutagenic lesions from which these mutations derive; (iii) the influence of DNA repair processes on the spectrum of adaptive mutations. It is proposed that in starved cells, likely as during the MFD phenomenon, lesions in tRNA suppressor genes are preferentially repaired and no suppressor tRNAs are formed as a result of adaptive mutations. Perhaps the most provocative proposal is (iv) a hypothesis that the majority of adaptive mutations are selected in a pre-apoptotic state where the cells are either mutated, selected, and survive, or they die.  相似文献   

15.
Ade-C is a Chinese hamster ovary cell line auxotrophic for purines because of a mutation in the de novo synthetic pathway. We now show that, in the absence of exogenous hypoxanthine, replicative DNA synthesis is rapidly shut down. Various aspects of DNA repair have been studied in purine-starved cells. Incision, the first step of excision repair of UV damage, appears normal, as do the later steps, repair synthesis (demonstrated following chemical damage as well as UV-irradiation) and ligation. However, removal of UV-induced pyrimidine dimers is not detected, and it seems that the repair that occurs is aberrant. This behaviour is associated with an increase in cell killing by UV light, and a several-fold increase in the frequency of mutations induced by UV.  相似文献   

16.
Summary Ochre suppressor mutations induced by UV in the Escherichia coli glnU tRNA gene are CG to TA transitions at the first letter of the anticodon-encoding triplet, CAA. Premutational UV photoproducts at this site have long been known to exhibit an excision repair anomaly (mutation frequency decline or MFD), whereby post-irradiation inhibition of protein synthesis enhances their excision and reduces suppressor mutation yields ten-fold. We sought to clarify the basis of this unique repair response by determining the spectrum of UV photoproducts on both strands of a 36 by region of glnU which includes the anticodon-encoding triplet. We found that four different photolesions are produced within the 3 by sequence corresponding to the tRNA anticodon: (i) on the transcribed strand, TC (6–4) photoproducts and TC cyclobutane dimers are formed in equal numbers at the site of the C to T transition, indicating that this site is a hotspot for the usually less frequent (6–4) photoproduct; (ii) on the nontranscribed strand, TT dimers are found opposite the second and third letters of the anticodon-encoding triplet, adjacent to the mutation site; and (iii) on the nontranscribed strand, an alkali-sensitive lesion other than a (6–4) photoproduct is formed, apparently at the G in the mutation site. We suggest that mutation frequency decline may reflect excision repair activity at closely spaced UV lesions on opposite strands, resulting in double-strand breaks and the death of potential mutants.  相似文献   

17.
The lethality and mutagenicity in ethyl methanesulfonate (EMS)-treated cells of five archaebacterial strains belonging to each of the three described genera of non-alkaliphilic halobacteria were investigated. In order to test the efficiency of the mutagenesis under a variety of experimental conditions, we chose the fast-growing halobacteriumHaloferax mediterranei as a model strain. A strong induced mutagenicity was found, since the spontaneous mutation rate (expressed as the rate of resistance to the antibiotic josamycin) increased up to 500-fold after mutagen exposure. The mutagenesis was also successfully used in obtaining auxotrophic mutants. Although a heterogeneous response to the induced effects caused after EMS exposure was detected for the other halophilic archaebacteria tested, a clear, efficient mutagenicity ofHalobacterium halobium andHaloferax gibbonsii was observed; auxotrophic mutants of this halobacterium were also produced. Optimal experimental conditions for EMS mutagenesis of some halobacteria were determined.  相似文献   

18.
The results of this study indicate the existence of a strong interaction between ethyl methanesulfonate (EMS) and ultraviolet light (UV) for cell killing in the yeast Saccharomyces cerevisiae. Conversely, mutation and gene conversion frequencies observed for the combined treatment of EMS and UV do not deviate significantly from that expected on the basis of simple additivity. Studies involving repair-deficient mutants (rad mutants) reveal that the synergistic interaction for cell killing depends on RAD52 function (recombinational repair), but not on RAD3 function (excision repair). On the basis of this analysis, the interaction between EMS and UV in S. cerevisiae might arise from the inhibition of double-strand break repair by one, or both agents.  相似文献   

19.
AdeC is a Chinese hamster ovary cell line auxotrophic for purines because of a mutation in the de novo synthetic pathway. We now show that, in the absence of exogenous hypoxanthine, replicative DNA synthesis is rapidly shut down. Various aspects of DNA repair have been studied in purine-starved cells. Incision, the first step of excision repair of UV damage, appears normal, as do the later steps, repair synthesis (demonstrated following chemical damage as well as UV-irradiation) and ligation. However, removal of UV-induced pyrimidine dimers is not detected, and it seems that the repair that occurs is aberrant. This behaviour is associated with an increase in cell killing by UV light, and a several-fold increase in the frequency of mutations induced by UV.  相似文献   

20.
The modifying effects of vanillin on the cytotoxicity and 6-thioguanine (6TG)-resistant mutations induced by two different types of chemical mutagens, ethyl methanesulfonate (EMS) and hydrogen peroxide (H2O2), were examined using cultured Chinese hamster V79 cells. The effects of vanillin on H2O2-induced chromosome aberrations were also examined. Vanillin had a dose-dependent enhancing effect on EMS-induced cytotoxicity and 6TG-resistant mutations, when cells were simultaneously treated with vanillin. The post-treatment with vanillin during the mutation expression time of cells after treatment with EMS also showed an enhancement of the frequency of mutations induced by EMS. However, vanillin suppressed the cytotoxicity induced by H2O2 when cells were post-treated with vanillin after H2O2 treatment. Vanillin showed no change in the absence of activity of H2O2 to induce mutations. Post-treatment with vanillin also suppressed the chromosome aberrations induced by H2O2. The differential effects of vanillin were probably due to the quality of mutagen-induced DNA lesions and vanillin might influence at least two different kinds of cellular repair functions. The mechanisms by which vanillin enhances or suppresses chemical-induced cytotoxicity, mutations and chromosome aberrations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号