首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Humoral stimuli (i.v. adrenaline) proved to exert a greater effect on venous return in anesthetized cats than neurogenic those (electrical stimulation of either brain stem or femoral nerve). The part of cardiac output, however, in arterial blood shifts was the same. The latter finding is, probably, due to a discrepancy between changes occurring in the venous return and cardiac output caused by blood detention within the lung circulation as well as by an elevation of the blood pressure.  相似文献   

2.
Stimulation of tibial nerve afferent fibers has revealed heterogeneous shifts of left ventricular output, as well as pulmonary artery and posterior vena cava blood flow in anesthetized cats. Uniform changes in left ventricular output and pulmonary artery blood flow were noted in the majority of cases, with venous return most often exceeding pulmonary artery blood flow. beta-adrenoreceptor blockade failed to influence changes in pulmonary artery blood flow. It is concluded that the increase in pulmonary artery blood flow depends on the rise in venous return, but not on neurogenic influence upon the right ventricle. The reduction in left ventricular output is the result of decreased right ventricular outflow due to its overload caused by pulmonary vasoconstriction.  相似文献   

3.
In acute experiments in anesthetized rabbits, changes of the pulmonary hemodynamics following myocardial ischemia in the region of the descendent left coronary artery were studied in control animals and after the infusion of adrenaline and phenylephrine. The pulmonary artery pressure was increased following infusion of these drugs; however, it decreased to normal level in the condition of myocardial ischemia. Meanwhile the pulmonary vascular resistance was elevated to the same level in both cases. Following adrenaline infusion, the pulmonary artery blood flow and venous return increased and, in the condition of myocardial ischemia, they decreased to normal level, but the left atrial pressure was decreased. Following phenylephrine infusion, the pulmonary artery blood flow and venous return did not change and, in the condition of myocardial ischemia, these parameters decreased lower than normal level but the left atrial pressure was elevated. Thus we concluded that equal values of the pulmonary artery pressure in both cases were caused by changes of different character in the left atrial pressure. The differences of the changes character and values of the pulmonary artery flow under experimental myocardial ischemia following the infusion of adrenaline and phenylephrine were caused by different shifts of the venous return.  相似文献   

4.
The character and values of changes of the pulmonary hemodynamics and venous return following acetylcholine, histamine and isoproterenol intravenous injection were studied in acute experiments on the anesthetized cats. After depressor drugs injection the character and values of changes of pulmonary artery pressure and flow were different. In 67% cases the pulmonary artery pressure was decreased, and in 33%--it was elevated, meanwhile the pulmonary artery flow was decreased in 48% cases and it was increased in 52%, i.e., in the equal number of observations. Thus, following depressor drugs intravenous injection, hemodynamic mechanisms of the changes of pulmonary artery pressure and flow are different. The character and values of changes of the pulmonary artery pressure are correlated with the changes of pulmonary vascular resistance and are not dependent with the left atrial pressure shifts. The changes of the pulmonary artery blood flow are caused by the changes of the venous return and are not correlated with the changes of the right and left atrial pressure.  相似文献   

5.
The reflex effects of left ventricular distension on venous return, vascular capacitance, vascular resistance, and sympathetic efferent nerve activity were examined in dogs anesthetized with sodium pentobarbital. In addition, the interaction of left ventricular distension and the carotid sinus baroreflex was examined. Vascular capacitance was assessed by measuring changes in systemic blood volume, using extracorporeal circulation with constant cardiac output and constant central venous pressure. Left ventricular distension produced by balloon inflation caused a transient biphasic change in venous return; an initial small increase was followed by a late relatively large decrease. Left ventricular distension increased systemic blood volume by 3.8 +/- 0.6 mL/kg and decreased systemic blood pressure by 27 +/- 2 mmHg (1 mmHg = 133.3 Pa) at an isolated carotid sinus pressure of 50 mmHg. These changes were accompanied by a simultaneous decrease in sympathetic efferent nerve activity. When the carotid sinus pressure was increased to 125 and 200 mmHg, these responses were attenuated. It is suggested that left ventricular mechanoreceptors and carotid baroreceptors contribute importantly to the control of venous return and vascular capacitance.  相似文献   

6.
In acute experiments on anesthetized cats, intravenous injection of the norepinephrine and angiotensin caused different changes of right atrial pressure in intact animals (decreasing--I group, of animals, and increasing--II group). After right and left vagus nerves had been cut, the right atrial pressure in the I group of animals decreased, but its changes were lesser than in intact animals due to slowing down of the increase of the right ventricular myocardial contractility and venous return. The latter was the result of severe diminution of the increase of the superior vena cava flow compared with the intact animals, meanwhile the value of the inferior vena cava flow did not change. In the II group animals after vagotomy and intravenous injection of the noripinephrine and angiotensin the sign of the right atrial pressure became negative, i. e. the direction of its shifts changed to the opposite, compared with intact animals. In this case, the changes of the sign of the right atrial pressure was caused by the removal of the reflectory inhibitory vagal influences on the heart, because the values of the right ventricular myocardial contractility and venous return were the same as in intact animals of the group, due to decreasing of the value of the superior vena cava flow and increasing of the shifts of the inferior vena cava flow. The vagotomy alone caused also different changes (decreasing or increasing) of right atrial pressure following increasing of the right ventricular myocardial contractility, meanwhile the changes of the venous return were insignificant. Direct electrical stimulation of both the right and the left vagus nerves caused the increasing of the right atrial pressure and decreasing of the right ventricular myocardial contractility and venous return. Thus we concluded, that different changes of the right atrial pressure in animals following intravenous injection of the pressor vasoactive drugs could be the result of different manifestations of the vagal afferent impulsation, which has influence on the sympathetic tonic discharges on the vessels of the regions of the superior and inferior vena cava, and the vagal reflectory inhibitory influences on the heart.  相似文献   

7.
Changes of the right atrial pressure and systemic haemodynamics following action of catecholamines (epinephrine and norepinephrine) were studied in acute experiments on anaesthetised mongrel cats with artificial lung ventilation and opened chest. Maximal changes of the right atrial pressure took place on the 12th-16th second following catecholamine administration. In that case, the atrial pressure could be decreased or increased. At the moment of maximal changes of the right atrial pressure, the venous return and the right ventricular myocardial contractility (the first derivative of the right atrial pressure, dP/dt max) increased more if the right atrial pressure decreased, as compared with the animals whose right atrial pressure augmented. The findings suggest that at the time of the maximal changes of the right atrial pressure following action of catecholamines, there may be a direct connection of the right atrial pressure with interrelation of venous return and the right ventricular contractility. The right atrial pressure, however, is a dependent parameter but it does not determine the venous return.  相似文献   

8.
To assess the degree of circulatory fullness and to evaluate the influence of peripheral and cardiac factors in the regulation of cardiac output during pregnancy, the following studies were conducted using pentobarbital-anesthetized, open-chest nonpregnant and late term pregnant guinea pigs. Mean circulatory filling pressure was taken as the equilibrium pressure when the pulmonary artery was constricted. Total vascular compliance was assessed by +/- 5-mL changes in blood volume performed while this constriction was maintained. A separate group of guinea pigs was prepared with a pulmonary artery electromagnetic flow probe and right atrial catheter. Rapid infusion of saline was used to increase right atrial pressure while the cardiac output was determined. Pregnancy was characterized by the following changes relative to nonpregnant controls: 51Cr-labelled RBC blood volume increased from 55 +/- 3 to 67 +/- 3 mL/kg; mean circulatory filling pressure increased from 7.1 +/- 0.2 to 8.0 +/- 0.5 mmHg (1 mmHg = 133.322 Pa); right atrial pressure decreased from 3.4 +/- 0.2 to 2.1 +/- 0.3 mmHg; and cardiac output increased from 71.8 +/- 3.9 to 96.8 +/- 3.3 mL.min-1.kg-1. Total vascular compliance was not changed (2.1 +/- 0.1 mL.kg-1.mmHg-1) and most of the expanded blood volume was accommodated as unstressed volume. The cardiac function curve was shifted upwards in pregnant animals. The resistance to venous return, as determined from the slope of the venous return curves, was not changed. These data suggest that the circulation of the pregnant guinea pig is slightly overfilled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The character and values of changes of the pulmonary and systemic hemodynamics following epinephrine, norepinephrine and angiotensin intravenous injection were studied in acute experiments on the anesthetized cats. After catecholamines injection pulmonary blood flow was always increased, meanwhile pulmonary artery pressure can be elevated (in the most observations) or decreased. In the cases of angiotensin administration the pulmonary blood flow could be augmented or decreased; pulmonary artery pressure had been increased or decreased independently from the character of changes of pulmonary flow. Thus, linear correlation between shifts of the pulmonary artery pressure and pulmonary blood flow had not been revealed. The changes of the pulmonary artery pressure were not correlated with the pulmonary vascular resistance ones; however they had strong relationship with the changes of the left atrial pressure. If the left atrial pressure was decreased the pulmonary artery pressure elevation was less, comparing with its values in experiments, where the left atrial pressure was increased; in the case of depressor shifts of pulmonary artery pressure, the left atrial pressure was also decreased. The character and values of the pulmonary blood flow changes were strongly correlated with the changes of the venous return; however they had no linear correlations with the right and left atrial pressures and pulmonary vascular resistance changes. Thus we concluded, that hemodynanics mechanisms of the pulmonary artery pressure and flow changes following vasoactive pressor drugs injection changes are different.  相似文献   

10.
In acute experiments in anesthetized rabbits, changes of the pulmonary hemodynamics following myocardial ischemia in the region of the descendent left coronary artery were studied as well as in control animals and after the blockade of beta-adrenoreceptors. The myocardial ischemia decreased the left ventricular myocardial contractility, cardiac output and arterial pressure, decreased the pulmonary artery pressure and flow. Following myocardial ischemia, the pulmonary artery pressure decreased less than pulmonary artery blood flow as the result of elevating of the left atrial pressure, meanwhile pulmonary vascular resistance was not changed. Following myocardial ischemia in animals after the blockade of the beta-adrenoreceptors, the pulmonary flow decreased the same as in control animals. However, the pulmonary artery pressure was decreased twofold more significantly than in control animals, and its diminishing was in the same degree as the pulmonary artery flow. Following myocardial ischemia after the blockade of the beta-adrenoreceptors, the pulmonary vascular resistance decreased whereas the left atrial pressure did not change significantly because the myocardial contractility decreased less than in control animals.  相似文献   

11.
在清醒雄性大鼠中经静脉抽出血液总量的约50%,造成失血性低血压。对照组大鼠在失血后不予处理。刺激组大鼠在失血后半小时用低频电脉冲刺激坐骨神经30min。刺激组动物的平均动脉压在刺激肘和刺激停止后2小时内均显著高于对照组。在同时记录内脏神经放电的动物中还看到,刺激坐骨神经时交感神经活动显著加强。这可能和血压、心率的恢复有关。在失血动物中刺激坐骨神经引起的升压效应不能被静脉内注射纳洛酮(8mg/kg)翻转;预先注射纳洛酮也不能阻断这种升压效应。在用水合氯醛麻醉的大鼠中,失血后刺激坐骨神经仍能引起升压反应。但如在刺激坐骨神经前静脉注射东莨菪碱(8—20mg/kg),则在多数动物中上述升压反应的幅度显著减小,甚至消失。实验结果表明,在失血性低血压的大鼠中,刺激坐骨神经可促进机体代偿反应,进一步加强交感神经活动,有利于血压的恢复。这一效应可能需要胆硷能递质参与,而内啡肽系统似乎不起重要作用。  相似文献   

12.
Positive pleural pressure (Ppl) decreases left ventricular afterload and preload. The resulting change in cardiac output (CO) in response to these altered loading conditions varies with the baseline level of cardiac contractility. In an isolated canine heart-lung preparation, we studied the effects of positive Ppl applied phasically during systole or diastole on CO and on the cardiac function curve (the relationship between CO and left atrial transmural pressure). When baseline cardiac contractility was enhanced by epinephrine infusion, systolic and diastolic positive Ppl decreased CO equally (1,931 +/- 131 to 1,419 +/- 124 and 1,970 +/- 139 to 1,468 +/- 139 ml/min, P less than 0.01) and decreased the pressure gradient driving venous return. However, neither shifted the position of the cardiac function curve, suggesting that the predominant effect of positive Ppl was decreased preload. When baseline cardiac contractility was depressed by severe respiratory acidosis, diastolic positive Ppl pulses caused no significant change in CO (418 +/- 66 to 386 +/- 52 ml/min), the cardiac function curve, or the pressure gradient for venous return. However, systolic positive Ppl pulses increased CO from 415 +/- 70 to 483 +/- 65 ml/min (P less than 0.01) and significantly shifted the cardiac function curve to the left. Thus the effect of Ppl pulsations on CO works through different mechanisms, depending on the state of cardiac contractility.  相似文献   

13.
Dynamics of the central venous pressure, superior and inferior v. cava flow and venous return following action of pressor stimuli were studied in acute experiments on anaesthetised mongrel cats with artificial lung ventilation and opened chest. The central venous pressure returned to the initial level faster as compared with the dynamics of superior and inferior v. cava flow and venous return. The superior v. cava blood flow increased more than that of inferior v. cava. The data suggest that the central venous pressure is controlled near the lower constant level.  相似文献   

14.
The purpose of these studies was to determine quantitatively the reflex cardiovascular responses to stimulation of the pulmonary C-fibers in dogs. We used a preparation in which the airway, pulmonary artery, and the pulmonary veins to the left lung were cannulated in situ. Ventilation and perfusion of the right lung maintained the animal in relatively normal homeostasis. Capsaicin, a decylenic acid amide of vanillylamine that selectively stimulates nerve endings of unmyelinated fibers (C-fibers), was injected into the left pulmonary artery in 5-ml boluses. Maximal reflex responses were obtained with concentrations as low as 0.8-1.6 X micrograms-1 X kg-1. Heart rate, hindlimb resistance, and left ventricular contractility were lowered transiently (the maximal responses showing declines of 40, 13, and 15.2%, respectively). As a result of these changes, combined with vasodilation in other resistance vessels, cardiac output fell 28% and blood pressure fell 35%. Interrupting the afferent neural pathway by severing the ipsilateral cervical vagus nerve eliminated these responses, confirming the distribution of their reflex origin. Although the role of these reflexes in homeostasis has not been decided, the results of this study suggest that the lungs of dogs, if appropriately stimulated, potentially can exert a major inhibitory influence on the neural regulation of cardiovascular function.  相似文献   

15.
Effect of progressive exercise on lung fluid balance in sheep   总被引:3,自引:0,他引:3  
The purpose of this study is to determine the roles of cardiac output and microvascular pressure on changes in lung fluid balance during exercise in awake sheep. We studied seven sheep during progressive treadmill exercise to exhaustion (10% grade), six sheep during prolonged constant-rate exercise for 45-60 min, and five sheep during hypoxia (fraction of inspired O2 = 0.12) and hypoxic exercise. We made continuous measurements of pulmonary arterial, left atrial, and systemic arterial pressures, lung lymph flow, and cardiac output. Exercise more than doubled cardiac output and increased pulmonary arterial pressures from 19.2 +/- 1 to 34.8 +/- 3.5 (SE) cmH2O. Lung lymph flow increased rapidly fivefold during progressive exercise and returned immediately to base-line levels when exercise was stopped. Lymph-to-plasma protein concentration ratios decreased slightly but steadily. Lymph flows correlated closely with changes in cardiac output and with calculated microvascular pressures. The drop in lymph-to-plasma protein ratio during exercise suggests that microvascular pressure rises during exercise, perhaps due to increased pulmonary venous pressure. Lymph flow and protein content were unaffected by hypoxia, and hypoxia did not alter the lymph changes seen during normoxic exercise. Lung lymph flow did not immediately return to base line after prolonged exercise, suggesting hydration of the lung interstitium.  相似文献   

16.
Changes of the right atrial pressure, superior and inferior vena cava flows, right ventricular myocardial contractility (first derivate of right ventricular pressure, dP/dt max) following i.v. injection of acetylcholine, histamine and isoproterenol, were studied in acute experiments on anaesthetized mongrel cats with artificial lung ventilation and opened chest. The right atrial pressure in those cases could be increased (I group of animals) or decreased (II group). In maximal shifts of right atrial pressure following acetylcholine injection, the superior vena cava flow increased but the inferior vena cava flow decreased in equal proportion. When the right ventricular myocardial contractility decreased more than the right atrial pressure was augmented, and when the cardiac negative inotropic effect was weak, the right atrial pressure was reduced. After histamine injection in both groups of animals, right ventricular myocardial contractility was increased on the same level, and changes of the inferior vena cava flow were insignificant. The right atrial pressure was elevated following greater increase of superior vena cava flow. Isoproterenol caused the positive cardiac inotropic effect and augmenting of the superior vena cava flow in both groups of animals. The right atrial pressure was elevated if the inferior vena cava flow increased and, on the other hand, when the inferior vena cava flow decreased the right atrial pressure was reduced. Thus different maximal changes of the right atrial pressure following i.v. injection of acetylcholine, histamine and isoproterenol could be explained by different hemodynamic mechanisms of the interaction between superior and inferior vena cava flow shifts and changes of the right ventricular myocardial contractility.  相似文献   

17.
U C Kopp 《Federation proceedings》1985,44(13):2834-2839
Evidence supporting the existence of renorenal reflexes is reviewed. Renal mechanoreceptors (MR) and afferent renal nerve fibers are localized in the corticomedullary region and in the wall of the renal pelvis. Stimulating renal MR by increased ureteral pressure (increases UP) or increased renal venous pressure (increases RVP) and renal chemoreceptors (CR) by retrograde ureteropelvic perfusion with 0.9 M NaCl results in increased ipsilateral afferent renal nerve activity (ARNA) in a variety of species. However, renorenal reflex responses to renal MR and CR differ among species. In the dog, stimulating renal MR results in a modest contralateral excitatory renorenal reflex response with contralateral renal vasoconstriction that is integrated at the supraspinal level. Renal CR stimulation is without effect on systemic and renal function. However, in the rat the responses to renal MR and CR stimulation are opposite to those of the dog. Increased ureteral pressure, renal venous pressure, or retrograde ureteropelvic perfusion with 0.9 M NaCl each results in a receptor-specific contralateral inhibitory renorenal reflex response. The afferent limb consists of increased ipsilateral ARNA and the efferent limb of decreased contralateral efferent RNA with contralateral diuresis and natriuresis. The renorenal reflex responses to MR and CR stimulation are integrated at the supraspinal level.  相似文献   

18.
在46只麻醉兔,记录了经冠脉内注射尼古丁诱发Bezold-Jarisch反射时不同区域交感神经传出放电的变化。肾神经、心脏神经、脾神经、星状神经节-颈神经交通支和颈前神经节的颈外动脉支五个部位的交感性传出放电,在冠脉内注射尼古丁后均减少,其中以肾神经、心脏神经和脾神经的减少更为显著。此结果表明,交感神经传出放电减少所致的总外周阻力降低,在Bezold-Jarisch反射诱发的低血压中起着重要作用。  相似文献   

19.
I investigated whether muscular contraction evokes cardiorespiratory increases (exercise pressor reflex) in alpha-chloralose- and chloral hydrate-anesthetized and precollicular, midcollicular, and postcollicular decerebrated rats. Mean arterial pressure (MAP), heart rate (HR), and minute ventilation (Ve) were recorded before and during 1-min sciatic nerve stimulation, which induced static contraction of the triceps surae muscles, and during 1-min stretch of the calcaneal tendon, which selectively stimulated mechanosensitive receptors in the muscles. Anesthetized rats showed various patterns of MAP response to both stimuli, i.e., biphasic, depressor, pressor, and no response. Sciatic nerve stimulation to muscle in precollicular decerebrated rats always evoked spontaneous running, so the exercise pressor reflex was not determined from these preparations. None of the postcollicular decerebrated rats showed a MAP response or spontaneous running. Midcollicular decerebrated rats consistently showed biphasic blood pressure response to both stimulations. The increases in MAP, HR, and Ve were related to the tension developed. The static contractions in midcollicular decerebrated rats (381 +/- 65 g developed tension) significantly increased MAP, HR, and Ve from 103 +/- 12 to 119 +/- 24 mmHg, from 386 +/- 30 to 406 +/- 83 beats/min, and from 122 +/- 7 to 133 +/- 25 ml/min, respectively. After paralysis, sciatic nerve stimulation had no effect on MAP, HR, or Ve. These results indicate that the midcollicular decerebrated rat can be a model for the study of the exercise pressor reflex.  相似文献   

20.
Patterns of constriction produced by vasoactive agents   总被引:2,自引:0,他引:2  
The patterns of vasoconstriction produced by local infusions of constrictor agents and neurogenic stimuli are unique and varied. Although vasoconstrictors or neurogenic stimuli may produce similar increases in total resistance to blood flow, the effects on consecutive vascular segments may differ dramatically. Vasoconstrictors may affect primarily small vessels, large vessels, or a combination of both. The constrictor response may be restricted to precapillary vessels or may recruit both pre- and postcapillary vessels. The baroreceptors elicit a pattern of vasoconstriction distinct from that produced by electrical stimulation of a vasomotor nerve. Prearteriolar and venous resistance may contribute more than arterioles to increases in total vascular resistance produced by local infusions of vasoconstrictor agents or nerve stimulation. The constriction of large vessels also affects fluid filtration, vascular capacity, and the distribution of blood flow between shunt and exchange vessels. The waning of the resistance increase that occurs during prolonged infusions of vasoconstrictors varies, in part, as a function of the vessel segments that participate in the vasoconstrictor response. Large vessels participate in vasoconstrictor responses triggered by stimuli that impose a severe stress on the circulation. In contrast, small vessels participate primarily in normal vascular adjustments required to maintain blood pressure at the set point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号