首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid sequence of human C-type natriuretic peptide (CNP) has recently been deduced to be identical to those of porcine and rat CNPs in the bioactive unit of C-terminal 22 residues (CNP-22) (1). Thus, tissue concentrations and molecular forms of immunoreactive (ir-) CNP in human brain and heart were determined or characterized using a radioimmunoassay established for porcine CNP. In human brain (hypothalamus and medullapons), ir-CNP was detected at a concentration of 1.04 pmol/g, being about 25 times or 70 times higher than ir-atrial (A-type) natriuretic peptide (ANP) or ir-brain (B-type) natriuretic peptide (BNP). CNP was present mainly as CNP-53, with CNP-22 as well as 13K CNP (presumed to be pro-CNP) as minor components. In heart, 1 approximately 5 pmol/g of ir-CNP was detected in both atrium and ventricle, but this ir-CNP was shown to be derived from crossreactivity of ANP. These results demonstrated that human CNP functions exclusively in the central nervous system in contrast to ANP and BNP which mainly function in the circulation system.  相似文献   

2.
D Müller  C Schulze  H Baumeister  F Buck  D Richter 《Biochemistry》1992,31(45):11138-11143
The degradation of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) by insulin-degrading enzyme (IDE) has been investigated. As revealed by high-performance liquid chromatography, all three peptides are sequentially cleaved at a limited number of sites, the latter of which were identified by mass spectrometric analyses. The studies revealed that ANP is preferred as substrate over BNP and CNP. ANP degradation is rapidly initiated by hydrolysis at the Ser25-Phe26 bond. Three additional cleavage sites were identified in ANP after prolonged incubation with IDE; in contrast, three and two bonds were hydrolyzed in BNP and CNP, respectively. Analysis of the nine cleavage sites shows a preference for basic or hydrophobic amino acid residues on the carboxyl side of a cleaved peptide bond. In contrast to most of the peptide fragments generated by IDE activity, the initial ANP cleavage product, F-R-Y, is rapidly degraded further by cleavage of the R-Y bond. Cross-linking studies with 125I-ANP in the presence of sulfhydryl-modifying agent indicate that IDE activity is inhibited at the level of initial substrate binding whereas metal-ion chelating agents only prevent hydrolysis. On the basis of its structural and enzymatic properties, IDE exhibits striking similarity to a number of recently-described endopeptidases.  相似文献   

3.
Identification of a 29-amino acid natriuretic peptide in chicken heart   总被引:3,自引:0,他引:3  
Morphological and pharmacological observations have suggested that chicken atrial natriuretic peptide (ANP) is different from mammalian ANP. The present survey for the as yet unidentified ANP in chicken heart was performed by monitoring the relaxant effect on chick rectum. From the low molecular weight component of rectum relaxant activity observed in acid extracts of chicken ventricle, a novel 29-amino acid peptide was purified. The identical peptide was also isolated from acid extracts of chicken atrium. The peptide elicited a pharmacological spectrum very similar to that of mammalian ANP, including diuretic-natriuretic and hypotensive activity. Thus, the peptide was designated "chicken alpha-ANP (alpha-chANP)". The complete amino acid sequence determined for the peptide showed remarkable homology with that of mammalian alpha-ANP. However, maximum homology was observed when the peptide was compared with a recently identified porcine brain natriuretic peptide (BNP).  相似文献   

4.
Discovery of a natriuretic peptide family and their clinical application   总被引:3,自引:0,他引:3  
The identification of atrial natriuretic peptide (ANP) induced an explosive series of studies on the new peptide involved in control of the circulation, both in the basic and clinical fields. During the first decade of ANP research surprising progress has been made, revealing that the heart is an endocrine organ regulating the circulation system. ANP has been developed as a diagnostic tool and as a therapeutic drug for cardiac failure. In the second decade, brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were identified, unveiling new profiles of this peptide family. Although BNP is also a circulating hormone that shares a common receptor with ANP, it is different from ANP in its' synthesis and secretion. Plasma concentration of BNP reflects the severity of heart failure in patients in a dramatic fashion, much moreso than ANP. Thus, BNP has been developed as a powerful diagnostic tool for cardiovascular diseases. The third congener, CNP, having a receptor of its own, was initially thought to function only in the brain. CNP was subsequently found to be produced from vascular endothelial cells and macrophages, indicating that CNP is a local regulator and also an antiproliferative factor in the vascular cell system, rather than a circulating hormone. Trials for the clinical application of CNP have also been discussed.  相似文献   

5.
Brain natriuretic peptide (BNP) is a novel diuretic-natriuretic and vasorelaxant peptide originally isolated from porcine brain. In contrast to mammalian atrial natriuretic peptide (ANP), immunological characterization suggests that mammalian BNPs show structural species differences. In order to determine the amino acid sequence of human BNP, we constructed a human cardiac atrium cDNA library and screened for clones hybridizing with porcine BNP cDNA. By sequence analysis of cDNA encoding a putative human BNP precursor, an amino acid sequence of human prepro-BNP of 134 residues has been deduced, in which a minimum bioactive unit highly homologous to porcine BNP-32 is present at the carboxy-terminus.  相似文献   

6.
Huang SC 《Regulatory peptides》2011,167(2-3):246-249
Atrial natriuretic peptide (ANP) causes relaxation in the opossum lower esophageal sphincter. The effects of dendroaspis natriuretic peptide (DNP) and other natriuretic peptides in the lower esophageal sphincter were not known. We measured the relaxation of transverse strips from the guinea pig lower esophageal sphincter caused by DNP, ANP, brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and a natriuretic peptide receptor-C agonist des[Gln(18), Ser(19), Gly(20), Leu(21), Gly(22)]ANP(4-23) amide (cANF(4-23)) in vitro. In resting strips of the guinea pig lower esophageal sphincter DNP and BNP caused marked relaxations. Furthermore, in both sarafotoxin S6c and carbachol-contracted lower esophageal sphincter strips, DNP caused marked and BNP caused moderate, concentration-dependent relaxations. ANP as well as CNP caused mild relaxations. In contrast, cANF(4-23) did not cause relaxation. The relative potencies for natriuretic peptides to cause relaxation were DNP>BNP>ANP>=CNP in both sarafotoxin S6c and carbachol-contracted lower esophageal sphincter strips. The DNP and BNP-induced relaxations were not affected by tetrodotoxin or atropine, suggesting that the natriuretic peptide-induced response was not neutrally mediated. In conclusion, these results demonstrate that natriuretic peptides cause the relaxation of the guinea pig lower esophageal sphincter. DNP is the most potent natriuretic peptide to cause lower esophageal sphincter relaxation, which might be mediated by natriuretic peptide receptor-A or a novel DNP-selective natriuretic peptide receptor.  相似文献   

7.
Atrial natriuretic peptide (ANP), brain type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) comprise a family of natriuretic peptides that mediate their biological effects through three natriuretic peptide receptor subtypes, NPR-A (ANP, BNP), NPR-B (CNP) and NPR-C (ANP, BNP, CNP). Several reports have provided evidence for the expression of ANP and specific binding sites for ANP in the pancreas. The purpose of this study was to identify the ANP receptor subtype and to localize its expression to a specific cell type in the human pancreas. NPR-C immunoreactivity, but neither ANP nor NPR-A, was detected in human islets by immunofluorescent staining. No immunostaining was observed in the exocrine pancreas or ductal structures. Double-staining revealed that NPR-C was expressed mainly in the glucagon-containing alpha cells. NPR-C mRNA and protein were detected in isolated human islets by RT-PCR and Western blot analysis, respectively. NPR-C expression was also detected by immunofluorescent staining in glucagonoma but not in insulinoma. ANP, as well as BNP and CNP, stimulated glucagon secretion from perifused human islets (1,111 ± 55% vs. basal [7.3 fmol/min]; P < 0.001). This response was mimicked by cANP(4–23), a selective agonist of NPR-C. In conclusion, the NPR-C receptor is expressed in normal and neoplastic human alpha cells. These findings suggest a role for natriuretic peptides in the regulation of glucagon secretion from human alpha cells.  相似文献   

8.
C-type natriuretic peptide (CNP) is a new member of the natriuretic peptide family recently identified in porcine brain (1). We raised an antiserum against porcine CNP and set up a radioimmunoassay (RIA) for CNP. Using this RIA system, distribution of immunoreactive (ir-) CNP in porcine tissue was measured and compared with that of ir-atrial natriuretic peptide (ANP) and ir-brain natriuretic peptide (BNP). Tissue concentration of ir-CNP in brain was the highest of the three natriuretic peptides at about 0.79 pmol/g wet wt. CNP was present in medulla-pons in high concentration, with a significant concentration detected in cerebellum. In contrast, ir-CNP was not detected in peripheral tissue, including heart, in a significant concentration. These data demonstrated sharp contrasts in the distribution of the three natriuretic peptides, suggesting that CNP is a natriuretic peptide functioning in the central nervous system.  相似文献   

9.
Cardiovascular homeostasis and blood pressure regulation are reliant, in part, on interactions between natriuretic peptide (NP) hormones and natriuretic peptide receptors (NPR). The C-type NPR (NPR-C) is responsible for clearance of NP hormones from the circulation, and displays a cross-reactivity for all NP hormones (ANP, BNP, and CNP), in contrast to other NPRs, which are more restricted in their specificity. In order to elucidate the structural determinants for the binding specificity and cross-reactivity of NPR-C with NP hormones, we have determined the crystal structures of the complexes of NPR-C with atrial natriuretic peptide (ANP), and with brain natriuretic peptide (BNP). A structural comparison of these complexes, with the previous structure of the NPR-C/CNP complex, reveals that NPR-C uses a conformationally inflexible surface to bind three different, highly flexible, NP ligands. The complex structures support a mechanism of rigid promiscuity rather than conformational plasticity by the receptor. While ANP and BNP appear to adopt similar receptor-bound conformations, the CNP structure diverges, yet shares sets of common receptor contacts with the other ligands. The degenerate versus selective hormone recognition properties of different NPRs appears to derive largely from two cavities on the receptor surfaces, pocket I and pocket II, that serve as anchoring sites for hormone side-chains and modulate receptor selectivity.  相似文献   

10.
Isolation and identification of C-type natriuretic peptide in chicken brain   总被引:9,自引:0,他引:9  
C-type natriuretic peptide (CNP) has recently been identified in porcine brain as a third member of the mammalian natriuretic peptide family (1). Using a radioimmunoassay system for porcine CNP, we found a significant concentration of immunoreactive (ir-) CNP in chicken brain, from which a new peptide was isolated. By microsequence analysis, the amino acid sequence of the peptide was determined to be Gly-Leu-Ser-Arg-Ser-Cys-Phe- Gly-Val-Lys-Leu-Asp-Arg-Ile-Gly-Ser-Met-Ser-Gly-Leu-Gly-Cys. Based on its high homology to porcine CNP, the peptide was designated chicken C-type natriuretic peptide. Chicken CNP also elicits pharmacological effects highly similar to porcine CNP, suggesting that CNP functions as a neuropeptide in the chicken central nervous system.  相似文献   

11.
An exposure of endothelial cells from rat brain microvessels to C-type natriuretic peptide (CNP) resulted in a rapid and large increase in cGMP formation. The action of CNP did not require inhibitors of phosphodiesterases to be observed and occurred at nanomolar concentrations. Other natriuretic peptides (ANP and BNP) also stimulated cGMP formation in endothelial cells from brain microvessels but with a potency that was at least 100 times less than that of CNP. In contrast, endothelial cells from the aorta showed large cGMP responses to low concentrations of ANP and BNP but were unresponsive to CNP up to concentrations as large as 100 nM. It is concluded that endothelial cells from brain microvessels and from aorta express different receptors subtypes for natriuretic peptides. Endothelial cells from brain microvessels express CNP specific ANPB receptors; aortic endothelial cells express ANP (and BNP) specific ANPA receptors. CNP may play an important role in the regulation of water and electrolyte movements across the blood brain barrier.  相似文献   

12.
While regional plasma concentrations of the endocrine hormones atrial and brain natriuretic peptide (ANP and BNP) have been studied, there are few reports of regional changes in the largely paracrine C-type natriuretic peptide (CNP) and its amino terminal fragment NT-CNP. Accordingly, we have performed trans-organ arteriovenous sampling for measurement of plasma ANP, BNP, CNP and NT-CNP in anesthetized sheep before and after induction of experimental heart failure. ANP and BNP plasma concentrations are sourced from a single organ (the heart) and are subject to substantial extraction across most tissue beds. In contrast, our data demonstrate that multiple tissues including liver, heart, hind limb and kidney contribute to circulating CNP. Given that arteriovenous gradients for NT-CNP were similar, this is likely to represent de novo secretion. Circulating levels of CNP and NT-CNP were raised in heart failure but to a much lesser degree than ANP and BNP. There was no evidence of net extraction of CNP or NT-CNP across any tissue bed.  相似文献   

13.
Lee MC  Hu HC  Huang SC 《Regulatory peptides》2005,129(1-3):31-36
Atrial natriuretic peptide (ANP) binding sites have been demonstrated in the guinea-pig gallbladder muscle with unclear function. To investigate effects of natriuretic peptides in the gallbladder, we measured relaxation of isolated human and guinea-pig gallbladder strips caused by natriuretic peptides, including C-type natriuretic peptide (CNP), brain natriuretic peptide (BNP) and ANP, as well as des[Gln18, Ser19, Gly20, Leu21, Gly22]ANP(4-23) amide (cANP(4-23)), a selective natriuretic peptide receptor-C (NPR-C) agonist. Results in the human gallbladder were similar to those in the guinea-pig gallbladder. CNP, BNP, ANP and cANP(4-23) alone did not cause contraction or relaxation in resting gallbladder strips. However, in carbachol or endothelin-1-contracted strips, CNP caused moderate, sustained and concentration-dependent relaxation. The relaxation was not affected by tetrodotoxin or atropine in endothelin-1-contracted gallbladder strips and not by tetrodotoxin in carbachol-contracted strips. These indicate a direct effect of CNP on the gallbladder muscle. The relative potencies for natriuretic peptides to cause relaxation were CNP>BNP> or = ANP. cANP(4-23) did not cause relaxation. These indicate the existence of the natriuretic peptide receptor-B (NPR-B) mediating the relaxation. Taken together, these results demonstrate that natriuretic peptides cause relaxation of human and guinea-pig gallbladder muscle through interaction with the natriuretic peptide receptor-B.  相似文献   

14.
The natriuretic peptide receptors (NPRs) are a family of three cell surface glycoproteins, each with a single transmembrane domain. Two of these receptors, designated NPR-A and NPR-B, are membrane guanylyl cyclases that synthesize cGMP in response to hormone stimulation. The third receptor, NPR-C, has been reported to function in the metabolic clearance of ligand and in guanylyl cyclase-independent signal transduction. We engineered three chimeric proteins consisting of the natriuretic peptide receptor extracellular domains fused to the Fc portion of human IgG-gamma 1. These molecules provide material for detailed studies of the human receptor's extracellular domain structure and interaction with the three human natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and type-C natriuretic peptide (CNP). The homodimeric fusion proteins, designated A-IgG, B-IgG, and C-IgG, were secreted from Chinese hamster ovary cells and purified by protein-A affinity chromatography. We present here the primary characterization of these fusion proteins as represented by the intrinsic hormone affinities measured by saturation binding and competition assays. The dissociation constant of 125I-ANP for A-IgG was 1.6 pM and for C-IgG, 1.2 pM. The dissociation constant of 125I-Y0-CNP (CNP with addition of tyrosine at the amino terminus) for B-IgG was 23 pM. The rank order of potency in competitive binding for A-IgG was ANP greater than BNP much greater than CNP, whereas for B-IgG the ranking was CNP much greater than ANP greater than BNP. For C-IgG, we observed ANP greater than CNP greater than or equal to BNP. These data demonstrate that the receptor-IgG fusion proteins discriminate among the natriuretic peptides in the same manner as the native receptors and provide a basis for future structural studies with these molecules. The purified fusion proteins have a variety of potential applications, one of which we illustrate by a solid phase screening assay in which rabbit sera from a series of synthetic-peptide immunizations were titered for receptor reactivity and selectivity.  相似文献   

15.
16.
Sellitti DF  Koles N  Mendonça MC 《Peptides》2011,32(9):1964-1971
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.  相似文献   

17.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) have different C-terminal tail structures compared with the rather conservative ring structures which consist of 17 amino acid residues. To examine the different effects of the tail structures of ANP and BNP on their interaction with receptors, we synthesized several peptide analogs and measured their biological actions in three different assay systems. Deletion of the C-terminal tail from rat BNP did not effect the vasorelaxation activity against rat aorta, but it promoted cGMP production in cultured rat aortic smooth muscle cells (RASMC). Deletion of the C-terminal tail from rat ANP diminished both vasorelaxant and cGMP producing activities. In a binding competition assay with RASMC and [125I]rat ANP-(1-28), the competition activities of both ANP and BNP were greatly reduced by C-terminal deletion. In addition, we obtained agonists with novel receptor selectivity.  相似文献   

18.
Natriuretic peptide receptor-C signaling and regulation   总被引:10,自引:0,他引:10  
Anand-Srivastava MB 《Peptides》2005,26(6):1044-1059
The natriuretic peptides (NP) are a family of three polypeptide hormones termed atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). ANP regulates a variety of physiological parameters by interacting with its receptors present on the plasma membrane. These are of three subtypes NPR-A, NPR-B, and NPR-C. NPR-A and NPR-B are guanylyl cyclase receptors, whereas NPR-C is non-guanylyl cyclase receptor and is coupled to adenylyl cyclase inhibition or phospholipase C activation through inhibitory guanine nucleotide regulatory protein (Gi). ANP, BNP, CNP, as well as C-ANP(4-23), a ring deleted peptide that specifically interacts with NPR-C receptor inhibit adenylyl cyclase activity through Gi protein. Unlike other G-protein-coupled receptors, NPR-C receptors have a single transmembrane domain and a short cytoplasmic domain of 37 amino acids, which has a structural specificity like those of other single transmembrane domain receptors. A 37 amino acid cytoplasmic peptide is sufficient to inhibit adenylyl cyclase activity with an apparent Ki similar to that of ANP(99-126) or C-ANP(4-23). In addition, C-ANP(4-23) also stimulates phosphatidyl inositol (PI) turnover in vascular smooth muscle cells (VSMC) which is attenuated by dbcAMP and cAMP-stimulatory agonists, suggesting that NPR-C receptor-mediated inhibition of adenylyl cyclase and resultant decreased levels of cAMP may be responsible for NPR-C-mediated stimulation of PI turnover. Furthermore, the activation of NPR-C receptor by C-ANP(4-23) and CNP inhibits the mitogen-activated protein kinase activity stimulated by endothelin-3, platelet-derived growth factor, phorbol-12 myristate 13-acetate, suggesting that NPR-C receptor might also be coupled to other signal transduction system or that there may be an interaction of the NPR-C receptor and some other signaling pathways. In this review article, NPR-C receptor coupling to different signaling pathways and their regulation will be discussed.  相似文献   

19.
A comparative study of natriuretic peptide receptor (NPR) was performed by cloning the NPR-A receptor subtype from the bullfrog (Rana catesbeiana) brain and analyzing its functional expression. Like other mammalian NPR-A receptors, the bullfrog NPR-A receptor consists of an extracellular ligand binding domain, a hydrophobic transmembrane domain, a kinase-like domain and a guanylate cyclase domain. Sequence comparison among the bullfrog and mammalian receptors revealed a relatively low ( approximately 45%) similarity in the extracellular domain compared to a very high similarity ( approximately 92%) in the cytoplasmic regulatory and catalytic domains. Expression of NPR-A mRNA was detected in various bullfrog tissues including the brain, heart, lung, kidney and liver; highest levels were observed in lung. Functional expression of the receptor in COS-7 cells revealed that frog atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) elicited cyclic guanosine 3'5'-monophosphate production by stimulating the receptor in a dose-dependent manner from 10(-10) M concentrations. Rat ANP was also effective in stimulating the frog receptor whereas rat BNP and porcine BNP were less responsive to the receptor. On the other hand, frog C-type natriuretic peptide (CNP) as well as porcine CNP stimulated the receptor only at high concentrations (10(-7) M). This clearly indicates that the bullfrog receptor is a counterpart of mammalian NPR-A, and is specific for ANP or BNP but not for CNP.  相似文献   

20.
吴志俊  金玮  张凤如  刘艳 《遗传》2012,34(2):127-133
利钠肽家族是一组由心肌细胞分泌的激素, 主要包括A型、B型和C型利钠肽, 具有相似的基因结构和生理学效应, 可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性, 调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽, 通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示, 其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化, 与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制, 为临床诊疗开辟新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号