首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factors (FGFs), like nerve growth factor (NGF), induce morphological differentiation of PC12 cells. This activity of FGF is regulated by glycosaminoglycans. To further understand the mechanisms of FGF and glycosaminoglycan actions in PC12 cells, we studied the regulation of protein phosphorylation and ornithine decarboxylase (ODC) activity by FGF in the presence and absence of heparin. As with NGF, aFGF and bFGF increased the incorporation of radioactive phosphate into the protein tyrosine hydroxylase (TH). The increase in TH phosphorylation was localized to the tryptic peptide, T3. Both T3 and T1 phosphorylations occur in response to NGF, but there was no evidence that aFGF or bFGF stimulated the phosphorylation of the T1 peptide. This result suggests differential regulation of second messenger systems by NGF and FGF in PC12 cells. Heparin, at a concentration that potentiated aFGF-induced neurite outgrowth 100-fold (100 micrograms/ml), did not alter the ability of aFGF to increase S6 phosphorylation or ODC activity. One milligram per milliliter of heparin, a concentration that inhibited bFGF-induced neurite outgrowth, also inhibited bFGF-induced increases in S6 phosphorylation and ODC activity. These observations suggest (i) that acidic and basic FGF activate a protein kinase, possibly protein kinase C, resulting in the phosphorylation of peptide T3 of TH; (ii) that the FGFs and NGF share some but not all second messenger systems; (iii) that heparin potentiates aFGF actions and inhibits bFGF actions in PC12 cells via distinct mechanisms; (iv) that heparin does not potentiate the neurite outgrowth promoting activity of aFGF by enhancing binding to its PC12 cell surface receptor; and (v) that heparin may coordinately regulate several activities of bFGF (induction of protein phosphorylation, ODC and neurite outgrowth) via a common mechanism, most likely by inhibiting the productive binding of bFGF to its PC12 cell surface receptor.  相似文献   

2.
This study reports on the effects of heparin, basic and acidic fibroblast growth factors (bFGF and aFGF, respectively), and transforming growth factor type-e (TGFe) on the growth of a human adrenocortical carcinoma cell line, SW-13. Heparin has previously been shown to inhibit growth in several cell types, including smooth muscle cells, certain fibroblasts, and epithelial cells, and to modulate the effects of fibroblast growth factors. Whereas bFGF and aFGF bind tightly to heparin and elute from a heparin-Sepharose column with 2 M NaCl and 1.6 M NaCl, respectively, TGFe binds to heparin with lower affinity and can be eluted from heparin-Sepharose column with 0.5 M NaCl. TGFe is a polypeptide unrelated to FGF, is present in neoplastic and nonneoplastic tissues, and stimulates the growth of certain epithelial cells and fibroblasts in soft agar and monolayer. Since the growth of SW-13 cells is stimulated by TGFe and by bFGF, we hypothesized that heparin would inhibit the growth of SW-13 cells by binding to these growth factors and that the effects of heparin could be overcome with the addition of either growth factor. Our experiments confirmed that heparin inhibits the growth of SW-13 cells. A dose-dependent growth inhibition was observed in both monolayer and soft agar. The inhibition in monolayer was partially reversed upon heparin withdrawal. The effects of heparin in both monolayer and soft agar were at least partially overcome by TGFe and by basic or acidic FGF. Overall protein synthesis does not appear to be affected by heparin as measured by [35S]methionine uptake. In contrast, epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) were unable to overcome heparin-induced inhibition both in monolayer and in soft agar. Heparin also inhibited [3H]thymidine incorporation in AKR-2B and partially inhibited AKR-2B cell stimulation by TGFe; however, it further potentiated the already potent stimulation by bFGF. We propose that heparin, TGFe, bFGF, and aFGF modulate the growth of SW-13 cells and possibly of other epithelial cells in complex ways and that heparin-like substances present in the extracellular matrix play an important role in the control of epithelial growth.  相似文献   

3.
The bioactivity of both bFGF and aFGF in the BALB/MK-1 cell line has been compared to that of EGF. Our results indicate that, for that cell type, aFGF was far more potent than bFGF in inducing cell proliferation. In the presence of heparin, aFGF was as potent as EGF. In addition, excess bFGF has an inhibitory effect on the proliferation of MK cells exposed to a saturating concentration of aFGF, therefore acting as a partial agonist of aFGF. Surprisingly, bFGF, although it had low biological activity, was capable of synergizing the effect of EGF. In its presence, cultures exposed to saturating concentration of EGF have a final cell density 3- to 4-fold higher than that of counterpart cultures exposed to EGF alone. TGF beta, which in previous studies has been shown to inhibit the growth of keratinocytes, also inhibited the growth of BALB/MK-1 cells in response to either bFGF or aFGF. These studies suggest a role for FGF in regulating BALB/MK proliferation. aFGF provides positive growth signals which can be negatively modulated by excess bFGF or TGF beta, while bFGF, although a poor mitogen, could act by potentiating the effect of subsaturating concentrations of EGF.  相似文献   

4.
Acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) are present in high levels in most areas of the embryonic rodent brain. To begin to understand the role of these growth factors in brain development, the effects of aFGF and bFGF on dissociated cell cultures prepared from embryonic and neonatal rat brain were studied. Addition of aFGF and heparin or bFGF alone to serum-free cultures of the dissociated Embryonic Day (E) 14.5 mesencephalon stimulates cell proliferation, as judged by [3H]thymidine autoradiography, leading to a maximal 75-fold increase in the total number of cells. This effect is dose-dependent with half-maximal increases at concentrations of about 5-6 ng/ml of aFGF or bFGF and is inhibited by the FGF antagonist HBGF-1U. The effect of aFGF on cell proliferation in cultures prepared from E14.5 mesencephalon is similar to that in cultures prepared from E14.5 cortex. However, in cultures prepared from E14.5 rhombencephalon or diencephalon, the proliferative effect of aFGF is much reduced. In all brain areas studied, the proliferative effect of aFGF declines with increasing age. Immunocytochemical analysis of E14.5 mesencephalic cultures demonstrated that the aFGF-induced increase in cell number is due to the proliferation of A2B5-immunoreactive (IR) glial precursor cells, but not of neuronal precursors, fibroblasts, or microglial cells. Moreover, differentiated glial fibrillary acidic protein-IR astrocytes and 2',3'-cyclic nucleotide 3'-phosphohydrolase-IR oligodendrocytes were not observed in cultures continuously treated with aFGF or bFGF, but were observed in high numbers after removal of the growth factors. These results suggest (1) that aFGF and bFGF are potent mitogens for glial precursor cells in all embryonic brain regions, (2) that the magnitude of the effects of aFGF depends on embryonic age and brain region, and (3) that both growth factors inhibit the differentiation of astrocyte or oligodendrocyte precursors. These observations made in vitro strongly support the hypothesis that FGF plays a critical role in gliogenesis and the timing of glial differentiation in the brain.  相似文献   

5.
We described previously that acidic fibroblast growth factor (aFGF), but not basic fibroblast growth factor (bFGF), can induce the rat carcinoma cell line NBT-II to undergo a rapid and reversible transition from epithelial to mesenchymal phenotype (EMT). We now find that NBT-II EMT is stimulated by keratinocyte growth factor (KGF) in cells grown at low density. Accordingly, a high-affinity receptor showing 98% homology to mouse FGF receptor 2b/KGF receptor was cloned and sequenced from NBT-II cells. Northern analysis indicated that mRNA for FGF receptor 2b/KGF receptor was drastically down-regulated within 1 wk in aFGF-induced mesenchymal NBT-II cells. This decrease coincided with an up-regulation of FGF receptor 2c/Bek, a KGF-insensitive, alternatively spliced form of FGF receptor 2b/KGF receptor. Functional studies confirmed that KGF could not maintain EMT induction on mesenchymal NBT-II cells. FGF receptor 1 and FGF receptor 2c/Bek could also support EMT induction when transfected into NBT-II cells in response to aFGF or bFGF. Such transfected cells could bind bFGF as well as aFGF. Therefore, EMT can be induced through different FGF receptors, but EMT may also regulate FGF receptor expression itself.  相似文献   

6.
Keratinocytes and fibroblasts isolated from human neonatal foreskin can be plated and grown through multiple rounds of division in vitro under defined serum-free conditions. We utilized these growth conditions to examine the mitogenic potential of acidic and basic fibroblast growth factor (aFGF and bFGF) on these cells. Our results demonstrate that both aFGF and bFGF can stimulate the proliferation of keratinocytes and fibroblasts. aFGF is a more potent mitogen than bFGF for keratinocytes. In contrast, bFGF appears to be more potent than aFGF in stimulating the growth of fibroblast cultures. Heparin sulfate (10 micrograms/ml) dramatically inhibited the ability of bFGF to stimulate the proliferation of keratinocytes. In comparison, heparin slightly inhibited the stimulatory effect of aFGF and had no effect on epidermal growth factor (EGF) stimulation in keratinocyte cultures. In fibroblast cultures the addition of heparin enhanced the mitogenic effect of aFGF, had a minimal stimulatory effect on the mitogenic activity of bFGF, and had no effect on EGF-stimulated growth. Our results demonstrate that the proliferation in vitro of two normal cell types found in the skin can be influenced by aFGF and bFGF and demonstrate cell-type specific differences in the responsiveness of fibroblasts and keratinocytes to these growth factors and heparin.  相似文献   

7.
Both parathyroid hormone secretion and cell growth are negatively regulated by extracellular calcium in parathyroid cells. The mechanism of growth regulation by calcium has been unknown. Previously, we reported that clonal parathyroid cells (PT-r cells) bear two high affinity receptors for acidic fibroblast growth factor (aFGF) and that at least a subpopulation of the receptors with a higher molecular mass carries heparan sulfate (HS) glycosaminoglycan chains which give the receptor higher affinity (Sakaguchi, K., Yanagishita, M., Takeuchi, Y., and Aurbach, G. D. (1991) J. Biol. Chem. 266, 7270-7278). Here, I have found that the parathyroid cells expressed aFGF and that aFGF receptors with lower affinity apparently translocated in response to changing extracellular calcium concentrations. Expression of both aFGF mRNA and peptide was suppressed by calcium. Cells had more ligand-accessible receptors on the cell surface at lower calcium concentrations. This apparent translocation was temperature-dependent but independent of de novo protein synthesis. Heparin or HS glycosaminoglycans are a prerequisite for the FGF receptor encoded by flg gene to bind basic FGF (Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M. (1991) Cell 64, 841-848). In PT-r cells, major cellular HS proteoglycans redistribute between intracellular and extracellular compartments with more HS proteoglycans expressed on the cell surface at lower calcium concentrations (Takeuchi, Y., Sakaguchi, K., Yanagishita, M., Aurbach, G. D., and Hascall, V. C. (1990) J. Biol. Chem. 265, 13661-13668). However, this redistribution of HS proteoglycans cannot explain the difference in bindability of radiolabeled aFGF to its receptors in different calcium concentrations, since addition of heparin did not change the binding of radiolabeled aFGF to the receptors either at high or low calcium conditions. In concordance with the apparent translocation of aFGF receptors, thymidine incorporation was stimulated by decreasing extracellular calcium concentrations with further stimulation by added aFGF. Anti-aFGF antibody inhibited thymidine incorporation by more than 32% in the cells exposed to 0.05 mM Ca2+ shortly before adding [3H]thymidine, whereas the incorporation was not significantly affected by the antibody at 0.7 mM Ca2+. Cell growth was also stimulated by low calcium. Anti-aFGF antibody inhibited cell growth significantly only at low calcium concentrations. From these observations, an aFGF autocrine system including the apparent translocation of aFGF receptors may explain, if not entirely, the mechanism by which calcium regulates parathyroid cell growth.  相似文献   

8.
This article sumarizes the structural and biological properties of the family of fibroblast growth factors (FGF). Basic FGF (bFGF) and acidic FGF (aFGF) are the best characterized members of this family. bFGF and aFGF are potent modulators of cell proliferation, motility and differentiation. They are also potent angiogenesis factors in vivo. Some of the important biological characteristics of bFGF and aFGF discussed in the review include the affinity of bFGF and aFGF for heparin, their lack of secretion in culture and their association with extracellular matrix. Recently, several oncogenes, 40–50% homologous in sequence to bFGF and aFGF have been identified. These include int-2, hst, K-fgf and FGF-5. The structural and biological properties of these FGF-related oncogenes are also discussed.  相似文献   

9.
Human acidic and basic fibroblast growth factors (aFGF and bFGF) inhibit epidermal growth factor (EGF) receptor binding in mouse Swiss 3T3 cells. Scatchard analysis indicates that aFGF and bFGF cause a decrease in the high affinity EGF receptor population, similar to that observed for activators of protein kinase C such as phorbol esters, platelet-derived growth factor (PDGF) and bombesin. However, unlike phorbol esters, aFGF and bFGF inhibit EGF binding in protein kinase C-deficient cells. The time course and dose response of inhibition of EGF binding by both aFGF and bFGF are very similar, with an ID50 of approximately 0.10 ng/ml. In contrast to bombesin but like PDGF, neither aFGF nor bFGF act on the EGF receptor through a pertussis toxin-sensitive G protein. These results indicate that both acidic and basic FGF depress high affinity EGF binding in Swiss 3T3 cells with similar potency through a protein kinase C/Gi-independent pathway.  相似文献   

10.
Cultured endothelial cells have been shown to possess two mechanisms of intercellular adhesion: Ca2(+)-dependent and Ca2(+)-independent. We report here that growth of bovine aortic endothelial cells (BAEC) in complete medium containing purified basic fibroblast growth factor (bFGF, 6 ng/ml) results in loss of Ca2(+)-dependent intercellular adhesion. In the presence of heparin (90 micrograms/ml), this effect is reproduced upon treatment with acidic fibroblast growth factor (aFGF, 6 ng/ml) or endothelial cell growth supplement (ECGS, 100 micrograms/ml), in both human umbilical vein endothelial cells (HUVEC) and BAEC. Treatment at these doses with aFGF in the absence of heparin or with heparin alone is without significant effect. Loss of Ca2(+)-dependent adhesion following treatment of cells with heparin-binding growth factors (HBGFs) is prevented by pre-treatment of cell layers with cycloheximide. The Ca2(+)-independent adhesion mechanism is unaffected by HBGF treatment. Exposure of endothelial cells to HBGFs, moreover, prevents the eventual establishment of quiescence in growing cultures and restimulates replication in confluent cultures that have reached a final density-inhibited state. Addition of bFGF alone or aFGF + heparin at these doses results in a 4-fold increase in DNA synthesis over untreated control cultures at saturation density as reflected by thymidine index. A single addition of bFGF (6 ng/ml) to untreated quiescent confluent BAEC monolayers results in an increase in 3H-TdR incorporation reaching a peak at 22 hours with a parallel loss of Ca2(+)-dependent adhesiveness. Fluorescent staining with rhodamine-phalloidin demonstrates an altered distribution of polymerized F-actin in the bFGF-treated monolayers, marked by disruption of the dense peripheral microfilament bands retained by untreated confluent monolayers. Together, these results indicate that the mitogenic effect of HBGFs in cultured endothelial cells is associated with a "morphogenic" set of responses, perhaps dependent on breakdown of calcium-dependent cell-cell contacts.  相似文献   

11.
Summary The distributions of acidic fibroblast growth factor (aFGF) and basic FGF (bFGF) in extracts of various cultured mammalian cells were determined from their elution profiles on heparin-affinity chromatography, and assay of activity as ability to stimulate DNA synthesis in BALB/c3T3 cells. Only aFGF was found in extracts of mouse melanoma B 16 cell and rat Morris hepatoma cell (MH1C1) lines. Other tumor cell lines established from solid tumors and some normal cells contained bFGF as a main component, but blood tumor cell lines contained no aFGF or bFGF. The FGFs in extracts of solid tumor tissues derived by transplantations of these cultured tumor cells and various normal tissues of mice were also examined. Tumors formed by all cell lines, regardless of whether they produced aFGF, bFGF, or neither, contained bFGF that was probably derived from host cells including capillary endothelial cells, in addition to the tumor-derived aFGF or bFGF, if produced. The content of bFGF, possibly derived from the host, in these tumor tissues was comparable to those of various mouse organs other than thymus, lung, spleen, and testis, which have higher bFGF contents. Tumor tissues derived from cultured cells producing bFGF had relatively higher bFGF contents. Like bFGF, aFGF was distributed almost ubiquitously in normal mouse tissues.  相似文献   

12.
When normal human foreskin keratinocytes were cultured in the absence of polypeptide growth factors at densities above 5 x 10(3)/cells cm2, the cells proliferated continuously and the addition of IGF-I, EGF, TGF alpha, bFGF, or aFGF did not significantly alter growth rate. Heparin sulfate, TGF beta, or suramin inhibited keratinocyte growth factor-independent proliferation. The addition of EGF, TGF alpha, or aFGF reversed heparin-induced growth inhibition, while bFGF partially negated this effect. RIA of keratinocyte-derived conditioned medium (CM) indicated the presence of TGF alpha peptide at a concentration of approximately 235 pg/ml. In contrast, clonal growth of keratinocytes required the addition of growth factors to the basal medium. Keratinocyte-derived CM replaced EGF in stimulating keratinocyte clonal growth, and an anti-EGF receptor mAb inhibited CM-induced keratinocyte clonal growth. In addition to its effect on keratinocytes, keratinocyte-derived CM stimulated the incorporation of [3H]thymidine by quiescent cultures of human foreskin fibroblasts, mouse AKR-2B cells, and EGF-receptorless mouse NR6 cells. CM-stimulated [3H]thymidine incorporation into quiescent normal human fibroblasts was partially reduced in the presence of anti-EGF receptor mAb. Heparin sulfate partially inhibited CM-induced keratinocyte clonal growth and [3H]thymidine incorporation into quiescent AKR-2B cells. We hypothesize from these data that autocrine and paracrine-acting factors produced by keratinocytes mediated their effect through the activation of both EGF receptor-dependent and EGF receptor-independent mitogenic pathways and that some of these factors appear to be sensitive to inhibition by heparin.  相似文献   

13.
The heparin-binding growth factors include a family of seven structurally related proteins that can potentially interact with four known high affinity receptors. We have cloned the murine homologues of fibroblast growth factor receptors 1 and 3 (mFR1 and mFR3). To define the ligand specificity of these receptors, we have characterized their binding properties with respect to acidic and basic fibroblast growth factors (aFGF and bFGF, respectively) and their biologic activity with respect to aFGF, bFGF, FGF-4/K-FGF, and FGF-5. Unlike mFR1, which binds both aFGF and bFGF, mFR3 preferentially binds aFGF. mFR3-mediated mitogenicity also favors aFGF and FGF-4 with a 10-12-fold lower response to bFGF and no response to FGF-5. Both receptor binding and growth factor-mediated mitogenicity are dependent on heparin. Heparin-binding growth factor activity can thus be regulated by proteoglycans and by the type of FGF receptor expressed on the target cell.  相似文献   

14.
Heparin-binding growth factors present in pig uterine tissue were purified by approx. 50,000-fold using a combination of ammonium sulphate precipitation, ion-exchange chromatography and heparin-affinity chromatography. Purification of the uterus-derived growth factors (UDGFs) was monitored by the stimulation of [3H]thymidine incorporation into Swiss 3T3 cells and by a radioreceptor assay using 125I-labelled epidermal growth factor (EGF) as the ligand. The latter was shown to be a novel, rapid and reliable assay for heparin-binding growth factors which utilizes their trans-modulation of EGF receptor affinity. UDGFs exhibit strong affinity for immobilized heparin and two forms, named alpha UDGF and beta UDGF, were distinguished by salt gradient elution from heparin-agarose affinity columns. beta UDGF activity was eluted from heparin-agarose between 1.5 M- and 1.8 M-NaCl, and was correlated with the elution of a protein doublet of 17.2 kDa and 17.7 kDa. Immunoblotting of heparin-purified beta UDGF indicated that the beta UDGF doublet is immunologically related to the 146-amino-acid form of bovine basic fibroblast growth factor (bFGF), and that the 17.2 kDa component is an N-terminally truncated form of the 17.7 kDa component. After purification by C4 reversed-phase h.p.l.c., this doublet was biologically active and greater than 95% pure as assessed by silver-stained SDS/PAGE. Amino acid composition and sequence analysis confirmed that these beta UDGF polypeptides were microheterogeneous forms of bFGF. Fractions containing alpha UDGF activity were eluted from heparin-agarose in 1.3 M-NaCl. These fractions contained a 16.5 kDa protein which co-migrated on SDS/polyacrylamide gels with recombinant human acidic FGF (aFGF) and which which cross-reacted with an antiserum raised against aFGF. The identification of heparin-binding growth factors in porcine uterus at the time of implantation raises the possibility that they function in the reproductive tract during early pregnancy.  相似文献   

15.
The growth of regenerating limbs of amphibians depends upon proliferation of the blastema cells that accumulate beneath the epidermal cap. The epidermal cap is known to be mitogenic for the blastema cells. We have extracted a mitogenic activity from both the mesenchymal and epidermal (epidermal cap) components of cone stage blastemas which is retained on heparin-Sepharose and elutes with 1.15 M NaCl. This fraction stimulates neurite outgrowth of PC12 cells and [3H]thymidine incorporation into CCL 39 cells and is potentiated by heparin. The 2 M fraction was inactive. The heparin-Sepharose-purified growth factor cross-reacts with bovine acidic FGF polyclonal antibodies and shows a Mr of 16,000 on Western blots. Blastema membranes contain specific high affinity binding sites (Kd = 25 pM; capacity = 30 fmole/mg protein) and low affinity binding sites (Kd = 18 nM; capacity = 30 pmole/mg protein) for aFGF as revealed by Scatchard analysis. 125I-aFGF which is bound specifically by both the epidermal cap and mesenchyme of blastema frozen sections is displaced by an excess of unlabeled factor and inhibited by heparin. Heparinase treatment and 2 M NaCl washing which decreased the binding was fourfold more efficient for epidermal cap than for mesenchyme suggesting the presence of high affinity receptors in the latter tissue. The presence of aFGF (or a closely related molecule) in blastemas is consistent with our earlier results that showed stimulation of proliferation of cultured blastema cells by acidic or basic FGF or heparin alone. These results suggest the possibility that aFGF is stored in the epidermal cap during limb regeneration and that it stimulates the proliferation of the underlaying mesenchyme.  相似文献   

16.
Heparan sulfate proteoglycans on the cell surface act as low affinity binding sites for acidic and basic fibroblast growth factor (FGF) [Moscatelli (1887): J Cell Physiol 131:123–130] and play an important role in the interaction of FGF with the FGF receptor (FGFR). In this study, several aspects of the interaction of FGFs with cell surface heparan sulfate proteoglycans were examined. Reciprocal cross blocking studies demonstrated that acidic FGF (aFGF) and basic FGF (bFGF) bind to identical or closely associated heparan sulfate motifs on BALB/c 3T3 cell surface heparan sulfate proteoglycans. However, the binding affinity of the two growth factros for these heparan sulfate proteoglycans differs considerably, competition binding data indicating that aFGF has a 4.7-fold lower affinity than bFGF for 3T3 heparan sulfate proteoglycan. Subsequent studies of dissociation kinetics demonstrated that bFGF dissociates form the FGFR at least 10-fold slower than aFGF, whereas, following removal of cell surface heparan sulfate proteoplycan. Subsequent studies of dissociation kinetic demonstrated that bFGF dissociates from the FGFR at least 10-fold slwer than aFGF, whereas, following removal of cell surface heparan sulfate proteoglycans by heparinase treatment, the dissociation rate of both FGFs is similar and rapid. These results support the concept that cell surface heparan sulfate proteoglycans stabilize the interactio fo FGF with FGFR, possibly by the formatin of a ternary complex. © Wiley-Liss, Inc.  相似文献   

17.
《Bone and mineral》1990,8(2):145-156
The effects of acidic fibroblast growth factor (aFGF) and epidermal growth factor (EGF) were examined in subconfluent fetal rat calvaria cell cultures, in the presence of 2% serum. Maximal effect of aFGF and EGF on DNA synthesis measured by [3H]thymidine incorporation was observed after 18 h. aFGF stimulated DNA synthesis by 3.5-fold with an ED50 of 0.75 ng/ml while a 2.3-fold EGF stimulation was recorded with an ED50 of 0.067 ng/ml. 5-Bromo-2-deoxyuridine staining showed a higher stimulation of proliferation in the scattered cells than in the cell clusters. An 18 h aFGF or EGF treatment decreased alkaline phosphatase (ALP) activity by 40 and 23%, respectively, as compared with control cultures. This inhibition was more pronounced after 48 h in the presence of the effectors but no modification of the ALP electrophoretic mobility was observed. These data suggest that aFGF is a less potent mitogen than EGF and a higher inhibitor of ALP activity in fetal rat calvaria cell culture.  相似文献   

18.
Acidic fibroblast growth factor (aFGF) is a heparin-binding polypeptide that is a mitogen for endothelial cells and glial cells, as well as a differentiation factor for PC12 cells and certain neurons. We show here that aFGF is as potent as nerve growth factor (NGF) in stimulating both neuritic outgrowth and proliferation in adrenal chromaffin cells from young rats, but it fails to support long-term survival. Heparin strongly potentiates aFGF-dependent neuritic outgrowth but not aFGF-dependent proliferation. As is the case with NGF, phorbol myristate acetate depresses aFGF-induced cell division and increases the outgrowth of neurites. On the other hand, dexamethasone antagonizes neuritic outgrowth elicited by both NGF and aFGF but inhibits only proliferation induced by NGF. The effects of basic FGF (bFGF) are similar but not identical to those of aFGF. Thus the regulatory pathways controlled by aFGF, bFGF, and NGF are partially distinct.  相似文献   

19.
The minimal structural requirements for the interaction of heparin with acidic fibroblast growth factor (aFGF) were investigated. Oligosaccharides (tetra- to decasaccharides) obtained by nitrous acid depolymerisation of standard heparin were separated by affinity chromatography on Sepharose-immobilised aFGF. The shortest fragment retained by the affinity column at 0.2 M NaCl and eluted at 1 M NaCl was a "regular" hexasaccharide, a trimer of the most abundant disaccharide sequence in heparin. More complex octa- and decasaccharides were also retained by the column. The oligosaccharides eluted by 1 M NaCl from the affinity column ("high-affinity" oligosaccharides) and those washed from the column at 0.2 M NaCl ("low-affinity" oligosaccharides) were compared for their capacity to protect aFGF from proteolysis and to potentiate its mitogenic activity. At a low ionic strength, all oligosaccharides tested, except the "regular" disaccharide, protected aFGF against trypsin and collagenase digestion. At higher ionic strength (greater than 0.2 M NaCl), only high-affinity oligosaccharides showed a protective effect. The high-affinity oligosaccharides (hexa- to decasaccharides) potentiated the mitogenic activity of aFGF, as measured by [3H]thymidine incorporation into DNA of human fibroblasts. The effect of the oligosaccharides on human endothelial cell proliferation was more complex: inhibition of proliferation was observed in the presence of serum and low concentrations of aFGF (1-5 ng/ml) and potentiation in the presence of higher concentrations of aFGF. The potentiating effect increased as a function of molecular size of the heparin fragments and, for a given size, as a function of the anionic charge of the oligosaccharide. Our results suggest that inhibition of cell proliferation by heparin may result from interference with an autocrine basic FGF-like activity.  相似文献   

20.
Keratinocyte growth factor (KGF) is an unusual fibroblast growth factor (FGF) family member in that its activity is largely restricted to epithelial cells, and added heparin/heparan sulfate inhibits its activity in most cell types. The effects of heparan sulfate proteoglycan (HSPG) on binding and signaling by acidic FGF (aFGF) and KGF via the KGFR were studied using surface-bound and soluble receptor isoforms expressed in wild type and mutant Chinese hamster ovary (CHO) cells lacking HSPG. Low concentrations of added heparin (1 microgram/mL) enhanced the affinity of ligand binding to surface-bound KGFR in CHO mutants, as well as ligand-stimulated MAP kinase activation and c-fos induction, but had little effect on binding or signaling in wild type CHO cells. Higher heparin concentrations inhibited KGF, but not aFGF, binding and signaling. In addition to the known interaction between HSPG and KGF, we found that the KGFR also bound heparin. The biphasic effect of heparin on KGF, but not aFGF, binding and signaling suggests that occupancy of the HSPG binding site on the KGFR may specifically inhibit KGF signaling. In contrast to events on the cell surface, added heparin was not required for high-affinity soluble KGF-KGFR interaction. These results suggest that high-affinity ligand binding is an intrinsic property of the receptor, and that the difference between the HSPG-dependent ligand binding to receptor on cell surfaces and the HSPG-independent binding to soluble receptor may be due to other molecule(s) present on cell surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号