首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complete DNA sequences encoding the Arabidopsis thaliana STP1 monosaccharide/H+ symporter or a histidine-tagged STP1-His6 protein were expressed in baker's yeast Saccharomyces cerevisiae. Both wild-type STP1 and the recombinant his-tagged protein were located in the plasma membranes of transformed yeast cells. The C-terminal modification caused no loss of transport activity compared with the wild-type protein. Anti-STP1-antibodies were used to confirm the identity of the protein in yeast and to compare the apparent molecular weights of STP1 proteins in membrane extracts from yeast or Arabidopsis thaliana. Purified yeast plasma membranes were fused with proteoliposomes consisting of Escherichia coli lipids and beef heart cytochrome-c oxidase. Addition of ascorbate/TMPD/cytochrome-c to these fused vesicles caused an immediate formation of membrane potential (inside negative; monitored with [3H]tetraphenylphosphonium cations) and a simultaneous, uncoupler-sensitive influx of d -glucose into the energized vesicles. STP1-His6 protein is functionally active after solubilization with octyl-β-d -glucoside, which was shown by insertion of the protein into proteoliposomes by detergent dilution and determination of the resulting transport capacity. Detergent extracts from either total membranes or plasma membranes of transgenic yeast cells were used for one-step purification of the STP1-His6 protein on Ni2+-NTA columns. The identity of the purified protein was checked by immunoblotting and N-terminal sequencing.  相似文献   

2.
In this paper the cloning of a full-length cDNA clone encoding the PmSUC2 sucrose-H+ symporter from Plantago major is described. This plant allows the simple preparation of vascular bundles from the basal regions of fully developed source leaves and thus a separation of vascular and non-vascular tissue. A cDNA library was constructed from poly(A)+ RNA isolated from vascular bundles and used for the subsequent cloning of cDNAs. The respective mRNA is specifically expressed in the vascular bundles as shown on Northern blots of total RNA from vascular and non-vascular tissues. The PmSUC2 protein has 12 putative transmembrane helices and is highly homologous to other plant sucrose transporters. Substrate specificity and energy dependence of the transporter encoded by this cDNA were determined by expression in baker's yeast Saccharomyces cerevisiae. The PmSUC2 protein catalyses the transport of sucrose into transgenic yeast cells. Invertase null mutants of yeast expressing PmSUC2 accumulate sucrose more than 200-fold. This transport was sensitive to uncouplers or SH-group inhibitors. Plasma membranes from yeast cells expressing the PmSUC2 protein were purified and fused to proteoliposomes containing cytochrome-c-oxidase. In this system sucrose is accumulated only when proton motive force is generated, indicating that PmSUC2 is a sucrose-H+ symporter. The apparent molecular weight of the PmSUC2 protein is 35 kDa on 10% SDS-polyacrylamide gels. The presented data strongly support the theory of phloem loading from the apoplastic space by a sucrose-H+ symporter.  相似文献   

3.
Bovine heart cytochrome-c oxidase was reconstituted in liposomes and modified with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). EEDQ reacted mainly with subunits II and III and to a lower extent with subunit I, as shown by difference labeling with [14C]dicyclohexylcarbodiimide. EEDQ treatment of cytochrome-c oxidase vesicles influenced ferrocytochrome c-induced proton pumping by reducing maximally the H+/e- stoichiometry from 0.84 (control) to 0.24, but had only small effects on respiration, respiratory control ratio, and proton conductivity of the proteoliposomes. By titrating the reaction rate of the control and the modified cytochrome-c oxidase vesicles versus the membrane potential, as measured with a Ph3MeP+ electrode, saturation curves are obtained, which in both cases approach 225 mV. The ratios of electron transport rates of the two proton pumps at various membrane potentials decrease between 160 and 225 mV from about 2.2 to 1, indicating that the nonlinear flow/force relationship of these proton pumps is at least partly due to "slippage" of proton pumping.  相似文献   

4.
Addition of polyamines or their analogs to newly confluent LLC-PK1 cells resulted in down-regulation of Na+-glucose transport (symport) activity. Polyamines prevented the induction of this symporter by the differentiation inducer hexamethylene bisacetamide (HMBA) but did not influence induction by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Partial depletion of endogenous polyamines after addition of α -difluoromethylornithine (DFMO) resulted in a 4 to 5-fold increase in symporter expression. Symporter induction by either HMBA or DFMO was inhibited by the protein kinase inhibitor H-7 but H-7 did not affect symporter induction by IBMX. Changes in symporter activity were accompanied by changes in levels of the 75 kD symporter subunit detected by Western blot. Cultures exposed to HMBA exhibited reduced levels of ornithine decarboxylase activity. Our results suggest that induction of symporter expression by HMBA may be mediated in part by its effects on polymine metabolism, and point to parallel roles of polyamines and cyclic AMP in regulating the expression of this physiologically important renal transport system. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The mechanism of hexose transport into plasma membrane vesicles isolated from mature sugarbeet leaves (Beta vulgaris L.) was investigated. The initial rate of glucose uptake into the vesicles was stimulated approximately fivefold by imposing a transmembrane pH gradient (ΔpH), alkaline inside, and approximately fourfold by a negative membrane potential (ΔΨ), generated as a K+-diffusion potential, negative inside. The -fold stimulation was directly related to the relative ΔpH or ΔΨ gradient imposed, which were determined by the uptake of acetate or tetraphenylphosphonium, respectively. ΔΨ- and ΔpH-dependent glucose uptake showed saturation kinetics with a Km of 286 micromolar for glucose. Other hexose molecules (e.g. 2-deoxy-d-glucose, 3-O-methyl-d-glucose, and d-mannose) were also accumulated into plasma membrane vesicles in a ΔpH-dependent manner. Inhibition constants of a number of compounds for glucose uptake were determined. Effective inhibitors of glucose uptake included: 3-O-methyl-d-glucose, 5-thio-d-glucose, d-fructose, d-galactose, and d-mannose, but not 1-O-methyl-d-glucose, d- and l-xylose, l-glucose, d-ribose, and l-sorbose. Under all conditions of proton motive force magnitude and glucose and sucrose concentration tested, there was no effect of sucrose on glucose uptake. Thus, hexose transport on the sugarbeet leaf plasma membrane was by a H+-hexose symporter, and the carrier and possibly the energy source were not shared by the plasma membrane H+-sucrose symporter.  相似文献   

6.
The mutant R33 of the obligatory aerobic yeastRhodotorula glutinis exhibited a defect ind-glucose uptake. Detailed kinetic studies ofd-glucose andd-fructose transport in wild-type and mutant strains provided evidence for the existence in the plasma membrane of a carrier specific for fructose. The transport ofd-fructose in the mutant exhibited saturation kinetics up to 1 mmol/Ld-fructose; at higher concentrations the rate ofd-fructose uptake decreased. In the wild-type strain biphasicd-fructose uptake kinetics were observed; the low-affinity component was not found in the mutant, but the high-affinity transport system persisted. During the exponential phase of growth (ond-glucose) the high-affinityd-fructose system was repressed in the wild-type strain. Mutual competition betweend-fructose andd-glucose as well as the pH dependence of transport of the two hexoses further supported the following conclusion: In the wild-type strain,d-fructose is taken up both by the specific fructose carrier (K T=0.22 mmol/L) and the glucose carrier (K T=9.13 mmol/L). The former does not translocated-glucose, the latter is damaged by the mutation. Finally H+ co-transport and plasma membrane depolarization induced by the onset ofd-fructose transport indicated that the fructose carrier is an H+ symporter.  相似文献   

7.
In Saccharomyces cerevisiae Jen1p is a lactate/proton symporter belonging to the lactate/pyruvate:H+ symporter subfamily (TC#2.A.1.12.2) of the Major Facilitator Superfamily. We investigated structure-function relationships of Jen1p using a rational mutational analysis based on the identification of conserved amino acid residues. In particular, we studied the conserved sequence 379NXX[S/T]HX[S/T]QDXXXT391. Substitution of amino acid residues N379, H383 or D387, even with very similar amino acids, resulted in a dramatic reduction of lactate and pyruvate uptake, but conserved measurable acetate transport. Acetate transport inhibition assays showed that these mutants conserve the ability to bind, but do not transport, lactate and pyruvate. More interestingly, the double mutation H383D/D387H, while behaving as a total loss-of-function allele for lactate and pyruvate uptake, can fully restore the kinetic parameters of Jen1p for acetate transport. Thus, residues N379, H383 or D387 affect both the transport capacity and the specificity of Jen1p. Substitutions of Q386 and T391 resulted in no or moderate changes in Jen1p transport capacities for lactate, pyruvate and acetate. On the other hand, Q386N reduces the binding affinities for all Jen1p substrates, while Q386A increases the affinity specifically for pyruvate. We also tested Jen1p specificity for a range of monocarboxylates. Several of the mutants studied showed altered inhibition constants for these acids. These results and 3D in silico modelling by homology threading suggest that the conserved motif analyzed is part of the substrate translocation pathway in the lactate/pyruvate:H+ symporter subfamily.  相似文献   

8.
The mechanism of iron transport in Francisella is still a puzzle since none of the sequenced Francisella strains appears to encode a TonB protein, the energy transducer of the proton motive force necessary to act on the bacterial outer membrane siderophore receptor to allow the internalization of iron. In this work we demonstrate using kinetic experiments of radioactive Fe3+ utilization, that iron uptake in Francisella novicida, although with no recognizable TonB protein, is indeed dependent on energy generated by the proton motive force. Moreover, mutants of a predicted outer membrane receptor still transport iron and are sensitive to the iron dependent antimicrobial compound streptonigrin. Our studies suggest that alternative pathways to internalize iron might exist in Francisella.  相似文献   

9.
Brush border membrane vesicles (BBMV) enriched in sucrase, maltase and alkaline phosphatase, and impoverished in Na+-K+-ATPase, were isolated from proximal and distal intestine of the gilthead sea bream (Sparus aurata) by a MgCl2 precipitation method. Vesicles were suitable for the study of the characteristics of D-glucose apical transport. Only one D-glucose carrier was found in vesicles from each intestinal segment. In both cases, the D-glucose transport system was sodium-dependent, phlorizin-sensitive, significantly inhibited by D-glucose, D-galactose, α-methyl-D-glucose, 3-O-methyl-D-glucose and 2-deoxy-D-glucose, and showed stereospecificity. Apparent affinity constants of D-glucose transport (Kt) were 0.24 ± 0.03 mM in proximal and 0.18 ± 0.03 mM in distal intestine. Maximal rate of influx (Jmax) was 47.3 ± 2.2 pmols. mg−1 protein for proximal and 27.3 ± 3.6 pmols. mg−1 protein for distal intestine. Specific phlorizin binding and relative abundance of an anti-SGLT1 reactive protein were significantly higher in proximal than in distal BBMV. These results suggest the presence of the same D-glucose transporter along the intestine, with a higher density in the proximal portion. This transporter is compatible with the sodium-dependent D-glucose carrier described for other fish and with the SGLT1 of higher vertebrates.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

10.
A method has been developed to monitor changes of the membrane potential across vesicle membranes in real time. Using the potential-sensitive fluorescent dye indocyanine and on the basis of a water/lipid redistribution model, a calculation procedure has been introduced to estimate the membrane potential in vesicles with incorporated cytochrome-c oxidase. Physical parameters, such as vesicle size distribution and density of the lipid bilayer were estimated and used as calculation parameters. By extrapolation of the transient potential change to zero time, the initial rate of the potential change (dU/dt) could be calculated. It is also shown, that the initial potential change (dU/dt) may be used to study the proton/electron stoichiometry of cytochrome-c oxidase incorporated in the vesicles. Received: 28 September 1995/Revised: 6 February 1996  相似文献   

11.
A hydrogen peroxide permselective membrane with asymmetric structure was prepared and -glucose oxidase (EC 1.1.3.4) was immobilized onto the porous layer. The activity of the immobilized -glucose oxidase membrane was 0.34 units cm−2 and the activity yield was 6.8% of that of the native enzyme. Optimum pH, optimum temperature, pH stability and temperature stability were found to be pH 5.0, 30–40°C, pH 4.0–7.0 and below 55°C, respectively. The apparent Michaelis constant of the immobilized -glucose oxidase membrane was 1.6 × 10−3 mol l−1 and that of free enzyme was 4.8 × 10−2 mol l−1. An enzyme electrode was constructed by combination of a hydrogen peroxide electrode with the immobilized -glucose oxidase membrane. The enzyme electrode responded linearly to -glucose over the concentration 0–1000 mg dl−1 within 10 s. When the enzyme electrode was applied to the determination of -glucose in human serum, within day precision (CV) was 1.29% for -glucose concentration with a mean value of 106.8 mg dl−1. The correlation coefficient between the enzyme electrode method and the conventional colorimetric method using a free enzyme was 0.984. The immobilized -glucose oxidase membrane was sufficiently stable to perform 1000 assays (2 to 4 weeks operation) for the determination of -glucose in human whole blood. The dried membrane retained 77% of its initial activity after storage at 4°C for 16 months.  相似文献   

12.
Cytochrome-c oxidase from Bacillus stearothermophilus has been purified to homogeneity by detergent extraction followed by DEAE-cellulose, hydroxyapatite- and gel-filtration chromatography. The enzyme is a typical cytochrome-aa3-type oxidase which binds carbon monoxide and is sensitive to classical oxidase inhibitors like cyanide and azide. The purified enzyme is composed of three different subunits (57, 37 and 22 kDa). The subunit with intermediate molecular mass contains a covalently attached heme-c moiety. The enzyme appeared to be extremely thermostable (inactivation temperature = 81 degrees C). Highest turnover rates of the reconstituted enzyme were obtained with Saccharomyces cerevisiae cytochrome c or reduced forms of non-physiological electron donors like N,N,N',N'-tetramethyl-p-phenylenediamine and phenazine methosulphate. The reconstituted enzyme can generate a proton-motive force consisting of a high membrane potential and trans-membrane pH gradient. The high electro-motive force of the enzyme (delta p = -180 to -200 mV) indicates that this enzyme functions as a high-capacity electrogenic proton pump. Liposomes containing the purified thermostable and thermoactive cytochrome-c oxidase were fused with membranes from the fermentative bacterium Clostridium acetobutylicum. In the hybrid system a high proton-motive force can be generated upon oxidation of reduced N,N,N',N'-tetramethyl-p-phenylenediamine by the incorporated oxidase which subsequently can be used to drive secondary transport of amino acids. This demonstrates the applicability of the cytochrome-c oxidase to study solute transport in membranes of fermentative bacteria.  相似文献   

13.
—The conversion of plasma glucose into brain proteins in vivo was measured in rats after various periods of food deprivation. Rates of flow of glucose carbon into both soluble and insoluble brain proteins were calculated from the curve representing the decrease of plasma [14C]-glucose specific activity with time, and from the specific activity of brain protein 180 min after intravenous injection of a tracer dose of d -[14C]-glucose. Compared to the post-absorptive rats, food deprivation for 72 h caused a 30 per cent reduction in the rate of flow of glucose carbon into soluble brain proteins but did not affect the flow into insoluble proteins. Results of experiments in which the soluble brain proteins were separated by isoelectric focusing suggest that prolonged fasting in adult rats causes substantial differences in the conversion of glucose to different proteins.  相似文献   

14.
Exit of thiomethylgalactoside (TMG) from preloaded cells induced the accumulation of proline. Likewise, proline exit stimulated TMG accumulation. Since a proton ionophore (carbonyl-cyanide-m-chlorophenylhydrazone) abolished these effects, a proton-motive force was implicated as the “intermediate” in the coupling reaction. The evidence suggests that the exit of TMG resulted in proton exit, which produced either a membrane potential (inside negative) or a pH gradient (outside acid) or both. This inwardly directed protonmotive force provided the energy for proline entry and accumulation. Thus the energy coupling was not via a common transport protein but by proton movements which coupled the two separate H+-dependent transport processes.  相似文献   

15.
The cbb3 cytochrome c oxidases are distant members of the superfamily of heme copper oxidases. These terminal oxidases couple O2 reduction with proton transport across the plasma membrane and, as a part of the respiratory chain, contribute to the generation of an electrochemical proton gradient. Compared with other structurally characterized members of the heme copper oxidases, the recently determined cbb3 oxidase structure at 3.2 Å resolution revealed significant differences in the electron supply system, the proton conducting pathways and the coupling of O2 reduction to proton translocation. In this paper, we present a detailed report on the key steps for structure determination. Improvement of the protein quality was achieved by optimization of the number of lipids attached to the protein as well as the separation of two cbb3 oxidase isoenzymes. The exchange of n‐dodecyl‐β‐d ‐maltoside for a precisely defined mixture of two α‐maltosides and decanoylsucrose as well as the choice of the crystallization method had a most profound impact on crystal quality. This report highlights problems frequently encountered in membrane protein crystallization and offers meaningful approaches to improve crystal quality.  相似文献   

16.
Summary Brush-border membrane vesicles were isolated from the intestine and kidney of the winter flounder,Pseudopleuronectes americanus, and the transport ofd-glucose,l-alanine and sodium was examined by a rapid filtration technique.d-glucose,l-alanine, and sodium entered the same osmotically reactive space suggesting that uptake into vesicles represents transport across rather than binding to the membrane. d-glucose andl-alanine uptake by intestinal and renal brush-border membrane vesicles was stimulated by sodium as compared to potassium or choline. In the presence of a sodium chloride gradient, overshooting uptake was observed indicating a transient intravesicular accumulation ofd-glucose andl-alanine. The sodium-dependentd-glucose uptake was inhibited by phlorizin andd-galactose while the transport ofl-alanine was inhibited byl-phenylalanine. The sodium-dependent transport ofd-glucose andl-alanine was affected by the electrical potential difference across the vesicle membrane; the addition of valinomycin in the presence of an inwardly directed potassium chloride gradient inhibited sodium-dependent solute uptake, whereas replacing chloride or gluconate with more permeant anions, such as SCN, stimulated uptake. Similar results were obtained with intestinal and renal membranes; they document the presence of sodium/d-glucose and sodium/l-alanine cotransport systems in the brush-border membrane of intestine and kidney.Sodium uptake into brush border membrane vesicles from the flounder intestine and kidney was saturable (tracer replacement) and trans-stimulated (tracer coupling), indicating transport via facilitated diffusion systems. Additionally, sodium uptake was only slightly affected by superimposing diffusion potentials demonstrating that the majority of sodium transport was by electroneutral coupled processes. In both the intestinal and kidney brush-border membrane vesicles sodium uptake was inhibited by an inwardly directed proton gradient suggesting the presence of a sodium/proton exchange mechanism. In intestinal, but not in renal membrane preparations, sodium uptake was stimulated by chloride. Chloride stimulation was abolished after preincubation with furosemide indicating the presence of an additional coupled sodium-chloride transport in the intestinal brush-border membranes.The experiments were carried out at the Mount Desert Island Biological Laboratory, Salsbury Cove, Maine 04672, USAAddress effective February 1, 1980: Albert Einstein College of Medicine, Department of Physiology, 1300 Morris Park Avenue, Bronx, New York 10461, USA  相似文献   

17.
Glucose was required for the transport of arabinose into Bifidobacterium breve. The non-metabolisable glucose analogue 2-deoxy-d-glucose (2-DG) did not facilitate assimilation of arabinose. Studies using d-[U-14C]-labelled arabinose showed that it was fermented to pyruvate, formate, lactate and acetate, whereas the principal metabolic products of d-[U-14C]-labelled glucose were acetate and formate. In contrast to glucose, arabinose was not incorporated into cellular macromolecules. A variety of metabolic inhibitors and inhibitors of sugar transport (proton ionophores, metal ionophores, compounds associated with electron transport) were used to investigate the mechanisms of sugar uptake. Only NaF, an inhibitor of substrate level phosphorylation, and 2-DG inhibited glucose assimilation. 2-DG had no effect on arabinose uptake, but NaF was stimulatory. High levels of phosphorylation of glucose and 2-DG by PEP and to a lesser degree, ATP were seen in phosphoenolpyruvate: phosphotransferase (PEP:PTS) assays. These data together with strong inhibition of glucose uptake by NaF suggest a role for phosphorylation in the transport process. Arabinose uptake in B. breve was not directly dependent on phosphorylation or any other energy-linked form of transport but may be assimilated by glucose-dependent facilitated diffusion.Abbreviations (2,4-DNP) 2,4-dinitrophenol - (2,4-DNP) carbonylcyanide m-chlorophenylhydrazone - (CCCP) (phosphoenolpyruvate phosphotransferase system) - PEP: PTS trichloroacetic acid - (TCA) 2-deoxy-d-glucose - (2-DG) 2-deoxy-d-glucose  相似文献   

18.
Nitrate and nitrite transport across biological membranes is often facilitated by protein transporters that are members of the major facilitator superfamily. Paracoccus denitrificans contains an unusual arrangement whereby two of these transporters, NarK1 and NarK2, are fused into a single protein, NarK, which delivers nitrate to the respiratory nitrate reductase and transfers the product, nitrite, to the periplasm. Our complementation studies, using a mutant lacking the nitrate/proton symporter NasA from the assimilatory nitrate reductase pathway, support that NarK1 functions as a nitrate/proton symporter while NarK2 is a nitrate/nitrite antiporter. Through the same experimental system, we find that Escherichia coli NarK and NarU can complement deletions in both narK and nasA in P. denitrificans, suggesting that, while these proteins are most likely nitrate/nitrite antiporters, they can also act in the net uptake of nitrate. Finally, we argue that primary sequence analysis and structural modelling do not readily explain why NasA, NarK1 and NarK2, as well as other transporters from this protein family, have such different functions, ranging from net nitrate uptake to nitrate/nitrite exchange.  相似文献   

19.
Fresh-water plants generate extraordinarily high electric potential differences at the plasma membrane. For a deeper understanding of the underlying transport processes a mathematical model of the electrogenic plasmalemma ion transport was developed based on experimental data mainly obtained from Egeria densa. The model uses a general nonlinear network approach and assumes coupling of the transporters via membrane potential. A proton pump, an outward-rectifying K+ channel, an inward-rectifying K+ channel, a Cl channel and a (2H-Cl)+ symporter are considered to be elements of the system. The model takes into consideration the effects of light, external pH and ionic content of the bath medium on ion transport. As a result it does not only satisfactorily describe the membrane potential as a function of these external physiological factors but also succeeds in simulating the effects of specific inhibitors as well as I-V-curves obtained with the patch-clamp technique in the whole cell mode. The quality of the model was checked by stability and sensitivity analyses. Received: 18 March 1996/Revised: 17 July 1996  相似文献   

20.
Summary Investigations in numerous laboratories have characterized a salt transport system, present in many animal cell types, which catalyzes the transmembrane transport of NaCl and KCI in a tightly coupled process. The system is inhibited by loop diuretics such as furosemide and bumetanide. This transport system has been designated the loop diuretic-sensitive NaCl/KCl symporter. It has been implicated in transepithelial salt secretion and absorption as well as in cell volume regulation, and it may be defective in patients suffering from essential hypertension. This review serves to evaluate research conducted to date regarding the mechanism, mode of regulation, and physiological significance of the transport system.Ion binding specificities and absolute binding constants for all three naturally occurring ions have been determined in one cell system, the MDCK kidney epithelial cell line. In that same cell line, substrate binding was shown to exhibit apparent positive cooperativity. Although a few reports suggest unidirectional transport of ions via this system under certain conditions, the consensus of reports indicates fully reversible, bidirectional salt transport with the direction of net flux determined by the magnitudes of the gradients of the three transported ions. Growth of cells in media containing a low concentration of K+ (<0.25 mM) allows selection of mutants lacking or defective in the symporter.Kinetic analyses with the MDCK cell line have shown that the symporter catalyzes accelerative exchange transport. However, exchange transport of one ion in the absence of one of the other two ionic substrates has not been documented. Comparison with other well-characterized transmembrane transport systems has shown that the characteristics of the NaCl/KCl symporter most resemble those of two-species facilitators (chemiosmotically-coupled symporters) found in prokaryotes and eukaryotes alike. These two-species facilitators consist of a single transmembrane protein and may function by a carrier-type mechanism as originally proposed by Peter Mitchell. A molecular model for the NaCl/KCl symporter is presented and discussed.Activation of symport activity requires ATP and probably occurs by a protein kinase-catalyzed mechanism. In some cell types activation is cyclic AMP dependent. ATP hydrolysis is not stoichiometric with transport. Phosphorylation of an integral membrane protein with an apparent size of 240 000 daltons correlates with activation of transport. It is postulated that this protein is the loop diuretic-sensitive NaCl/KCl symporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号