首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface dynamics of bacteriorhodopsin was examined by measurements of site-specific 13C–1H dipolar couplings in [3-13C]Ala-labeled bacteriorhodopsin. Motions of slow or intermediate frequency (correlation time <50 µs) scale down 13C–1H dipolar couplings according to the motional amplitude. The two-dimensional dipolar and chemical shift (DIPSHIFT) correlation technique was utilized to obtain the dipolar coupling strength for each resolved peak in the 13C MAS solid-state NMR spectrum, providing the molecular order parameter of the respective site. In addition to the rotation of the Ala methyl group, which scales the dipolar coupling to 1/3 of the rigid limit value, fluctuations of the C–C vector result in additional motional averaging. Typical order parameters measured for mobile sites in bacteriorhodopsin are between 0.25 and 0.29. These can be assigned to Ala103 of the C–D loop and Ala235 at the C-terminal -helix protruded from the membrane surface, and Ala196 of the F–G loop, as well as to Ala228 and Ala233 of the C-terminal -helix and Ala51 from the transmembrane -helix. Such order parameters departing significantly from the value of 0.33 for rotating methyl groups are obviously direct evidence for the presence of fluctuation motions of the Ala C–C vectors of intact preparations of fully hydrated, wild-type bacteriorhodopsin at ambient temperature. The order parameter for Ala160 from the expectantly more flexible E–F loop, however, is unavailable under highest-field NMR conditions, probably because increased chemical shift anisotropy together with intrinsic fluctuation motions result in an unresolved 13C NMR signal.  相似文献   

2.
Yeast iso-1 cytochrome c is a naturally occurring protein that possesses an unusually reactive Cysl02 that imbues iso-1 with a complicated solution chemistry which includes spontaneous dimerization and poorly characterized redox reactions. For this reason previous studies of this typical member of the c-type cytochromes have been relegated to variant proteins in which the 102 position has been mutated, with most common changes involving serine and threonine. However, we have determined sequential 1H resonance assignments for the wild-type native protein because it is the actual participant in yeast mitochondrial electron transfer processes and because the wild-type native protein should be the fundamental assignment basis. In addition to 1H resonance assignments for 97 of 106 amino acids, we have also provided an extensive database of long-range NOEs. Comparison of these NOEs and a chemical shift index based upon -H resonances has lead to identification of solution secondary structural elements that are consistent with the solid-state crystal structure. Although there is currently no efficient expression system that would facilitate isotope labeling of iso-1 cytochrome c, we tried to assess the usefulness of future heteronuclear experiments by using natural-abundance 1H/13C HMQC experiments to unambiguously assign 35 -C resonances.  相似文献   

3.
Artifacts associated with the measurement of methyl 1H single quantum CPMG-based relaxation dispersion profiles are described. These artifacts arise due to the combination of cross-correlated spin relaxation effects involving intra-methyl 1H–1H dipolar interactions and imperfections in 1H refocusing pulses that are applied during CPMG intervals that quantify the effects of chemical exchange on measured transverse relaxation rates. As a result substantial errors in extracted exchange parameters can be obtained. A simple work-around is presented where the 1H chemical shift difference between the exchanging states is extracted from a combination of 13C single quantum and 13C–1H multiple quantum dispersion profiles. The approach is demonstrated with an application to a folding/unfolding reaction involving a G48M mutant Fyn SH3 domain.  相似文献   

4.
The effect of time and spatial averaging on 15N chemical shift/1H-15N dipolar correlation spectra, i.e., PISEMA spectra, of -helical membrane peptides and proteins is investigated. Three types of motion are considered: (a) Librational motion of the peptide planes in the -helix; (b) rotation of the helix about its long axis; and (c) wobble of the helix about a nominal tilt angle. A 2ns molecular dynamics simulation of helix D of bacteriorhodopsin is used to determine the effect of librational motion on the spectral parameters. For the time averaging, the rotation and wobble of this same helix are modelled by assuming either Gaussian motion about the respective angles or a uniform distribution of a given width. For the spatial averaging, regions of possible 15N chemical shift/1H-15N dipolar splittings are computed for a distribution of rotations and/or tilt angles of the helix. The computed spectra show that under certain motional modes the 15N chemical shift/1H-15N dipolar pairs for each of the residues do not form patterns which mimic helical wheel patterns. As a result, the unambiguous identification of helix tilt and helix rotation without any resonance assignments or on the basis of a single assignment may be difficult.  相似文献   

5.
A TROSY-based triple-resonance pulse scheme is described which correlates backbone 1H and 15N chemical shifts of an amino acid residue with the 15N chemical shifts of both the sequentially preceding and following residues. The sequence employs 1 J NC and 2 J NC couplings in two sequential magnetization transfer steps in an `out-and-back' manner. As a result, N,N connectivities are obtained irrespective of whether the neighbouring amide nitrogens are protonated or not, which makes the experiment suitable for the assignment of proline resonances. Two different three-dimensional variants of the pulse sequence are presented which differ in sensitivity and resolution to be achieved in one of the nitrogen dimensions. The new method is demonstrated with two uniformly 2H/13C/15N-labelled proteins in the 30-kDa range.  相似文献   

6.
Analysis of 2D [13C,1H]-HSQC spectra of biosynthetic fractionally 13C labeled proteins is a reliable, straightforward means to obtain stereospecific assignments of Val and Leu methyl sites in proteins. Herein we show that the same fractionally labeled protein sample facilitates observation and identification of Phe and Tyr aromatic signals. This is the case, in part, because the fractional 13C labeling yields aromatic rings in which some of the 13C-13C J-couplings, present in uniformly labeled samples, are absent. Also, the number of homonuclear J-coupling partners differs for the -, - and -carbons. This enabled us to vary their signal intensities in distinctly different ways by appropriately setting the 13C constant-time period in 2D [13C,1H]-HSQC spectra. We illustrate the application of this approach to an 18 kDa protein, c-VIAF, a modulator of apoptosis. In addition, we show that cancellation of the aromatic 13C CSA and 13C-1H dipolar interactions can be fruitfully utilized in the case of the fractionally labeled sample to obtain high resolution 13C constant-time spectra with good sensitivity.  相似文献   

7.
An intensity-based constant-time COSY (CT-COSY) method is described for measuring 1H-1H residual dipolar couplings of proteins in weakly aligned media. For small proteins, the overall sensitivity of this experiment is comparable to the NOESY experiment. In cases where the 1H-1H distances are defined by secondary structure, such as 1H-1HN and 1HN-1HN sequential distances in -helices and -sheets, these measurements provide useful orientational constraints for protein structure determination. This experiment can also be used to provide distance information similar to that obtained from NOE connectivities once the angular dependence is removed. Because the measurements are direct and non-coherent processes, such as spin diffusion, do not enter, the measurements can be more reliable. The 1/r 3 distance dependence of directly observed dipolar couplings, as compared with the 1/r 6 distance dependence of NOEs, also can provide longer range distance information at favorable angles. A simple 3D, 15N resolved version of the pulse sequence extends the method to provide the improved resolution required for application to larger biomolecules.  相似文献   

8.
Summary Biosynthetically directed fractional incorporation of13C into proteins results in nonrandom13C-labeling patterns that can be investigated by analysis of the13C–13C scalar coupling fine structures in heteronuclear13C–1H or homonuclear13C–13C correlation experiments. Previously this approach was used for obtaining stereospecific1H and13C assignments of the diastereotopic methyl groups of valine and leucine. In the present paper we investigate to what extent the labeling patterns are characteristic for other individual amino acids or groups of amino acids, and can thus be used to support the1H spin-system identifications. Studies of the hydrolysates of fractionally13C-labeled proteins showed that the 59 aliphatic carbon positions in the 20 proteinogenic amino acids exhibit 16 different types of13C–13C coupling fine structures. These provide support for the assignment of the resonances of all methyl groups in a protein, which are otherwise often poorly resolved in homonuclear1H NMR spectra. In particular, besides the individual methyl assignments in Val and Leu, unambiguous distinctions are obtained between the methyl groups of Ala and Thr, and between the - and -methyl groups of Ile. In addition to the methyl resonances, the CH2 groups of Glu and Gln can be uniquely assigned because of the large coupling constant with the -carbon, and the identification of most of the other spin systems can be supported on the basis of coupling patterns that are common to small groups of amino acid residues.Abbreviations NOE nuclear Overhauser effect - fractional13C labeling biosynthetically directed fractional13C-labeling - TOCSY total correlation spectroscopy - ROESY rotating frame Overhauser enhancement spectroscopy - [13C,1H]-COSY two-dimensional13C–1H correlation spectroscopy - isotopomer isotope isomer - P22 c2 repressor c2 repressor of the salmonella phage P22 consisting of a polypeptide chain with 216 residues - P22 c2(1-76) N-terminal domain of the P22 c2 repressor with residues 1–76  相似文献   

9.
Summary Three-dimensional 1H-TOCSY-relayed ct-[13C,1H]-HMQC is a novel experiment for aromatic spin system identification in uniformly 13C-labeled proteins, which is implemented so that it correlates the chemical shift of a given aromatic proton with those of the directly attached carbon and all vicinal protons. The ct-HMQC scheme is used both for overlay of the indirect 1H and 13C chemical shift evolution periods and for the generation of 1H-1H antiphase magnetization to accelerate the 1H-TOCSY magnetization transfer at short mixing times. As an illustration, data recorded for the 18 kDa protein cyclophilin A are presented. Since transverse relaxation of 13C-1H zero-quantum and double-quantum coherences is to first order insensitive to 13C-1H heteronuclear dipolar relaxation, the new experiment should work also for proteins with molecular weights above 20 kDa.  相似文献   

10.
The chemical shift difference ([13C] – [13C]) is a reference-independent indicator of the Xaa-Pro peptide bond conformation. Based on a statistical analysis of the 13C chemical shifts of 1033 prolines from 304 proteins deposited in the BioMagRes database, a software tool was created to predict the probabilities for cis or trans conformations of Xaa-Pro peptide bonds. Using this approach, the conformation at a given Xaa-Pro bond can be identified in a simple NOE-independent way immediately after obtaining its NMR resonance assignments. This will allow subsequent structure calculations to be initiated using the correct polypeptide chain conformation.  相似文献   

11.
Recently, several TROSY-based experiments have been designed for backbone chemical shift assignment and measurement of the NOEs of 2H, 13C and 15N labeled proteins. Here, we present TROSY-enhanced NOESY experiments, namely the 2D S3E-NOESY-S3E, 3D TROSY-NOESY-S3E and S3E-NOESY-TROSY experiments. These experiments use the spin-state selective excitation method (S3E), and have the TROSY effect in all the indirectly and directly detected dimensions, and so provide optimal resolution for amide protons. The first two experiments provide an additional useful feature in that the diagonal peaks of the amide proton region are cancelled or greatly reduced, allowing clear identification of NOE cross peaks that are close to diagonal peaks.  相似文献   

12.
The comprehensive structure determination of isotopically labeled proteins by solid-state NMR requires sequence-specific assignment of 13C and 15 N spectra. We describe several 2D and 3D MAS correlation techniques for resonance assignment and apply them, at 7.0 Tesla, to 13C and 15N labeled ubiquitin to examine the extent of resonance assignments in the solid state. Both interresidue and intraresidue assignments of the 13C and 15N resonances are addressed. The interresidue assignment was carried out by an N(CO)CA technique, which yields Ni-Ci–1 connectivities in protein backbones via two steps of dipolar-mediated coherence transfer. The intraresidue connectivities were obtained from a new 3D NCACB technique, which utilizes the well resolved C chemical shift to distinguish the different amino acids. Additional amino acid type assignment was provided by a 13C spin diffusion experiment, which exhibits 13C spin pairs as off-diagonal intensities in the 2D spectrum. To better resolve carbons with similar chemical shifts, we also performed a dipolar-mediated INADEQUATE experiment. By cross-referencing these spectra and exploiting the selective and extensive 13 C labeling approach, we assigned 25% of the amino acids in ubiquitin sequence-specifically and 47% of the residues to the amino acid types. The sensitivity and resolution of these experiments are evaluated, especially in the context of the selective and extensive 13C labeling approach.  相似文献   

13.
This study explored the utility of1H and13C magnetic resonance spectroscopy to study a standard synaptosomally enriched fraction (P2 pellet) made from rat cerebrum. The preparations contained high concentrations of N-acetylaspartate and -aminobutyric acid and low concentrations of glutamine, indicating that they were in fact rich in neuronal cytosol. The metabolic competence of the preparation was assessed by quantitative measurements of its ability to convert [1-13C]glucose into lactate, glutamate, aspartate, and other metabolites under well oxygenated conditions in 30 minutes. The minimum mean glycolytic rate was 0.8 mM glucose/min and the flow through the tricarboxylic acid cycle was equivalent to 0.2 mM glucose/min.Abbreviations ppm parts per million (chemical shift scale) - NMR nuclear magnetic resonance - GABA -aminobutyric acid - PBS phosphate-buffered normal saline solution - TSP 3-trimethylsilylpropionate During the performance of these studies Dr. A.P. Burlina was on leave from Instituto di Clinica delle Malattie Nervose e Mentali, University of Padua, Padua, Italy.  相似文献   

14.
Summary A new triple-resonance 3D HNCOCA pulse scheme is presented, designed to identify the backbone nuclei (HN, N, CO, C) of doubly labelled proteins. The two carbon frequencies are labelled along the same indirect dimension and the corresponding dwell times can be independently scaled in order to account for the relaxation properties and chemical shift ranges of the CO and C. If one takes advantage of the symmetry properties of the spectra in the course of the peak picking, this 3D scheme has the same sensitivity as the 4D experiment, but with an improved resolution. The sequence is illustrated on a 0.5 mM sample of Rhodobacter capsulatus cytochrome c a homodimeric paramagnetic protein of 2×14 kDa. A resonance assignment strategy, based on a low-concentration 13C/15N-labelled sample and a more concentrated 15N-labelled sample, is proposed for proteins where the expression system shows a limited efficiency.  相似文献   

15.
Summary We have tritium labeled two nucleic acid molecules, an 8 kDa DNA oligomer and a 20 kDa hammerhead RNA for tritium NMR investigations. The DNA sequence studied has been previously used in homonuclear studies of DNA-bound water molecules and tritium NMR was expected to facilitate these investigations by eliminating the need to suppress the water resonance in tritium-detected 3H-1H NOESY experiments. We observed the anticipated through-space interactions found in B-form DNA in the NOESY experiments and an unexpected antiphase cross-peak at the water frequency. T1 measurements on the tritiated DNA molecule indicated that relaxation rates were also accelerated for tritium and protons. Tritium NMR spectra of the hammerhead RNA molecule indicated conformational dynamics in the conserved region of the molecule in the absence of Mg2+ and spermine, two components necessary for cleavage. The dynamics were also investigated by 15N-correlated 1H spectroscopy and persisted after the addition of Mg2+ and spermine.  相似文献   

16.
Virtually complete sequence specific 1H and 15N resonance assignments are presented for acid denatured reduced E. coli glutaredoxin 3. The sequential resonance assignments of the backbone rely on the combined use of 3D F1-decoupled ROESY-15N-HSQC and 3D 15N-HSQC-(TOCSY-NOESY)-15N-HSQC using a single uniformly 15N labelled protein sample. The sidechain resonances were assigned from a 3D TOCSY-15N-HSQC and a homonouclear TOCSY spectrum. The presented assignment strategy works in the absence of chemical exchange peaks with signals from the native conformation and without 13C/15N double labelling. Chemical shifts, 3J(H, NH) coupling constants and NOEs indicate extensive conformational averaging of both backbone and side chains in agreement with a random coil conformation. The only secondary structure element persisting at pH 3.5 appears to be a short helical segment comprising residues 37 to 40.Abbreviations HSQC heteronuclear single quantum coherence - NMR nuclear magnetic resonance - NOE nuclear Overhauser effect - NOESY two-dimensional NOE spectroscopy - ROE nuclear Overhauser effect in the rotating frame - ROESY two-dimensional ROE spectroscopy - TOCSY total correlation spectroscopy - TPPI time proportional phase incrementation Correspondence to: G. Otting  相似文献   

17.
Summary A simple technique for identifying protein secondary structures through the analysis of backbone 13C chemical shifts is described. It is based on the Chemical-Shift Index [Wishart et al. (1992) Biochemistry, 31, 1647–1651] which was originally developed for the analysis of 1H chemical shifts. By extending the Chemical-Shift Index to include 13C, 13C and carbonyl 13C chemical shifts, it is now possible to use four independent chemical-shift measurements to identify and locate protein secondary structures. It is shown that by combining both 1H and 13C chemical-shift indices to produce a consensus estimate of secondary structure, it is possible to achieve a predictive accuracy in excess of 92%. This suggests that the secondary structure of peptides and proteins can be accurately obtained from 1H and 13C chemical shifts, without recourse to NOE measurements.Supplementary material is available in the form of a 10-page table (Table S1) describing the exact location of secondary structures in all 20 proteins as determined using the methods described in this paper. Requests for Table S1 should be directed to the authors.  相似文献   

18.
Summary A method for measuring three-bond 13C-1H scalar coupling constants across glycosidic bonds in a cyclic (12)-glucan icosamer is presented. This oligosaccharide molecule, with its high degree of symmetry, represents a particular challenge for NMR spectroscopy to distinguish inter-residue from intra-residue heteronuclear coupling effects. Chemically equivalent H2 protons in adjacent glucosyl residues are distinguished on the basis of their different through-space, dipolar interactions with the anomeric protons (H1). The strong NOE contact between anomeric (H1) and aglyconic (H2) protons permits the selective observation of the inter-residue heteronuclear couplings 3JC1H2 and 3JC2H1 in a natural-abundance 13C-1-half-filtered {1H,1H} ROESY experiment.Abbreviations COSY scalar correlated spectroscopy - NOE nuclear Overhauser effect - NOESY NOE spectroscopy - ROESY rotating-frame NOE spectroscopy  相似文献   

19.
Sequence-specific assignments have been obtained for side chain methyl resonances of Val, Leu and Ile in the outer membrane protein X (OmpX) from Escherichia colireconstituted in 60 kDa micelles in aqueous solution. Using previously established techniques, OmpX was uniformly 2H,13C,15N-labeled with selectively protonated Val-1,2, Leu-1,2and Ile-1methyl groups. The thus labeled protein was studied with the novel experiments 3D (H)C(CC)-TOCSY-(CO)-[15N,1H]-TROSY and 3D H(C)(CC)-TOCSY-(CO)-[15N,1H]-TROSY. Compared to the corresponding conventional experimental schemes, the TROSY-type experiments yielded a sensitivity gain of about 2 at 500 MHz. The overall sensitivity of the experiments was further enhanced more than two-fold by the use of a cryoprobe. Complete assignments of the proton and carbon chemical shifts were obtained for all isopropyl methyl groups of Val and Leu, as well as for the 1-methyls of Ile. The present approach is applicable for soluble proteins or micelle-reconstituted membrane proteins in structures with overall molecular weights up to about 100 kDa, and adds to the potentialities of solution NMR for de novostructure determination as well as for functional studies, such as ligand screening with proteins in large structures.  相似文献   

20.
Triple resonance HCN and HCNCH experiments are reliable methods of establishing sugar-to-base connectivity in the NMR spectra of isotopicaly labeled oligonucleotides. However, with larger molecules the sensitivity of the experiments is drastically reduced due to relaxation processes. Since the polarization transfer between 13C and 15N nuclei relies on rather small heteronuclear coupling constants (11–12 Hz), the long evolution periods (up to 30–40 ms) in the pulse sequences cannot be avoided. Therefore any effort to enhance sensitivity has to concentrate on manipulating the spin system in such a way that the spin–spin relaxation rates would be minimized. In the present paper we analyze the efficiency of the two known approaches of relaxation rate control, namely the use of multiple-quantum coherence (MQ) and of the relaxation interference between chemical shift anisotropy and dipolar relaxation – TROSY. Both theoretical calculations and experimental results suggest that for the sugar moiety (H1-C1-N1/9) the MQ approach is clearly preferable. For the base moiety (H6/8-C6/8-N1/9), however, the TROSY shows results superior to the MQ suppression of the dipole–dipole relaxation at moderate magnetic fields (500 MHz) and the sensitivity improvement becomes dramatically more pronounced at very high fields (800 MHz). The pulse schemes of the triple-resonance HCN experiments with sensitivity optimized performance for unambiguous assignments of intra-residual sugar-to-base connectivities combining both approaches are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号