首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract. Objectives: This article is to study the role of G1/S regulators in differentiation of pluripotent embryonic cells. Materials and methods: We established a P19 embryonal carcinoma cell‐based experimental system, which profits from two similar differentiation protocols producing endodermal or neuroectodermal lineages. The levels, mutual interactions, activities, and localization of G1/S regulators were analysed with respect to growth and differentiation parameters of the cells. Results and Conclusions: We demonstrate that proliferation parameters of differentiating cells correlate with the activity and structure of cyclin A/E–CDK2 but not of cyclin D–CDK4/6–p27 complexes. In an exponentially growing P19 cell population, the cyclin D1–CDK4 complex is detected, which is replaced by cyclin D2/3–CDK4/6–p27 complex following density arrest. During endodermal differentiation kinase‐inactive cyclin D2/D3–CDK4–p27 complexes are formed. Neural differentiation specifically induces cyclin D1 at the expense of cyclin D3 and results in predominant formation of cyclin D1/D2–CDK4–p27 complexes. Differentiation is accompanied by cytoplasmic accumulation of cyclin Ds and CDK4/6, which in neural cells are associated with neural outgrowths. Most phenomena found here can be reproduced in mouse embryonic stem cells. In summary, our data demonstrate (i) that individual cyclin D isoforms are utilized in cells lineage specifically, (ii) that fundamental difference in the function of CDK4 and CDK6 exists, and (iii) that cyclin D–CDK4/6 complexes function in the cytoplasm of differentiated cells. Our study unravels another level of complexity in G1/S transition‐regulating machinery in early embryonic cells.  相似文献   

2.
Ruiz EJ  Hunt T  Nebreda AR 《Molecular cell》2008,32(2):210-220
Cell-cycle progression is regulated by cyclin-dependent kinases (CDKs). CDK1 and CDK2 can be also activated by noncyclin proteins named RINGO/Speedy, which were identified as inducers of the G2/M transition in Xenopus oocytes. However, it is unclear how XRINGO triggers M phase entry in oocytes. We show here that XRINGO-activated CDKs can phosphorylate specific residues in the regulatory domain of Myt1, a Wee1 family kinase that plays a key role in the G2 arrest of oocytes. We have identified three Ser that are major phosphoacceptor sites for CDK/XRINGO but are poorly phosphorylated by CDK/cyclin. Phosphorylation of these Ser inhibits Myt1 activity, whereas their mutation makes Myt1 resistant to inhibition by CDK/XRINGO. Our results demonstrate that XRINGO-activated CDKs have different substrate specificity than the CDK/cyclin complexes. We also describe a mechanism of Myt1 regulation based on site-specific phosphorylation, which is likely to mediate the induction of G2/M transition in oocytes by XRINGO.  相似文献   

3.
Terminal cell differentiation involves permanent withdrawal from the cell division cycle. The inhibitors of cyclin-dependent kinases (CDKs) are potential molecules functioning to couple cell cycle arrest and cell differentiation. In murine C2C12 myoblast cells, G1 CDK enzymes (CDK2, CDK4, and CDK6) associate with four CDK inhibitors: p18INK4c, p19INK4d, p21, and p27Kip1. During induced myogenesis, p21 and its associated CDK proteins underwent an initial increase followed by a decrease as cells became terminally differentiated. The level of p27 protein gradually increased, but the amount of total associated CDK proteins remained unchanged. p19 protein decreased gradually during differentiation, as did its associated CDK4 protein. In contrast, p18 protein increased 50-fold, from negligible levels in proliferating myoblasts to clearly detectable levels within 8-12 h of myogenic induction. This initial rise was followed by a precipitous increase between 12 and 24 h postinduction, with p18 protein finally accumulating to its highest level in terminally differentiated cells. Induction of p18 correlated with increased and sequential complex formation--first increasing association with CDK6 and then with CDK4 over the course of myogenic differentiation. All of the CDK6 and half of the CDK4 were complexed with p18 in terminally differentiated C2C12 cells as well as in adult mouse muscle tissue. Finally, kinase activity of CDK2 and CDK4 decreases as C2C12 cells differentiate, whereas the CDK6 kinase activity is low in both proliferating myoblasts and differentiated myotubes. Our results indicate that p18 may play a critical role in causing and/or maintaining permanent cell cycle arrest associated with mature muscle formation.  相似文献   

4.
5.
Staurosporine was found to bring about complete growth inhibition of human glioma cell lines. U87 MG cells were arrested in S phase while U373 MG cells in G2/M phase on staurosporine treatment. Consistent with this observation, no change in G1 phase regulators viz., Cyclin D1, D3 and CDK4 was seen on staurosporine treatment. The levels of CDK2, CDC2, Cyclin A and Cyclin B proteins decreased, while the levels of CDK inhibitors viz., p21 and p27 were found to increase on staurosporine treatment. The mRNA levels of CDK2 and CDC2 genes were also found to decrease on staurosporine treatment. Thus apart from staurosporine’s known direct inhibitory effect on CDK2 and CDC2 activities, staurosporine was found to down-regulate activities of these two kinases by modulating the expression of the kinases themselves as well that of their activating partners (Cyclins) and their inhibitors.  相似文献   

6.
Cyclin D-dependent kinases act as mitogen-responsive, rate-limiting controllers of G1 phase progression in mammalian cells. Two novel members of the mouse INK4 gene family, p19 and p18, that specifically inhibit the kinase activities of CDK4 and CDK6, but do not affect those of cyclin E-CDK2, cyclin A-CDK2, or cyclin B-CDC2, were isolated. Like the previously described human INK4 polypeptides, p16INK4a/MTS1 and p15INK4b/MTS2, mouse p19 and p18 are primarily composed of tandemly repeated ankyrin motifs, each ca. 32 amino acids in length, p19 and p18 bind directly to CDK4 and CDK6, whether untethered or in complexes with D cyclins, and can inhibit the activity of cyclin D-bound cyclin-dependent kinases (CDKs). Although neither protein interacts with D cyclins or displaces them from preassembled cyclin D-CDK complexes in vitro, both form complexes with CDKs at the expense of cyclins in vivo, suggesting that they may also interfere with cyclin-CDK assembly. In proliferating macrophages, p19 mRNA and protein are periodically expressed with a nadir in G1 phase and maximal synthesis during S phase, consistent with the possibility that INK4 proteins limit the activities of CDKs once cells exit G1 phase. However, introduction of a vector encoding p19 into mouse NIH 3T3 cells leads to constitutive p19 synthesis, inhibits cyclin D1-CDK4 activity in vivo, and induces G1 phase arrest.  相似文献   

7.
The mechanism by which cyclin-dependent kinase 4 (CDK4) regulates cell cycle progression is not entirely clear. Cyclin D/CDK4 appears to initiate phosphorylation of retinoblastoma protein (Rb) leading to inactivation of the S-phase-inhibitory action of Rb. However, cyclin D/CDK4 has been postulated to act in a noncatalytic manner to regulate the cyclin E/CDK2-inhibitory activity of p27(Kip1) by sequestration. In this study we investigated the roles of CDK4 in cell cycle regulation by targeted disruption of the mouse CDK4 gene. CDK4(-/-) mice survived embryogenesis and showed growth retardation and reproductive dysfunction associated with hypoplastic seminiferous tubules in the testis and perturbed corpus luteum formation in the ovary. These phenotypes appear to be opposite to those of p27-deficient mice such as gigantism and gonadal hyperplasia. A majority of CDK4(-/-) mice developed diabetes mellitus by 6 weeks, associated with degeneration of pancreatic islets. Fibroblasts from CDK4(-/-) mouse embryos proliferated similarly to wild-type embryonic fibroblasts under conditions that promote continuous growth. However, quiescent CDK4(-/-) fibroblasts exhibited a substantial ( approximately 6-h) delay in S-phase entry after serum stimulation. This cell cycle perturbation by CDK4 disruption was associated with increased binding of p27 to cyclin E/CDK2 and diminished activation of CDK2 accompanied by impaired Rb phosphorylation. Importantly, fibroblasts from CDK4(-/-) p27(-/-) embryos displayed partially restored kinetics of the G(0)-S transition, indicating the significance of the sequestration of p27 by CDK4. These results suggest that at least part of CDK4's participation in the rate-limiting mechanism for the G(0)-S transition consists of controlling p27 activity.  相似文献   

8.
The cyclin-dependent kinase (CDK) inhibitor p27 binds and inhibits the kinase activity of several CDKs. Here we report an analysis of the behavior and partners of p27 in Swiss 3T3 mouse fibroblasts during normal mitotic cell cycle progression, as well as in cells arrested at different stages in the cycle by growth factor deprivation, lovastatin treatment, or ultraviolet (UV) irradiation. We found that the level of p27 is elevated in cells arrested in G0 by growth factor deprivation or contact inhibition. In G0, p27 was predominantly monomeric, although some portion was associated with residual cyclin A.Cdk2. During G1, all of p27 was associated with cyclin D1.Cdk4 and was then redistributed to cyclin A.Cdk2 as cells entered S phase. The loss of the monomeric p27 pool as cyclins accumulate in G1 is consistent with the in vivo and in vitro data showing that p27 binds better to cyclin.CDK complexes than to monomeric CDKs. In growing cells, the majority of p27 was associated with cyclin D1 and the level of p27 was significantly lower than the level of cyclin D1. In cells arrested in G1 with lovastatin, cyclin D1 was degraded and p27 was redistributed to cyclin A.Cdk2. In contrast to p21 (which is a p27-related CDK inhibitor and is induced by UV irradiation), the level of p27 was reduced after UV irradiation, but because cyclin D1 was degraded more rapidly than p27, there was a transient increase in binding of p27 to cyclin A.Cdk2. These data suggest that cyclin D1.Cdk4 acts as a reservoir for p27, and p27 is redistributed from cyclin D1.Cdk4 to cyclin A.Cdk2 complexes during S phase, or when cells are arrested by growth factor deprivation, lovastatin treatment, or UV irradiation. It is likely that a similar principle of redistribution of p27 is used by the cell in other instances of cell cycle arrest.  相似文献   

9.
Lowering the threshold of cellular senescence, the process employed by cells to thwart abnormal cell proliferation, though inhibition of CDK2 or Skp2 (regulator of CDK inhibitors) has been recently suggested as a potential avenue for cancer treatment. In this study, we employ a published mathematical model of G1/S transition involving the DNA-damage signal transduction pathway to conduct carefully constructed computational experiments to highlight the effectiveness of manipulating cellular senescence in inhibiting damaged cell proliferation. We first demonstrate the suitability of the mathematical model to explore senescence by highlighting the overlap between senescence pathways and those involved in G1/S transition and DNA damage signal transduction. We then investigate the effect of CDK2 deficiency on senescence in healthy cells, followed by effectiveness of CDK2 deficiency in triggering senescence in DNA damaged cells. For this, we focus on the behaviour of CycE, whose peak response indicates G1/S transition, for several reduced CDK2 levels in healthy as well as two DNA-damage conditions to calculate the probability (β) or the percentage of CDK2 deficient cells passing G1/S checkpoint ((1 - β) indicates level of senescence). Results show that 50% CDK2 deficiency can cause senescence in all healthy cells in a fairly uniform cell population; whereas, most healthy cells (≈67%) in a heterogeneous population escape senescence. This finding is novel to our study. Under both low- and high-DNA damaged conditions, 50% CDK deficiency can cause 65% increase in senescence in a heterogeneous cell population. Furthermore, the model analyses the relationship between CDK2 and its CKIs (p21, p27) to help search for other effective ways to bring forward cellular senescence. Results show that the degradation rate of p21 and initial concentration of p27 are effective in lowering CDK2 levels to lower the senescence threshold. Specifically, CDK2 and p27 are the most effective in triggering senescence while p21 having a smaller influence. While receiving experimental support, these findings specify in detail the inhibitory effects of CKIs. However, simultaneous variation of CDK2 and CKIs produces a dramatic reduction of damage cells passing the G1/S with CDK2&p27 combination causing senescence in almost all damaged cells. This combined effect of CDK2&CKIs on senescence is a novel contribution in this study. A review of the crucial protein complexes revealed that the concentration of active CycE/CDK2-p that controls cell cycle arrest provides support for the above findings with CycE/CDK2-p undergoing the largest reduction (over 100%) under the combined CDK2&CKI conditions leading to the arrest of most of the damaged cells. Our study thus provides quantitative assessments for the previously published qualitative findings on senescence and highlights new avenues for bringing forward senescence bar.  相似文献   

10.
11.
The cyclin-dependent kinase (CDK) inhibitor p27, the regulator of the cell cycle, is required for proper functioning of luteinizing/luteinized cells in vivo. Since different members of the CDK family may be targeted by p27 during luteinization-associated cell cycle exit, this in vivo study further analyzed the organization of the network of cell cycle regulators that may underlie both the establishment and maintenance of the luteal phenotype. Most importantly, it shows that the luteinization process is associated with down-regulation of CDK2 and cyclin D1, and up-regulation of p27 and cyclin D3. Both p27 and cyclin D3 proteins not only accumulated during initial phases of luteinization, but they remained elevated until termination of the luteal function. Along with its accumulation, p27 lost physical contact with CDK2 and instead became associated with CDK4. In fully luteinized cells, all cyclin D3 was incorporated into complexes with p27, some complexes being p27/cyclin D3/CDK4 trimers. Despite the significant amounts of CDK4 and CDK6, only nonphosphorylated forms of retinoblastoma protein were detectable in fully luteinized cells. Together, our data indicate that while inhibition of proliferation is underlaid by the progressive loss of positive regulators of the cell cycle, including cyclins and CDK2, maintenance of the luteal phenotype is driven by up-regulated levels of p27 and cyclin D3, at least partially owing to formation of p27/cyclin D3/CDK4 trimers.  相似文献   

12.
Motivated by the potential anticancer activity of both coumarin and 2-aminothiazole nuclei, a new set of thiazol-2-yl hydrazono-chromen-2-one analogs were efficiently synthesized aiming to obtain novel hybrids with potential cytotoxic activity. MTT assay investigated the significant potency of all the target compounds against the human cervical cancer cell lines (HeLa cells). Cell cycle analysis showed that the representative compound 8a led to cell cycle cessation at G0/G1 phase indicating that CDK2/E1complex could be the plausible biological target for these newly synthesized compounds. Thus, the most active compounds (7c and 8a-c) were tested for their CDK2 inhibitory activity. The biological results revealed their significant CDK2 inhibitory activity with IC50 range of 0.022–1.629 nM. Moreover, RT-PCR gene expression assay showed that compound 8a increased the levels of the nuclear CDK2 regulators P21 and P27 by 2.30 and 5.7 folds, respectively. ELISA tequnique showed also that compound 8a led to remarkable activation of caspases-9 and -3 inducing cell apoptosis. QSAR study showed that the charge distribution and molecular hydrophobicity are the structural features affecting cytotoxic activity in this series. Molecular docking study for the most potent cytotoxic compounds (7c and 8a-c) rationalized their superior CDK2 inhibitory activity through their hydrogen bonding and hydrophobic interactions with the key amino acids in the CDK2 binding site. Pharmacokinetic properties prediction of the most potent compounds showed that the newly synthesized compounds are not only with promising antitumor activity but also possess promising pharmacokinetic properties.  相似文献   

13.
Sustained proliferative signaling is a crucial hallmark and therapeutic target in glioblastoma (GBM); however, new intrinsic regulators and their underlying mechanisms remain to be elucidated. In this study, I kappa B kinase interacting protein (IKBIP) was identified to be correlated with the progression of GBM by analysis of The Cancer Genome Atlas (TCGA) data. TCGA database analysis indicated that higher IKBIP expression was associated with high tumor grade and poor prognosis in GBM patients, and these correlations were subsequently validated in clinical samples. IKBIP knockdown induced G1/S arrest by blocking the Cyclin D1/CDK4/CDK6/CDK2 pathway. Our results showed that IKBIP may bind directly to CDK4, a key cell cycle checkpoint protein, and prevent its ubiquitination-mediated degradation in GBM cells. An in vivo study confirmed that IKBIP knockdown strongly suppressed cell proliferation and tumor growth and prolonged survival in a mouse xenograft model established with human GBM cells. In conclusion, IKBIP functions as a novel driver of GBM by binding and stabilizing the CDK4 protein. IKBIP could be a potential therapeutic target in GBM.  相似文献   

14.
The use of CDK4/6 inhibitors in the treatment of a wide range of cancers is an area of ongoing investigation. Despite their increasing clinical use, there is limited understanding of the determinants of sensitivity and resistance to these drugs. Recent data have cast doubt on how CDK4/6 inhibitors arrest proliferation, provoking renewed interest in the role(s) of CDK4/6 in driving cell proliferation. As the use of CDK4/6 inhibitors in cancer therapies becomes more prominent, an understanding of their effect on the cell cycle becomes more urgent. Here, we investigate the mechanism of action of CDK4/6 inhibitors in promoting cell cycle arrest. Two main models explain how CDK4/6 inhibitors cause G1 cell cycle arrest, which differ in their dependence on the CDK inhibitor proteins p21 and p27. We have used live and fixed single-cell quantitative imaging, with inducible degradation systems, to address the roles of p21 and p27 in the mechanism of action of CDK4/6 inhibitors. We find that CDK4/6 inhibitors can initiate and maintain a cell cycle arrest without p21 or p27. This work clarifies our current understanding of the mechanism of action of CDK4/6 inhibitors and has implications for cancer treatment and patient stratification.  相似文献   

15.
The cell cycle in mammalian cells is regulated by a series of cyclins and cyclin-dependent kinases (CDKs). The G1/S checkpoint is mainly dictated by the kinase activities of the cyclin D-CDK4 and/or cyclin D-CDK6 complex and the cyclin E-CDK2 complex. These G1 kinases can in turn be regulated by cell cycle inhibitors, which may cause the cells to arrest at the G1 phase. In T-cell hybridomas, addition of anti-T-cell receptor antibody results not only in G1 arrest but also in apoptosis. In searching for a protein(s) which might interact with Nur77, an orphan steroid receptor required for activation-induced apoptosis of T-cell hybridomas, we have cloned a novel human and mouse CDK inhibitor, p19. The deduced p19 amino acid sequence consists of four ankyrin repeats with 48% identity to p16. The human p19 gene is located on chromosome 19p13, distinct from the positions of p18, p16, and p15. Its mRNA is expressed in all cell types examined. The p19 fusion protein can associate in vitro with CDK4 but not with CDK2, CDC2, or cyclin A, B, E, or D1 to D3. Addition of p19 protein can lead to inhibition of the in vitro kinase activity of cyclin D-CDK4 but not that of cyclin E-CDK2. In T-cell hybridoma DO11.10, p19 was found in association with CDK4 and CDK6 in vivo, although its association with Nur77 is not clear at this point. Thus, p19 is a novel CDK inhibitor which may play a role in the cell cycle regulation of T cells.  相似文献   

16.
Cyclin A2 is essential at two critical points in the somatic cell cycle: during S phase, when it activates CDK2, and during the G2 to M transition when it activates CDK1. Based on the crystal structure of Cyclin A2 in association with CDKs, we generated a panel of mutants to characterize the specific amino acids required for partner binding, CDK activation and subcellular localization. We find that CDK1, CDK2, p21, p27 and p107 have overlapping but distinct requirements for association with this protein. Our data highlight the crucial importance of the N-terminal α helix, in conjunction with the α3 helix within the cyclin box, in activating CDK. Several Cyclin A2 mutants selectively bind to either CDK1 or CDK2. We demonstrate that association of Cyclin A2 to proteins such as CDK2 that was previously suggested as crucial is not a prerequisite for its nuclear localization, and we propose that the whole protein structure is involved.  相似文献   

17.
Entry into S phase is dependent on the coordinated activation of CDK4,6 and CDK2 kinases. Once a cell commits to S phase, there must be a mechanism to ensure the irreversibility of this decision. The activity of these kinases is inhibited by their association with p27. In many cells, p27 plays a major role in the withdrawal from the cell cycle in response to environmental cues. Thus, it is likely that p27 is a target of the machinery required to ensure the irreversibility of S-phase entry. We have been interested in understanding the mechanisms regulating p27 at the G1/S transition. In this report, we define a cell-free degradation system which faithfully recapitulates the cell cycle phase-specific degradation of p27. We show that this reaction is dependent on active CDK2 activity, suggesting that CDK2 activity is directly required for p27 degradation. In addition to CDK2, other S-phase-specific factors are required for p27 degradation. At least some of these factors are ubiquitin and proteasome dependent. We discuss the relationships between CDK2 activity, ubiquitin-dependent, and possibly ubiquitin-independent proteasomal activities in S-phase extracts as related to p27.  相似文献   

18.
BACKGROUND: The mycotoxin, secalonic acid D (SAD), a known animal and potential human cleft palate (CP)-inducing agent, is produced by Pencillium oxalicum in corn. SAD selectively inhibits proliferation of murine embryonic palatal mesenchymal (MEPM) cells leading to a reduction in cell numbers. These effects can explain the reduction in shelf size and the resulting CP seen in the offspring of SAD-exposed mice. Ability of SAD to inhibit proliferation as well as to block the progression of cells from G1- to S-phase of the cell-cycle were also shown in the human embryonic palatal mesenchymal (HEPM) cells suggesting the potential CP-inducing effect of SAD in human beings METHODS: Gestation day (GD) 12 mouse embryos and HEPM cells were used to test the hypothesis that the cell-cycle block induced by SAD results from a disruption of stage-specific regulatory components both in vivo and in vitro. The effects of SAD on the activity of various cyclin dependent kinases (CDK) and on the levels of various positive (cyclins and CDK) and negative (CDK inhibitors p15, 16, 18, 19, 21, 27, 57) cell-cycle regulators were assessed by performing kinase assays and immunoblots, respectively. RESULTS: In the murine embryonic palates, SAD specifically inhibited G1/S-phase-specific CDK2 activity, reduced the level of cyclin E and tended to increase the level of the CIP/kip CDK inhibitor, p21. In the HEPM cell cultures, exposure to IC50 of SAD significantly affected all of the above targets. In addition, a reduction in the levels/activity of CDK 4/6, a reduction in the levels of cyclins D1, D2, D3, E, A, and all INK4 family proteins, and an increase in the level of the CIP/kip CDK inhibitor, p57, were also seen. CONCLUSIONS: These results suggest that the S-phase-specific cell-cycle proteins CDK2, cyclin E and possibly p21 are the common targets of SAD in murine palatal shelves in vivo and in human embryonic palatal mesenchymal cells in vitro and may be relevant to the pathogenesis of SAD-induced CP.  相似文献   

19.
A master regulator of DNA replication, CDC6 also functions in the DNA-replication checkpoint by preventing DNA rereplication. Cyclin-dependent kinases (CDKs) regulate the amount and localization of CDC6 throughout the cell cycle; CDC6 phosphorylation after DNA replication initiation leads to its proteolysis in yeast or translocation to the cytoplasm in mammals. Overexpression of CDC6 during the late S phase prevents entry into the M phase by activating CHEK1 kinase that then inactivates CDK1/cyclin B, which is essential for the G2/M-phase transition. We analyzed the role of CDC6 during resumption of meiosis in mouse oocytes, which are arrested in the first meiotic prophase with low CDK1/cyclin B activity; this is similar to somatic cells at the G2/M-phase border. Overexpression of CDC6 in mouse oocytes does not prevent resumption of meiosis. The RNA interference-mediated knockdown of CDC6, however, reveals a new and unexpected function for CDC6; namely, it is essential for spindle formation in mouse oocytes.  相似文献   

20.
Progression through the G1 phase of the cell cycle requires phosphorylation of the retinoblastoma gene product (pRb) by the cyclin D-dependent kinases CDK4 and CDK6, whose activity can specifically be blocked by the CDK inhibitor p16(INK4A). Misregulation of the pRb/cyclin D/p16(INK4A) pathway is one of the most common events in human cancer and has lead to the suggestion that inhibition of cyclin D-dependent kinase activity may have therapeutic value as an anticancer treatment. Through screening of a chemical library, we initially identified the [2,3-d]pyridopyrimidines as inhibitors of CDK4. Chemical modification resulted in the identification of PD 0183812 as a potent and highly selective inhibitor of both CDK4 and CDK6 kinase activity, which is competitive with ATP. Flow cytometry experiments showed that of the cell lines tested, only those expressing pRb demonstrated a G1 arrest when treated with PD 0183812. This arrest correlated in terms of incubation time and potency with a loss of pRb phosphorylation and a block in proliferation, which was reversible. These results suggest a potential use of this chemical class of compounds as therapeutic agents in the treatment of tumors with functional pRb, possessing cell cycle aberrations in other members of the pRb/cyclin D/p16(INK4A) pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号