首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies were used to examine the expression patterns of Antennapedia (Antp), Ultrabithorax (Ubx), Ubx and abdominal-A combined(Ubx/abd-A),and Distalless (Dll) in the embryos of the moth Manduca sexta. We found that the spatial and temporal pattern of Antp expression in Manduca was correlated with the anterior migration of two patches of epithelium that include the anterior-most tracheal pits, and with the development of functional spiracles. Ubx expression showed an intricate pattern which suggests complex regulation during development. Throughout Manduca embryogenesis the expression of Ubx/Abd-A and Dll was similar to that reported for other insects. However, there was no apparent reduction in Ubx/Abd-A expression in the Manduca abdominal proleg primordia that expressed Dll. The expression of these four proteins was also examined in embryosof the Manduca homozygous homeotic mutant Octopod (Octo). The Octo mutation results in the transformation of A1 and A2 in the anterior direction, with homeotic legs appearing on A1 and occasionally A2. Our results suggest that in Octo animals there is a reduction in the level of Ubx protein expression throughout its domain. Based on homeotic gene expression in wild-type and mutant Manduca and in other insects, we discuss potential roles of homeotic genes in insect morphological evolution. Received: 21 September 1998 / Accepted: 5 March 1999  相似文献   

2.
 During the final two larval instars, a changing pattern of three Ultraspiracle (Usp) proteins (50.5, 52.5, and 57 kDa) was detected in immunoblots of the dorsal abdominal epidermis of the tobacco hornworm, Manduca sexta, by a monoclonal antibody against Drosophila Usp that was shown to detect MsUsp. The 57- and 52.5-kDa bands were present during the intermolt periods and the 50.5- and 52.5-kDa bands during the molting phases. The antibody detected a nuclear antigen present in epidermis, muscle, fat body, and the central nervous system from the time of hatching. In the epidermis Usp was present in all cell nuclei but was especially prominent in the tormogen and trichogen cells immediately after ecdysis in both the penultimate and final instars. This latter immunoreactivity disappeared within 12 h whereas the remainder of the epidermis retained high levels throughout the feeding period. During the molt immunostaining reappeared in the hair cell nuclei. During the wandering stage at the onset of metamorphosis and just before pupal ecdysis, immunoblots showed high levels of Usp, but nuclei showed little or no staining. This discrepancy is likely due to the loss of one Usp isoform from the nucleus and its dispersal in the cytoplasm in preparation for the appearance of the second isoform. Received: 10 June 1997 / Accepted: 22 August 1997  相似文献   

3.
During the metamorphosis of Manduca sexta the larval nervous system is reorganized to allow the generation of behaviors that are specific to the pupal and adult stages. In some instances, metamorphic changes in neurons that persist from the larval stage are segment-specific and lead to expression of segment-specific behavior in later stages. At the larval-pupal transition, the larval abdominal bending behavior, which is distributed throughout the abdomen, changes to the pupal gin trap behavior which is restricted to three abdominal segments. This study suggests that the neural circuit that underlies larval bending undergoes segment specific modifications to produce the segmentally restricted gin trap behavior. We show, however, that non-gin trap segments go through a developmental change similar to that seen in gin trap segments. Pupal-specific motor patterns are produced by stimulation of sensory neurons in abdominal segments that do not have gin traps and cannot produce the gin trap behavior. In particular, sensory stimulation in non-gin trap pupal segments evokes a motor response that is faster than the larval response and that displays the triphasic contralateral-ipsilateral-contralateral activity pattern that is typical of the pupal gin trap behavior. Despite the alteration of reflex activity in all segments, developmental changes in sensory neuron morphology are restricted to those segments that form gin traps. In non-gin trap segments, persistent sensory neurons do not expand their terminal arbors, as do sensory neurons in gin trap segments, yet are capable of eliciting gin trap-like motor responses. Accepted: 10 January 1997  相似文献   

4.
Persistent leg motoneurons of the moth Manduca sexta were investigated in larval and adult animals to compare their dendritic structures, intrinsic electrical properties and pattern of target innervation. The study focused on two identified motoneurons of the prothoracic leg. Despite the complete remodeling of leg muscles, the motoneurons innervated pretarsal flexor muscles in both larval and adult legs. Similarly, although the central dendrites regress and regrow, the branching pattern was similar with the exception of a prominent midline branch that was not present in the adult stage. The intrinsic electrical properties of the motoneurons differed between larval and adult stages. Larval motoneurons had significantly higher membrane input resistances and more depolarized resting membrane potentials than did motoneurons in pharate adults or adults. In all stages, one motoneuron had a low maximal firing frequency, whereas the second motoneuron, which innervated the other half of the muscle, had a high maximum firing frequency. Although the two motoneurons continued to innervate the same halves of the target muscle, their relative effects on muscular contraction were reversed during metamorphosis along with concomitant changes in intrinsic properties. Pretarsal flexor motoneurons in pharate adults (just prior to emergence) displayed properties similar to those in emerged adults. Accepted: 8 January 2000  相似文献   

5.
 Both the proliferation and differentiation of ventral diaphragm myoblasts are controlled by ecdysteroid during metamorphosis of the moth, Manduca sexta, but the responses have different hormonal requirements. Tonic exposure to moderate levels of ecdysteroid are required to stimulate myoblast proliferation. This is due to the presence of an ecdysteroid-dependent control point in the G2 phase of the cell cycle. As a result, proliferation can be repeatedly turned on or off simply by adjusting the concentration of ecdysteroid to be above or below a critical threshold concentration. In contrast, high levels of ecdysteroid trigger irreversible proliferative arrest and differentiation of myofibers. Myoblast proliferation and differentiation also differ in their response to the juvenile hormone mimic, methoprene. Ecdysteroid-dependent proliferative arrest and differentiation are blocked by coculture with methoprene but methoprene has no effect on ecdysteroid-dependent proliferation. In the animal, premature exposure to high levels of ecdysteroid in the absence of juvenile hormone triggers precocious differentiation of the myoblasts, resulting in the formation of several thin bands of muscle rather than a complete diaphragm. Thus, ecdysteroid and juvenile hormone collaborate to determine the size and shape of the adult musculature. Received: 12 November 1998 / Accepted: 23 December 1998  相似文献   

6.
Cell lineages during ascidian embryogenesis are invariant. Developmental fates of larval mesodermal cells after metamorphosis are also invariant with regard to cell type of descendants. The present study traced developmental fates of larval endodermal cells after metamorphosis in Halocynthia roretzi by labeling each endodermal precursor blastomere of larval endoderm. Larval endodermal cells gave rise to various endodermal organs of juveniles: endostyle, branchial sac, peribranchial epithelium, digestive organs, peripharyngeal band, and dorsal tubercle. The boundaries between clones descended from early blastomeres did not correspond to the boundaries between adult endodermal organs. Although there is a regular projection from cleavage stage and larval stage to juvenile stage, this varies to some extent between individuals. This indicates that ascidian development is not entirely deterministic. We composed a fate map of adult endodermal organs in larval endoderm based on a statistical analysis of many individual cases. Interestingly, the topographic position of each prospective region in the fate map was similar to that of the adult organ, indicating that marked rearrangement of the positions of endodermal cells does not occur during metamorphosis. These findings suggest that fate specification in endoderm cells during metamorphosis is likely to be a position-dependent rather than a deterministic and lineage-based process. Received: 16 June 1999 / Accepted: 16 August 1999  相似文献   

7.
At pupation in Manduca sexta, accessory planta retractor muscles and their motoneurons degenerate in segment-specific patterns. Accessory planta retractor muscles in abdominal segments 2 and 3 survive in reduced form through the pupal stage and degenerate after adult emergence. Electromyographic and electrophysiological recordings show that these accessory planta retractor muscles participate in a new, rhythmic `pupal motor pattern' in which all four muscles contract synchronously at ∼4 s intervals for extended bouts. Accessory planta retractor muscle contractions are driven by synaptic activation of accessory planta retractor motoneurons and are often accompanied by rhythmic activity in intersegmental muscles and spiracular closer muscles. The pupal motor pattern is influenced by descending neural input although isolated abdominal ganglia can produce a pupal motor pattern-like rhythm. The robust pupal motor pattern first seen after pupal ecdysis weakens during the second half of pupal life. Anemometric recordings indicate that the intersegmental muscle and spiracular closer muscle component of the pupal motor pattern produces ventilation. Accessory planta retractor muscle contractions lift the flexible abdominal floor, to which the developing wings and legs adhere tightly. We hypothesize that, by a bellows-like action, the accessory planta retractor muscle contractions circulate hemolymph in the appendages. Morphometric analysis shows that dendritic regression is similar in accessory planta retractor motoneurons with different pupal fates, and that accessory planta retractor motoneurons begin to participate in the pupal motor pattern while their dendrites are regressed. Accepted: 29 March 1998  相似文献   

8.
The larval proleg withdrawal reflex of the hawk moth, Manduca sexta, exhibits robust habituation. This reflex is evoked by deflecting one or more mechanosensory planta hairs on a proleg tip. We examined neural correlates of habituation in an isolated proleg preparation consisting of one proleg and its segmental ganglion. Repeated deflection of a single planta hair caused a significant decrease in the number of action potentials evoked in the proleg motor nerve (which carries the axons of proleg retractor motor neurons). Significant response decrement was seen for interstimulus intervals of 10 s, 60 s and 5 min. Response decrement failed to occur in the absence of repetitive stimulation, the decremented response recovered spontaneously following a rest, and electrical stimulation of a body wall nerve facilitated the decremented response (a neural correlate of dishabituation). Adaptation of sensory neuron responses occurred during repeated hair deflections. However, when adaptation was eliminated by direct electrical stimulation of sensory neurons, the response in the proleg motor nerve still decreased significantly. Muscle recordings indicated that the response of an identified proleg retractor motor neuron decreased significantly during habituation training. Thus, habituation of the proleg withdrawal reflex includes a central component that is apparent at the level of a single motor neuron. Accepted: 20 December 1996  相似文献   

9.
Summary The salivary glands of the moth, Manduca sexta (Insecta: Sphingidae), are unlike most other salivary glands in that they are innervated from one source only. Vital staining of nerves with methylene-blue reveals numerous fine nerves extending to the glands from the oesophageal nerve, a part of the stomatogastric or visceral nervous system. Light and electron microscopy confirm that only the fluid-secreting cells, confined to a discrete region in these glands, are innervated. Axons with or without glial wrappings are found in intercellular spaces between fluid-secreting cells. Axons lacking a glial sheath contain, after glutaraldehyde-osmium tetroxide fixation, large granular and small agranular vesicles. In nerve endings in glands fixed with permanganate these smaller vesicles are granular, having the electron-dense cores characteristic of monoamine-containing neurons. These nerve endings with synaptoid areas are in close (direct) contact with the fluid-secreting cells.I am grateful to Professor T. Weis-Fogh for accommodation in the department of Zoology and to Dr. Nancy Lane for use of A.R.C. facilities and advice. Thanks are also due to Drs. M. J. Berridge, S.H.P. Maddrell, and W. T. Prince and Mr. R. A. Leslie for helpful discussion. Financial assistance from Clare College, Cambridge is gratefully acknowledged.  相似文献   

10.
In the moth Manduca sexta, the paired mesothoracic flight steering muscle II PD2m takes part in the generation of the flight rhythm and is spontaneously active in the non-flying animal. This spontaneous activity is modulated by optomotor stimuli and directionally selective. The directional response characteristics are analyzed. Another spontaneously active steering muscle pair, the III PD2c, is situated in the metathorax. The activities of this pair and of a third muscle pair, the III PD3 are also influenced by visual stimulation.The responses of all 6 muscles to optomotor stimuli which simulate the flight situations yaw, roll, thrust and lift are analyzed. Each situation elicits a unique pattern of activation/deactivation within this set of muscles. The activity pattern in non-flying animals allows the prediction of flight steering mechanisms such as changes of wing area in flight turns and provides a useful basis for the analysis of visuo-motor pathways.  相似文献   

11.
The eye imaginal disc of Manduca sexta is created early in the final larval instar from the adult eye primordium, which is composed of fully differentiated cells of the larval head capsule epidermis. Concomitant with the down-regulation of the larval epidermal program, expression of broad, a marker of pupal commitment, is activated in the primordium. The cells then detach from the cuticle, fold inward, and begin to proliferate at high levels to produce the inverted, eye imaginal disc. These and other events that begin on the first day of the final larval instar appear to mark the initiation of metamorphosis. Little is known about the endocrine control of the initiation of metamorphosis in any insect. The hemolymph titer of juvenile hormone (JH) declines to low levels during this period and the presence of JH is sufficient to repress development in cultured eye primordia. However, maintenance of JH at high levels in vivo by treatment with long-lasting JH mimics has no apparent effect on early steps in eye imaginal disc development. We discuss our findings in the context of the endocrine control of metamorphosis. The initiation of metamorphosis in Manduca, and perhaps a wide range of insect species, appears to involve the overcoming of JH repression by an unidentified, nutrient-dependent, hormonal factor.  相似文献   

12.
1.  The physiology and morphology of olfactory interneurons in the brain of larval Manduca sexta were studied using intracellular recording and staining techniques. Antennal olfactory receptors were stimulated with volatile substances from plants and with pure odorants. Neurons responding to the stimuli were investigated further to reveal their response specificities, dose-response characteristics, and morphology.
2.  We found no evidence of specific labeled-lines among the odor-responsive interneurons, as none responded exclusively to one plant odor or pure odorant; most olfactory interneurons were broadly tuned in their response spectra. This finding is consistent with an across-fiber pattern of odor coding.
3.  Mechanosensory and olfactory information are integrated at early stages of central processing, appearing in the responses of some local interneurons restricted to the primary olfactory nucleus in the brain, the larval antennal center (LAC).
4.  The responses of LAC projection neurons and higher-order protocerebral interneurons to a given odor were more consistent than the responses of LAC local interneurons.
5.  The LAC appears to be functionally subdivided, as both local and projection neurons had arborizations in specific parts of the LAC, but none had dendrites throughout the LAC.
6.  The mushroom bodies and the lateral protocerebrum contain neurons that respond to olfactory stimulation.
  相似文献   

13.
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.  相似文献   

14.
The tobacco hornworm Manduca sexta, like many holometabolous insects, makes two versions of its thoracic legs. The simple legs of the larva are formed during embryogenesis, but then are transformed into the more complex adult legs at metamorphosis. To elucidate the molecular patterning mechanism underlying this biphasic development, we examined the expression patterns of five genes known to be involved in patterning the proximal-distal axis in insect legs. In the developing larval leg of Manduca, the early patterning genes Distal-less and Extradenticle are already expressed in patterns comparable to the adult legs of other insects. In contrast, Bric-a-brac and dachshund are expressed in patterns similar to transient patterns observed during early stages of leg development in Drosophila. During metamorphosis of the leg, the two genes finally develop mature expression patterns. Our results are consistent with the hypothesis that the larval leg morphology is produced by a transient arrest in the conserved adult leg patterning process in insects. In addition, we find that, during the adult leg development, some cells in the leg express the patterning genes de novo suggesting that the remodeling of the leg involves changes in the patterning gene regulation.  相似文献   

15.
Summary We have used a cytochemical technique to investigate the distribution of acetylcholinesterase (AChE) activity in the antenna of the sphinx moth Manduca sexta. High levels of echothiophate-insensitive (presumably intracellular) AChE activity were found in six different types of antennal receptors localized in specific regions of the three antennal segments of the adult moth. Mechanosensory organs in the scape and pedicel, the Böhm bristles and Johnston's organ, are innervated by AChE-positive neurons. In each annulus of the antennal flagellum, AChE-positive neurons are associated with six sensilla chaetica and a peg organ, probably a sensillum styloconicum. At least 112 receptor neurons (8–10 per annulus) innervating the intersegmental membranes between the 14 distalmost annuli also exhibit high levels of echothiophate-resistant AChE. In addition, each annulus has more than 30 AChE-positive somata in the epidermis of the scale-covered (back) side of the flagellum, and 4 AChE-positive somata reside within the first annulus of the flagellum. Since none of the olfactory receptor neurons show a high level of echothiophateresistant AChE activity, and all known mechanoreceptors are AChE-positive, apparently intracellular AChE activity in the antenna correlates well with mechanosensory functions and is consistent with the idea that these cells employ acetylcholine as a neurotransmitter.  相似文献   

16.
The glial cells of the prothoracic ganglion of the hawk moth Manduca sexta were studied in histological sections of several postembryonic stages and classified according to cell morphology, size, staining properties, and topographical relationships. In general, each glial cell type was found to be confined to one of the major ganglionic domains and each of these domains (i.e., perineurium, cell body rind, glial cover of the neuropil, and neuropil) was found to comprise specific cell types. Some types of glia were recognized in both larval and later stages, but other types were found exclusively from late pupal stages. It is proposed that the higher morphological diversity expressed by the glia of the pharate adult is attained by differentiation of new cell types during metamorphosis. Before the differentiation of new cell types, extensive cell death and cell proliferation seem to occur within some glial subpopulations.  相似文献   

17.
1. Intersegmental interneurons (INs) that participate in the larval bending reflex and the pupal gin trap closure reflex were identified in the isolated ventral nerve cord of Manduca sexta. INs 305, 504, and 703 show qualitatively different responses in the pupa than in the larva to electrical stimulation of sensory neurons that are retained during the larval-pupal transition to serve both reflexes. Action potentials produced by current injected into the 3 interneurons excite motor neurons that are directly involved in the larval and pupal reflexes. The excitation of the motor neurons is not associated with EPSPs at a fixed latency following action potentials in the interneurons, and thus there do not seem to be direct synaptic connections between the interneurons and the motor neurons. 2. IN 305 (Fig. 2) has a lateral soma, processes in most of the dorsal neuropil ipsilateral to the soma, and a crossing neurite that gives rise to a single contralateral descending axon. IN 305 is excited by stimulation of the sensory nerve ipsilateral to its soma in the larva and the pupa. Stimulation of the sensory nerve contralateral to its soma produces an inhibitory response in the larva, but a mixed excitatory/inhibitory response to the identical stimulus in the pupa. 3. IN 504 (Fig. 3) has a lateral soma, processes throughout most of the neuropil ipsilateral to the soma, and a crossing neurite that bifurcates to give rise to a process extending to the caudal limit of the neuropil and an ascending axon. IN 504 is excited by stimulation of the sensory nerve ipsilateral to its soma in both larvae and pupae, while the response to stimulation of the sensory nerve contralateral to its soma is inhibitory in the larva but mixed (excitatory/inhibitory) in the pupa. 4. IN 703 has a large antero-lateral soma, a neurite that extends across to the contralateral side giving rise to processes located primarily dorsally in both ipsilateral and contralateral neuropils, and two axons that ascend and descend in the connectives contralateral to the soma (Fig. 4). IN 703 responds to stimulation of the sensory nerves on either side of the ganglion, but the form of the response changes during the larval-pupal transition. In the larva, the response consists of very phasic (0-2 spikes) excitation, but in the pupa there is a prolonged excitation that greatly outlasts the stimulus (Fig. 6).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Baldwin KM  Hakim RS 《Tissue & cell》1991,23(3):411-422
The number of epithelial cells comprising larval midgut of the tobacco hornworm moth, Manduca sexta increases 200-fold in development from the first to the fifth instar. We have examined larvae periodically before and during molting to follow epithelial cell proliferation and differentiation. The midgut epithelium in Manduca sexta consists predominantly of columnar and goblet cells. These are arranged in a characteristic pattern with each goblet cell surrounded by a single layer of 4-6 columnar cells (Hakim et al., (1988)). While undifferentiated basal stem cells are infrequently seen in intermolt larvae, just prior to the period when external signs of molting are visible, their number increases and mitotic figures become common. Proliferation continues for several hours and then these stem cells differentiate following a pattern similar to that seen during embryogenesis (Hakim et al., (1988)). Here, however, the newly differentiating cells become intercalated among the mature differentiated cells already present in the epithelium. Since the pattern of individual goblet cells surrounded by a reticulum of columnar cells is maintained after the addition of new cells, the midgut epithelium of molting larvae appears to be a useful model for studying pattern formation in development.  相似文献   

19.
Moths possess highly tuned olfactory capabilities, which can detect very low concentrations of pheromonal odorants. Much is known about the structure and function of the moth olfactory system with respect to detection of pheromones. However, we lack an understanding of the broader olfactory system, in particular, to what degree are moths capable of detecting and discriminating odorants that are not components of pheromone blends. Here we describe a methodology used to investigate the discriminability of nonpheromonal odors in moths. In a series of experiments we show that the moth Manduca sexta can (1) discriminate a number of different odors but (2) that methyl jasmonate, neither readily conditions to a food reward nor is it readily discriminated from another odor. The lack of a response to methyl jasmonate may be related to its role in host plant defense. This work provides a basis for future mapping of physiological and pharmacological studies of nonpheromonal coding in insects onto learned behavioral responses to those odorants.  相似文献   

20.
Summary In the moth Manduca sexta, the number and morphology of neuronal connections between the antennal lobes and the protocerebrum were examined. Cobalt injections revealed eight morphological types of neurons with somata adjacent to the AL neuropil that project in the inner, middle, and outer antenno-cerebral tracts to the protocerebrum. Neurons innervating the macroglomerular complex and many neurons with fibers in the inner antennocerebral tract have uniglomerular antennal-lobe arborizations. Most neurons in the middle and outer antenno-cerebral tracts, on the other hand, seem to innervate more than one glomerulus. Protocerebral areas receiving direct input from the antennal lobe include the calyces of the mushroom bodies, and circumscribed areas termed olfactory foci in the lateral horn of the protocerebrum and several other regions, especially areas in close proximity to the mushroom bodies. Fibers in the inner antenno-cerebral tract that innervate the male-specific macroglomerular complex have arborizations in the protocerebrum that are distinct from the projections of sexually non-specific neurons. Protocerebral neurons projecting into the antennal lobe are much less numerous than antennal-lobe output cells. Most of these protocerebral fibers enter the antennal lobe in small fiber tracts that are different from those described above. In the protocerebrum, these centrifugal cells arborize in olfactory foci and also in the inferior median protocerebrum and the lateral accessory lobes. The morphological diversity of connections between the antennal lobes and the protocerebrum, described here for the first time on a single-cell level, suggests a much greater physiological complexity of the olfactory system than has been assumed so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号