首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined, in vitro, whether hyaluronan induces slow cycling in placenta-derived mesenchymal stem cells (PDMSCs) by comparing cell growth on a hyaluronan-coated surface with cell growth on a tissue-culture polystyrene surface. The hyaluronan-coated surface significantly downregulated the proliferation of PDMSCs, more of which were maintained in the G0/G1 phases than were cells on the tissue-culture polystyrene surface. Both PKH-26 labeling and BrdU incorporation assays showed that most PDMSCs grown on a hyaluronan-coated surface duplicated during cultivation indicating that the hyaluronan-coated surface did not inhibit PDMSCs from entering the cell cycle. Mitotic synchronization showed that the G1-phase transit was prolonged in PDMSCs growing on a hyaluronan-coated surface. Increases in p27Kip1 and p130 were the crucial factors that allowed hyaluronan to lengthen the G1 phase. Thus, hyaluronan might be a promising candidate for maintaining stem cells in slow-cycling mode by prolonging their G1-phase transit. This work was supported by research grant NSC95-2745-B-006-003-MY2 from the National Science Council, Taiwan, and by Landmark Project Grant A25, funded by the Taiwan Ministry of Education, from National Cheng Kung University.  相似文献   

2.
Multidrug resistance is a potent barrier to effective, long term therapy in cancer patients. It is frequently attributed to enhanced expression of multidrug transporters or to the action of receptor kinases, such as ErbB2, and downstream anti-apoptotic signaling pathways, such as the phosphoinositide 3-kinase/Akt pathway. However, very few connections have been made between receptor kinases or anti-apoptotic pathways and multidrug transporter expression or function. Data presented herein show that constitutive interaction of the pericellular polysaccharide, hyaluronan, with its receptor, CD44, regulates assembly and activation of an ErbB2-containing signaling complex, which in turn stimulates phosphoinositide 3-kinase activity in multidrug-resistant MCF-7/Adr human breast carcinoma cells. Phosphoinositide 3-kinase activates Akt and downstream anti-apoptotic events, which contribute to drug resistance. However, hyaluronan and phosphoinositide 3-kinase stimulate expression of the multidrug transporter, MDR1 (P-glycoprotein), in an interdependent, but Akt-independent, manner. Furthermore, constitutively active phosphoinositide 3-kinase, but not Akt, stimulates hyaluronan production. These Akt-independent effects are dominant over the effects of Akt on doxorubicin resistance in MCF-7/Adr cells. Thus hyaluronan, phosphoinositide 3-kinase, and ErbB2 form a positive feedback loop that strongly amplifies MDR1 expression and regulates drug resistance in these cells. This pathway may also be important in progression of other malignant characteristics. These results illustrate the potential importance of hyaluronan as a therapeutic target in multidrug-resistant carcinomas.  相似文献   

3.
4.
CD44 is a cell surface adhesion molecule for hyaluronan and is implicated in tumor invasion and metastasis. Proteolytic cleavage of CD44 plays a critical role in the migration of tumor cells and is regulated by factors present in the tumor microenvironment, such as hyaluronan oligosaccharides and epidermal growth factor. However, molecular mechanisms underlying the proteolytic cleavage on membranes remain poorly understood. In this study, we demonstrated that cholesterol depletion with methyl-β-cyclodextrin, which disintegrates membrane lipid rafts, enhances CD44 shedding mediated by a disintegrin and metalloproteinase 10 (ADAM10) and that cholesterol depletion disorders CD44 localization to the lipid raft. We also evaluated the effect of long term cholesterol reduction using a statin agent and demonstrated that statin enhances CD44 shedding and suppresses tumor cell migration on a hyaluronan-coated substrate. Our results indicate that membrane lipid organization regulates CD44 shedding and propose a possible molecular mechanism by which cholesterol reduction might be effective for preventing and treating the progression of malignant tumors.  相似文献   

5.
In this study, the modulatory effect of ferulic acid on P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) was examined in KB ChR8-5 resistant cells and drug-resistant tumor xenografts. We observed that ferulic acid enhanced the cytotoxicity of doxorubicin and vincristine in the P-gp overexpressing KB ChR8-5 cells. Further, ferulic acid enhances the doxorubicin induced γH2AX foci formation and synergistically augmented doxorubicin-induced apoptotic signaling in the drug-resistant cells. It has also been noticed that NF-κB nuclear translocation was suppressed by ferulic acid and that this response might be associated with the modulation of phosphatidyinositol 3-kinase (PI3K)/Akt/signaling pathway. We also found that ferulic acid and doxorubicin combination reduced the size of KB ChR8-5 tumor xenograft by threefold as compared to doxorubicin-alone treated group. Thus, ferulic acid contributes to the reversal of the MDR through suppression of P-gp expression via the inhibition of PI3K/Akt/NF-κB signaling pathway.  相似文献   

6.
CD44 is a ubiquitous cell surface glycoprotein, involved in important cellular functions including cell adhesion, migration, and modulation of signals from cell surface receptors. While most of these CD44 functions are supposed to involve hyaluronan, relatively little is known about the contribution of CD44 to hyaluronan maintenance and organization on cell surface, and the role of CD44 in hyaluronan synthesis and catabolism. Blocking hyaluronan binding either by CD44 antibodies, CD44-siRNA or hyaluronan decasaccharides (but not hexasaccharides) removed most of the hyaluronan from the surfaces of both human (HaCaT) and mouse keratinocytes, resembling results on cells from CD44−/− animals. In vitro, compromising CD44 function led to reduced and increased amounts, respectively, of intracellular and culture medium hyaluronan, and specific accumulation below the cells. In vivo, CD44-deficiency caused no marked differences in hyaluronan staining intensity or localization in the fetal skin or in adult ear skin, while tail epidermis showed a slight reduction in epidermal hyaluronan staining intensity. However, CD44-deficient tail skin challenged with retinoic acid or tape stripping revealed diffuse accumulation of hyaluronan in the superficial epidermal layers, normally negative for hyaluronan. Our data indicate that CD44 retains hyaluronan in the keratinocyte pericellular matrix, a fact that has not been shown unambiguously before, and that hyaluronan abundance in the absence of CD44 can result in hyaluronan trapping in abnormal locations possibly interfering there with normal differentiation and epidermal barrier function.  相似文献   

7.
Overexpression of P-glycoprotein, encoded by the MDR1 (multidrug resistance 1) gene, is often responsible for multidrug resistance in acute myeloid leukaemia. We have shown previously that MDR1 (P-glycoprotein) mRNA levels in K562 leukaemic cells exposed to cytotoxic drugs are up-regulated but P-glycoprotein expression is translationally blocked. In the present study we show that cytotoxic drugs down-regulate the Akt signalling pathway, leading to hypophosphorylation of the translational repressor 4E-BP [eIF (eukaryotic initiation factor) 4E-binding protein] and decreased eIF4E availability. The 5'-end of MDR1 mRNA adopts a highly-structured fold. Fusion of this structured 5'-region upstream of a reporter gene impeded its efficient translation, specifically under cytotoxic stress, by reducing its competitive ability for the translational machinery. The effect of cytotoxic stress could be mimicked in vivo by blocking the phosphorylation of 4E-BP by mTOR (mammalian target of rapamycin) using rapamycin or eIF4E siRNA (small interfering RNA), and relieved by overexpression of either eIF4E or constitutively-active Akt. Upon drug exposure MDR1 mRNA was up-regulated, apparently stochastically, in a small proportion of cells. Only in these cells could MDR1 mRNA compete successfully for the reduced amounts of eIF4E and translate P-glycoprotein. Consequent drug efflux and restoration of eIF4E availability results in a feed-forward relief from stress-induced translational repression and to the acquisition of drug resistance.  相似文献   

8.
Leukemic cells and human hematopoietic progenitor cells expressing CD44 receptors have the ability to attach and roll on hyaluronan. We investigated quantitatively the adhesion behavior of leukemic cell lines and hematopoietic progenitor cells on thin films of the polysaccharides hyaluronan and alginate in a microfluidic system. An applied flow enhances the interaction between CD44-positive cells and hyaluronan if a threshold shear stress of 0.2 dyn/cm2 is exceeded. At shear stress ∼1 dyn/cm2, the cell rolling speed reaches a maximum of 15 μm/s. Leukemic Jurkat and Kasumi-1 cells lacking CD44-expression showed no adhesion or rolling on the polysaccharides whereas the CD44-expressing leukemic cells KG-1a, HL-60, K-562, and hematopoietic progenitor cells attached and rolled on hyaluronan. Interestingly, the observations of flow-induced cell rolling are related to those found in the recruitment of leukocytes to inflammatory sites and the mechanisms of stem-cell homing into the bone marrow.  相似文献   

9.
Objective: CD44 is a transmembrane glycoprotein and can facilitate signal transduction by serving as a platform for molecular recruitment and assembly. A number of studies have suggested that CD44 can either positively or negatively regulate cell proliferation. The purpose of this study was to investigate how CD44 can inhibit cell proliferation. Materials and methods: We engineered E6.1 Jurkat cells to express CD44. Importantly, these cells lack endogenous CD44 expression. Molecular pathways involved with cell proliferation were studied using RT2‐PCR array, siRNA, Western blotting and by employing pharmacological inhibitors of ERK1/2, p38 and the PI3K/Akt pathways. Results: We found that CD44 expression significantly inhibited cell proliferation and down‐regulated EGR‐1 expression and EGR‐1 targets cyclin D1 and cyclin D2. Transfection of control E6.1 Jurkat cells with EGR‐1 siRNA also inhibited cell proliferation, confirming its role. Disruption of the PI3K/Akt pathway with pharmacological inhibitors reduced both EGR‐1 expression and cell proliferation, recapitulating the properties of CD44 expressing cells. Akt was hypophosphorylated in cells expressing CD44 showing its potential role in negatively regulating Akt activation. Strikingly, constitutively active Akt rescued the proliferation defect showing requirement for active Akt, in our system. Conclusion: Our results suggest a novel pathway by which CD44 inactivates Akt, down‐regulates EGR‐1 expression and inhibits cell proliferation.  相似文献   

10.
11.
Failure of current anticancer drugs mandates screening for new compounds of synthetic or biological origin to be used in cancer therapy. Multidrug resistance (MDR) is one of the main obstacles in the chemotherapy of cancer. Efflux of cytotoxic agents mediated by P-glycoprotein (P-gp or MDR1) is believed to be an important mechanism of multidrug resistance. Therefore, we decided to investigate the antiproliferative effects of seven newly synthesized 1,4-dihydropyridine (DHP) derivatives in comparison to verapamil (VP) and doxorubicin (DOX) on human breast cancer T47D cells and its MDR1 overexpressed and moderately resistant cells (RS cells) using MTT cytotoxicity assay. We also examined the effects of these compounds on cytotoxicity of DOX in these two cell types. The cytotoxicity assays using MTT showed that most of the tested new DHP derivatives and VP at 10 μM concentration had varying levels of toxicity on both T47D and RS cells. The toxicity was mostly in the range of 10–25%. However, the cytotoxicity of these DHP derivatives, similar to VP, was significantly less than DOX when comparing IC50 values. Furthermore, these compounds in general had relatively more cytotoxicity on T47D vs RS cells at 10-μM concentration. Among new DHPs, compounds 7a (3,5-dibenzoyl-4-(2-methylthiazol-4-yl)-1,4-dihydro-2,6-dimethylpyridine) and 7d (3,5-diacetyl-4-[2-(2-chlorophenyl)thiazol-4-yl)]-1,4-dihydro-2,6-dimethylpyridine) showed noticeable potentiation of DOX cytotoxicity (reduction of DOX IC50) compared to DOX alone in both cells, particularly in RS cells. This effect was similar to that of VP, a known prototype of MDR1 reversal agent. In other words, compounds 7a and 7d resensitized RS cells to DOX or reversed their resistance. Results indicate that compound 7d exerts highest effect on RS cells. Therefore, these two newly synthesized DHP derivatives, compounds 7a and 7d, are promising as potential new MDR1 reversal agents and should be further studied on other highly resistant cells due to MDR1 overexpression and with further molecular investigation.  相似文献   

12.
CD44 on lymphocytes binding to its carbohydrate ligand hyaluronan can mediate primary adhesion (rolling interactions) of lymphocytes on vascular endothelial cells. This adhesion pathway is utilized in the extravasation of activated T cells from the blood into sites of inflammation and therefore influences patterns of lymphocyte homing and inflammation. Hyaluronan is a glycosaminoglycan found in the extracellular matrix and is involved in a number of biological processes. We have shown that the expression of hyaluronan on the surface of endothelial cells is inducible by proinflammatory cytokines. However, the manner through which hyaluronan is anchored to the endothelial cell surface so that it can resist shear forces and the mechanism of the regulation of the level of hyaluronan on the cell surface has not been investigated. In order to characterize potential hyaluronan receptors on endothelial cells, we performed analyses of cell surface staining by flow cytometry on intact endothelial cells and ligand blotting assays using membrane fractions. Hyaluronan binding activity was detected as a major species corresponding to the size of CD44, and this was confirmed to be the same by Western blotting and immunoprecipitation. Moreover, alterations in the surface level of hyaluronan after tumor necrosis factor-alpha stimulation is regulated primarily by changes in the cell surface levels of the hyaluronan-binding form of CD44. In laminar flow assays, lymphoid cells specifically roll on hyaluronan anchored by purified CD44 coated on glass tubes, indicating that the avidity of the endothelial CD44/hyaluronan interaction is sufficient to support rolling adhesions under conditions mimicking physiologic shear forces. Together these studies show that CD44 serves to anchor hyaluronan on endothelial cell surfaces, that activation of CD44 is a major regulator of endothelial surface hyaluronan expression, and that the non-covalent interaction between CD44 and hyaluronan is sufficient to provide resistance to shear under physiologic conditions and thereby support the initial steps of lymphocyte extravasation.  相似文献   

13.
The identification and separation of small intestinal epithelial stem cells are still on the preliminary stage. In this study, we planned to utilize immunohistochemistry, fluorescence-activated cell sorting (FACS) and RT-PCR to investigate the possibility of CD133 and CD44 as markers of human small intestinal epithelial stem cells. The expressions of CD133, CD44 and Lgr5 were studied by immunohistochemistry. Four subgroups of CD133+CD44+, CD133+CD44, CD133CD44+, CD133CD44 were sorted out through FACS and the expression level of Lgr5 gene was measured by RT-PCR and polyacrylamide gel electropheresis (PAGE) with sliver stained. Ten cases of samples were available for analyzing. By immunohistochemical staining, few cells with positive expressions of CD133, CD44 and Lgr5 were distributed in the bottom of crypts with the expression locations somewhat overlapped. The average percentage of CD133+CD44+ cells was 0.0580 ± 0.0403%, while the corresponding contents of CD133+CD44 cells, CD133CD44+ cells and CD133CD44 cells were 0.4000 ± 0.1225%, 0.7000 ± 0.2646% and 76.5600 ± 3.5529% respectively. Ten times of positive expressions of Lgr5 were detected in the CD133+CD44+ groups, while 9/10, 8/10 and 4/10 times for CD133+CD44, CD133CD44+ and CD133CD44 subgroups respectively. With the help of Quantityone 4.62 software, the densities of corresponding place to Lgr5 and reference gene were obtained. The density ratios of corresponding place to Lgr5 to reference gene were significant difference between subgroups (P < 0.001). By means of LSD method, the density ratios in CD133+CD44+ subgroups had statistical differences from the other subgroups (P < 0.05). We concluded CD133+CD44+ cells may be human small intestinal epithelial stem cells, which need further researches to confirm.  相似文献   

14.
The mechanisms responsible for regulating epithelial ATP permeability and purinergic signaling are not well defined. Based on the observations that members of the ATP-binding cassette (ABC)1 family of proteins may contribute to ATP release, the purpose of these studies was to assess whether multidrug resistance-1 (MDR1) proteins are involved in ATP release from HTC hepatoma cells. Using a bioluminescence assay to detect extracellular ATP, increases in cell volume increased ATP release ∼3-fold. The MDR1 inhibitors cyclosporine A (10 μm) and verapramil (10 μm) inhibited ATP release by 69% and 62%, respectively (p < 0.001). Similarly, in whole-cell patch-clamp recordings, intracellular dialysis with C219 antibodies to inhibit MDR1 decreased ATP-dependent volume-sensitive Cl current density from −33.1 ± 12.5 pA/pF to −2.0 ± 0.3 pA/pF (−80 mV, p≤ 0.02). In contrast, overexpression of MDR1 in NIH 3T3 cells increased ATP release rates. Inhibition of ATP release by Gd3+ had no effect on transport of the MDR1 substrate rhodamine-123; and alteration of MDR1-substrate selectivity by mutation of G185 to V185 had no effect on ATP release. Since the effects of P-glycoproteins on ATP release can be dissociated from P-glycoprotein substrate transport, MDR1 is not likely to function as an ATP channel, but instead serves as a potent regulator of other cellular ATP transport pathways. Received: 20 November 2000/Revised: 25 May 2001  相似文献   

15.
CD44 shedding occurs in osteoarthritic chondrocytes. Previous work of others has suggested that the hyaluronidase isoform HYAL2 has the capacity to bind to CD44, a binding that may itself induce CD44 cleavage. Experiments were developed to elucidate whether chondrocyte HYAL2: (1) was exposed on the extracellular plasma membrane of chondrocytes, (2) bound to CD44, (3) underwent shedding together with CD44 and lastly, (4) exhibited hyaluronidase activity within a near-neutral pH range. Enhancing CD44 shedding by IL-1β resulted in a proportional increase in HYAL2 released from human and bovine chondrocytes into the medium. CD44 knockdown by siRNA also resulted in increased accumulation of HYAL2 in the media of chondrocytes. By hyaluronan zymography only activity at pH 3.7 was observed and this activity was reduced by pre-treatment of chondrocytes with trypsin. CD44 and HYAL2 were found to co-immunoprecipitate, and to co-localize within intracellular vesicles and at the plasma membrane. Degradation of hyaluronan was visualized by agarose gel electrophoresis. With this approach, hyaluronidase activity could be observed at pH 4.8 under assay conditions in which CD44 and HYAL2 binding remained intact; additionally, weak hyaluronidase activity could be observed at pH 6.8 under these conditions. This study suggests that CD44 and HYAL2 are bound at the surface of chondrocytes. The release of HYAL2 when CD44 is shed could provide a mechanism for weak hyaluronidase activity to occur within the more distant extracellular matrix of cartilage.  相似文献   

16.
Efflux of chemotherapy agents by P-glycoprotein at the plasma membrane is thought to be a major cause of cancer multidrug-resistance (MDR). However, the mechanism underlying the cellular accumulation and distribution of cytotoxic drugs is still poorly defined. We have recently found that P-glycoprotein is expressed also in the nucleus of MDR cell lines selected in doxorubicin (DXR), suggesting the possible involvement of this protein in the direct extrusion of the drug from the nucleus of resistant cells. In this study, we analyzed the subcellular localization of P-glycoprotein, in a series of U-2 OS osteosarcoma cell clones transfected with MDR1 gene in order to verify whether the nucleus is a constant site for the localization and functional activity of P-glycoprotein, and in which way some aspects of cell morphology related to MDR depend on the subcellular P-glycoprotein localization rather than on the exposure to the selective drug. Our results indicate that to achieve a subcellular drug distribution prevailing in the cytoplasm but not in the nucleus, a significant increase in the expression of P-glycoprotein at the different cellular compartments, including the plasma membrane, the cytoplasm, and the nucleus, is needed, although the in vitro drug resistance appears to be mainly dependent on the expression of P-glycoprotein at the cell surface. With regard to the morphological characteristics of MDR cells involving the cell surface and the chromatin arrangement, the influence of DXR appears to be prevalent, although P-glycoprotein overexpression cannot be excluded.  相似文献   

17.
Hyaluronan is an important soluble component of the extracellular matrix of many tissues with well known space-filling, lubricating and signaling functions. As such, hyaluronan can regulate cell adhesion, migration, differentiation and proliferation. Ultrastructural studies showed the existence of fibers and networks of hyaluronan molecules at surfaces, while bulk studies of hyaluronan in solution indicated that the polymer forms random coils. Here, we show that single hyaluronan molecules can be visualized and tracked in three-dimensional samples at room temperature in aqueous buffer. Using a wide-field fluorescence microscope equipped with laser excitation and an sensitive and fast EMCCD camera for fluorescence detection, single FITC-labeled hyaluronan molecules from rooster comb were detected in aqueous solutions. Freely moving hyaluronan-FITC could be tracked over up to 20 images acquired at a frame rate of 98 Hz. Analysis of the trajectories revealed Brownian motion of hyaluronan in tris-buffered saline with an average diffusion coefficient D = 3.0 ± 0.2 μm2/s. These observations confirm the concept that hyaluronan molecules form random coils in solution. The possibility of following the tracks of single hyaluronan molecules in solution facilitates the analysis of processes that lead to the formation of more organized forms of hyaluronan and its interactions with cells with very high spatial and temporal accuracy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Development of effective therapeutic strategies to eliminate cancer stem-like cells (CSCs), which play a major role in drug resistance and disease recurrence, is critical to improve cancer treatment outcomes. The current investigation was undertaken to examine the effectiveness of the combination treatment of Hsp90 inhibitor and SIRT1 inhibitor in inhibiting the growth of chemo-resistant stem-like cells isolated from human chronic myeloid leukemia K562 cells. Inhibition of SIRT1 by use of SIRT1 siRNA or SIRT1 inhibitors (amurensin G and EX527) effectively potentiated sensitivity of Hsp90 inhibitors (17-AAG and AUY922) in CD44high K562 stem-like cells expressing high levels of CSC-related molecules including Oct4, CD34, β-catenin, c-Myc, mutant p53 (mut p53), BCRP and P-glycoprotein (P-gp) as well as CD44. SIRT1 depletion caused significant down-regulation of heat shock factor 1 (HSF1)/heat shock proteins (Hsps) as well as these CSC-related molecules, which led to the sensitization of CD44high K562 cells to Hsp90 inhibitor by SIRT1 inhibitor. Moreover, 17-AAG-mediated activation of HSF1/Hsps and P-gp-mediated efflux, major causes of Hsp90 inhibitor resistance, was suppressed by SIRT1 inhibitor in K562-CD44high cells. Our data suggest that combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be an effective therapeutic approach to target CSCs that are resistant to current therapies.  相似文献   

19.
Regulation of multidrug resistance in cancer cells by hyaluronan   总被引:9,自引:0,他引:9  
Multidrug resistance in cancer cells is often due to ATP-dependent efflux pumps, but is also linked to alterations in cell survival and apoptotic signaling pathways. We have found previously that perturbation of hyaluronan-tumor cell interaction by treatment with hyaluronan oligosaccharides suppresses the phosphoinositide 3-kinase/Akt cell survival signaling pathway in cancer cells and reduces tumor growth in vivo. Here we find that these oligomers suppress both the MAP kinase and phosphoinositide 3-kinase pathways in multidrug resistant tumor cells and sensitize these cells to a variety of chemotherapeutic drugs. On the other hand, increased hyaluronan production induces resistance in drug-sensitive tumor cells. Likewise, increased expression of emmprin, which is a glycoprotein that is present on the surface of most malignant cancer cells and that stimulates hyaluronan production, also induces increased resistance. Thus, perturbation of hyaluronan signaling may provide a dual therapeutic role, since it has intrinsic suppressive effects on tumor growth as well as sensitizing cancer cells to chemotherapeutic agents.  相似文献   

20.
Hyaluronan synthases (HAS1–3) are integral plasma membrane proteins that synthesize hyaluronan, a cell surface and extracellular matrix polysaccharide necessary for many biological processes. It has been shown that HAS is partly localized in cholesterol-rich lipid rafts of MCF-7 cells, and cholesterol depletion with methyl-β-cyclodextrin (MβCD) suppresses hyaluronan secretion in smooth muscle cells. However, the mechanism by which cholesterol depletion inhibits hyaluronan production has remained unknown. We found that cholesterol depletion from MCF-7 cells by MβCD inhibits synthesis but does not decrease the molecular mass of hyaluronan, suggesting no major influence on HAS stability in the membrane. The inhibition of hyaluronan synthesis was not due to the availability of HAS substrates UDP-GlcUA and UDP-GlcNAc. Instead, MβCD specifically down-regulated the expression of HAS2 but not HAS1 or HAS3. Screening of signaling proteins after MβCD treatment revealed that phosphorylation of Akt and its downstream target p70S6 kinase, both members of phosphoinositide 3-kinase-Akt pathway, were inhibited. Inhibitors of this pathway suppressed hyaluronan synthesis and HAS2 expression in MCF-7 cells, suggesting that the reduced hyaluronan synthesis by MβCD is due to down-regulation of HAS2, mediated by the phosphoinositide 3-kinase-Akt-mTOR-p70S6K pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号