首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Glucagon increases the cytoplasmic free calcium concentration as measured by aequorin bioluminescence. It has been proposed by Wakelam et al. (Nature 323 (1986) 68-71) that low concentrations of glucagon mobilize calcium from an intracellular pool by causing polyphosphoinositide breakdown. To identify whether cyclic AMP mediates changes in the cytoplasmic free calcium concentration ([Ca2+]c) induced by glucagon, the effects of forskolin and exogenous cyclic AMP on [Ca2+]c were compared with that of glucagon in aequorin-loaded hepatocytes. Although the magnitudes of the [Ca2+]c responses to 250 microM forskolin and 1 mM 8-bromo cyclic AMP were identical to that of 5 nM glucagon, these two agents induced a more prolonged elevation of [Ca2+]c. Glucagon-induced elevation of [Ca2+]c was accompanied by a smaller increase in cyclic AMP than that induced by forskolin. When the cyclic AMP response to glucagon was potentiated by an inhibitor of phosphodiesterase, 3-isobutyl-1-methylxanthine, the glucagon-induced increase in [Ca2+]c was not affected. Conversely, when the cyclic AMP response to glucagon was reduced by pretreatment of the cells with angiotensin II, glucagon-induced changes in [Ca2+]c were rather enhanced. Furthermore, vasopressin potentiated glucagon-induced changes in [Ca2+]c despite the reduction of the cyclic AMP response to glucagon. In the presence of 1 microM extracellular calcium, angiotensin II did not enhance glucagon-induced changes in [Ca2+]c. These results suggest that at least part of the action of 5 nM glucagon on calcium mobilization is independent of cyclic AMP.  相似文献   

2.
Glucagon was added to isolated rat hepatocytes, either alone or together with vasopressin or angiotensin II, and the effects on the initial 45Ca2+ uptake rate were investigated. Addition of glucagon alone which increased cyclic AMP content of the cells slightly increased the initial 45Ca2+ uptake rate. When glucagon was added together with vasopressin or angiotensin II--both of which when added separately increase the initial 45Ca2+ uptake rate but did not affect the cellular content of cyclic AMP--the measured initial 45Ca2+ uptake rate was larger than the sum of that seen with each hormone alone. This indicates that glucagon and Ca2+-linked hormones synergistically enhanced the Ca2+ influx in rat hepatocytes. These effects of glucagon can be mimicked by dibutyryl cyclic AMP or forskolin, suggesting that cyclic AMP augments both the resting Ca2+ and the vasopressin- or angiotensin II-stimulated influx. Measurement of the initial 45Ca2+ uptake rate as a function of the extracellular Ca2+ concentration indicated that the increase in the Ca2+ influx resulting from single or combined glucagon and vasopressin administration occurred through a homogeneous population of Ca2+ gates. These hormones were found to raise both the apparent Km for external Ca2+ and the apparent Vmax of the Ca2+ influx. The maximal increase in these two parameters was observed when the two hormones were added together. This suggests that glucagon and vasopressin synergistically stimulate the same Ca2+ gating mechanism. The dose-response curves for the action of glucagon or vasopressin applied in the presence of increasing concentrations of vasopressin or glucagon, respectively, showed that each hormone increases the maximal response to the other without affecting its ED50. It is proposed that glucagon and the Ca2+-linked hormones control the cellular concentration of two intermediates which are both necessary to allow Ca2+ entry into the cells.  相似文献   

3.
The cytosolic free calcium ion concentration ([Ca2+]i) of individual lymphocytes was measured by microfluorometry with dual excitation wavelengths using quin 2 for fura-2. Fura-2 was a more suitable fluorescent Ca2+ indicator than quin 2 for measurements of single cells because of the standard curve calibrated for fura-2 had a good linearity, and the standard deviation (SD) of the value of the intensity ratio of fura-2-loaded cells was much smaller than that of quin 2-loaded cells. The [Ca2+]i in quiescent lymphocytes was about 1 x 10(-7) M, and an increase in the [Ca2+]i was observed within a few minutes of ionomycin, protein A, phorbol myristate acetate (PMA) or concanavalin A (Con A) stimulation. Ionomycin-induced proliferation occurred when the initial [Ca2+]i was approximately 3 x 10(-7) M or greater. The increase in the [Ca2+]i induced by Con A occurred transiently, and another rise in the [Ca2+]i was observed in the stage prior to the S-phase. These results indicate that Ca2+ is necessary for stimulated lymphocytes to enter the cell cycle and S-phase.  相似文献   

4.
The effects of melatonin on pituitary adenylyl cyclase-activating polypeptide-induced increase of cyclic AMP and [Ca2+]i were studied in neonatal rat pituitary cells. The polypeptide increased cyclic AMP accumulation. In the presence of melatonin the increase of cyclic AMP was inhibited in a dose-dependent manner, the maximal inhibition was achieved with 1-10 nM melatonin. Pituitary adenylyl cyclase-activating polypeptide also increased [Ca2+]i in 30% of the pituitary cells and melatonin inhibited the effect. Most of the cells sensitive to adenylyl cyclase-activating polypeptide (77%) were also sensitive to GnRH, suggesting they are gonadotrophs. The remaining cells were not identified. The polypeptide-induced [Ca2+]i increase was inhibited in Ca2+-free medium in 2/3 of the cells indicating that Ca2+ influx was involved. To examine causal relationship between cyclic AMP and [Ca2+]i increase, we have studied the effect of adenylyl cyclase activation by forskolin on intracellular Ca2+ concentration. Forskolin had similar effects as adenylyl cyclase-activating polypeptide: it increased [Ca2+]i in the pituitary cells and the increase was dependent on presence of Ca2+ in the medium. Melatonin inhibited the forskolin induced [Ca2+]i increase. Our observations indicate that increase of cyclic AMP stimulates Ca2+ influx in the pituitary cells of neonatal rat and that this mechanism is involved in [Ca2+]i increase induced by the pituitary adenylyl cyclase-activating polypeptide. Because melatonin inhibits increase of cyclic AMP induced by pituitary adenylyl cyclase-activating polypeptide or forskolin, the inhibitory effect of melatonin on Ca2+-influx may be mediated by the decrease of cyclic AMP concentration. This mechanism of melatonin action has not been described previously. Because melatonin inhibits the polypeptide- or forskolin-induced [Ca2+]i also in the cells not sensitive to GnRH, melatonin receptors seem to be present on both gonadotrophs and non-gonadotrophic pituitary cells.  相似文献   

5.
Phenylephrine, vasopressin and glucagon each increased the amount of active (dephospho) pyruvate dehydrogenase (PDHa) in isolated rat hepatocytes. Treatment with 4 beta-phorbol 12-myristate 13-acetate (PMA) opposed the increase in PDHa caused by both phenylephrine and glucagon, but had no effect on the response to vasopressin: PMA alone had no effect on PDHa. As PMA is known to prevent the phenylephrine-induced increase in cytoplasmic free Ca2+ concentration ([Ca2+]c) and to diminish the increase [Ca2+]c caused by glucagon, while having no effect on the ability of vasopressin to increase [Ca2+]c, these data are consistent with the notion that in intact cells an increase in [Ca2+]c results in an increase in the mitochondrial free Ca2+ concentration, which in turn leads to the activation of PDH. In the presence of 2.5 mM-Ca2+, glucagon caused an increase in NAD(P)H fluorescence in hepatocytes. This increase is taken to reflect an enhanced activity of mitochondrial dehydrogenases. PMA alone had no effect on NAD(P)H fluorescence; it did, however, compromise the increase produced by glucagon. When the extracellular free [Ca2+] was decreased to 0.2 microM, glucagon could still increase NAD(P)H fluorescence. Vasopressin also increased fluorescence under these conditions; however, if vasopressin was added after glucagon, no further increase in fluorescence was observed. Treatment of the cells with PMA resulted in a smaller increase in NAD(P)H fluorescence on addition of glucagon: the subsequent addition of vasopressin now caused a further increase in fluorescence. Changes in [Ca2+]c corresponding to the changes in NAD(P)H fluorescence were observed, again supporting the idea that [Ca2+]c indirectly regulates intramitochondrial dehydrogenase activity in intact cells. PMA alone had no effect on pyruvate kinase activity, and the phorbol ester did not prevent the inactivation caused by glucagon. The latter emphasizes the different mechanisms by which the hormone influences mitochondrial and cytoplasmic metabolism.  相似文献   

6.
The intracellular free calcium concentration, [Ca2+]i, has been measured in dog thyroid cells using the fluorescent Ca2+-indicator, quin2. Acetylcholine or its non-hydrolyzable analog, carbamylcholine rapidly increased [Ca2+]i by 40 +/- 4% (mean +/- SE) over the basal level of 81 +/- 2 nM. This increase was totally abolished by atropine, a muscarinic cholinergic receptor blocker, but was not influenced by verapamil, a voltage dependent-calcium channel blocker. Depletion of extracellular Ca2+ by the addition of EGTA, diminished but did not abolish the response to carbamylcholine. These data suggest that cholinergic effectors increase [Ca2+]i by mobilization of Ca2+ from intracellular stores rather than from an influx of Ca2+. Addition of TSH, isoproterenol, phorbol ester, dibutyryl cyclic GMP or cyclic AMP did not elicit any change in [Ca2+]i suggesting that their action may not involve any mobilization of intracellular Ca2+. These data provide direct evidence that in the thyroid cell, cholinergic agents act via their receptors to cause a rapid increase in [Ca2+]i, which may mediate their metabolic effects.  相似文献   

7.
Phorbol myristate acetate (PMA) inhibits glucagon-stimulated cyclic AMP accumulation and shifts to the right the dose-response curve to glucagon for ureagenesis. In cells from hypothyroid rats the effect of PMA on glucagon-stimulated ureagenesis was much more pronounced, but its effect on cyclic AMP accumulation was similar to that observed in the control cells. The stimulations of ureagenesis by the glucagon analogue THG and dibutyryl cyclic AMP (But2-cAMP) were also diminished by PMA, to a greater extent in cells from hypothyroid rats than in those from euthyroid rats. PMA inhibited the increases in cytoplasmic [Ca2+] induced by glucagon. THG or But2-cAMP; the effect of PMA was much more marked in cells from hypothyroid rats than in the controls. Treatment of the cells with glucagon or THG increased the production of citrulline by subsequently isolated mitochondria, whereas PMA diminished their effects. The results suggest that PMA alters glucagon actions at least at two levels; (i) cyclic AMP production and (ii) elevation of cytosol calcium. The increased sensitivity to PMA of some glucagon effects in hypothyroid rats seems to be related to the latter action.  相似文献   

8.
The intracellular signals generated by carbachol activation of the muscarinic receptor [release of inositol phosphates as a consequence of phosphoinositide hydrolysis and rise of the cytosolic Ca2+ concentration ([Ca2+]i, measured by quin2)] were studied in intact PC12 pheochromocytoma cells that had been differentiated by treatment with nerve growth factor. When measured in parallel samples of the same cell preparation 30 s after receptor activation, the release of inositol trisphosphate and of its possible metabolites, inositol bis- and mono-phosphate, and the [Ca2+]i rise were found to occur with almost superimposable carbachol concentration curves. At the same time carbachol caused a decrease in the radioactivity of preloaded phosphatidylinositol 4,5-bisphosphate, the precursor of inositol trisphosphate. Neither the inositol phosphate nor the [Ca2+]i signal was modified by preincubation of the cells with either purified Bordetella pertussis toxin or forskolin, the direct activator of adenylate cyclase. Both signals were partially inhibited by dibutyryl cyclic AMP, especially when the nucleotide analogue was applied in combination with the phosphodiesterase inhibitors RO 201724 and theophylline. The latter drug alone profoundly inhibited the carbachol-induced [Ca2+]i rise, with only minimal effect on phosphoinositide hydrolysis. Because of the diverging results obtained with forskolin on the one hand, dibutyryl cyclic AMP and phosphodiesterase inhibitors on the other, the effects of the latter drugs are considered to be pharmacological, independent of the intracellular cyclic AMP concentration. Two further drugs tested, mepacrine and MY5445, inhibited phosphoinositide hydrolysis at the same time as the 45Ca2+ influx stimulated by carbachol. Taken together, our results concur with previous evidence obtained with permeabilized cells and cell fractions to indicate phosphatidylinositol 4,5-bisphosphate hydrolysis and [Ca2+]i rise as two successive events in the intracellular transduction cascade initiated by receptor activation. The strict correlation between the carbachol concentration curves for inositol trisphosphate generation and [Ca2+]i rise, and the inhibition by theophylline of the Ca2$ signal without major effects on inositol phosphate generation, satisfy important requirements of the abovementioned interpretation.  相似文献   

9.
The glycogenolytic effect of glucagon has been studied in fetal hepatocytes cultured for 3 to 4 days in the presence of cortisol (10 muM). The hepatocytes, when transplanted from young fetuses (15-day-old), contain only minute amounts of glycogen, whereas when cultured 3 to 4 days in the presence of cortisol, they contain high levels of stored glycogen. Glucagon induced a rapid but partial mobilization of glycogen, which was maximal after 2 hours. The half-maximal response was observed with about 0.1 nM glucagon. The glycogenolytic effect of glucagon in fetal hepatocytes is probably mediated by cyclic adenosine 3':5'-monophosphate (cyclic AMP) as in adult liver. This effect was mimicked by cyclic AMP and N-6, O-2-dibutyryl cyclic AMP, (dibutyryl cyclic AMP), and potentiated by theophylline. Glucagon addition was followed by accumulation of cyclic AMP in the cells within 2 min. Glucagon produces a marked stimulation of the rate of glycogen breakdown and an inhibition of the rate of incorporation of [14-C] glucose into glycogen. The glycogeneolytic effect of a single addition of glucagon was reversed within 4 hours. A second addition of glucagon at this time was unable to induce a new glycogenolytic response. A resistance to glucagon stimulation appeared in the cells after a first exposure to the hormone. This refractoriness was also shown by the loss of glucagon-dependent cyclic AMP accumulation and was not linked to the release by the cells of a "hormone antagonist" into the medium. The hepatocytes resistant to the action of glucagon retained their response to cyclic AMP, dibutyryl cyclic AMP, and norepinephrine. Finally, glycogenolytic concentrations of cyclic AMP and of its dibutyryl derivative failed to induce a refractoriness to glucagon.  相似文献   

10.
The requirements of purified rat Leydig cells for intra- and extra-cellular Ca2+ during steroidogenesis stimulated by LH (lutropin), cyclic AMP analogues and LHRH (luliberin) agonist were investigated. The intracellular Ca2+ concentrations ([Ca2+]i) were measured by using the fluorescent Ca2+ chelator quin-2. The basal [Ca2+]i was found to be 89.4 +/- 16.6 nM (mean +/- S.D., n = 25). LH, 8-bromo cyclic AMP and dibutyryl cyclic AMP increased [Ca2+]i, by 300-500 nM at the highest concentrations of each stimulator, whereas LHRH agonist only increased [Ca2+]i by a maximum of approx. 60 nM. Low concentrations of LH (less than 1 pg/ml) and all concentrations of LHRH agonist increased testosterone without detectable changes in cyclic AMP. With amounts of LH greater than 1 pg/ml, parallel increases in cyclic AMP and [Ca2+]i occurred. The steroidogenic effect of the LHRH agonist was highly dependent on extracellular Ca2+ concentration ([Ca2+]e), whereas LH effects were only decreased by 35% when [Ca2+]e was lowered from 2.5 nM to 1.1 microM. No increase in [Ca2+]i occurred with the LHRH agonist in the low-[Ca2+]e medium, whereas LH (100 ng/ml) gave an increase of 52 nM. It is concluded that [Ca2+]i can be modulated in rat Leydig cells by LH via mechanisms that are both independent of and dependent on cyclic AMP, whereas LHRH-agonist action on [Ca2+]i is independent of cyclic AMP. The evidence obtained suggests that, at sub-maximal rates of testosterone production, Ca2+, rather than cyclic AMP, is the second messenger, whereas for maximum steroidogenesis both Ca2+- and cyclic-AMP-dependent pathways may be involved.  相似文献   

11.
Cytoplasmic free calcium ([Ca2+]i) and secretion of ATP were measured in quin2-loaded human platelets. In certain conditions thrombin and collagen cause secretion while [Ca2+]i remains at basal concentrations, a response attributed to activation of protein kinase by diacylglycerol formed by hydrolysis of inositol lipids. This secretion evoked by thrombin could be totally suppressed by prostaglandin I2 or forskolin, as expected from the known ability of cyclic AMP to inhibit phospholipase C. The secretory response evoked by collagen at basal [Ca2+]i and that evoked by exogenous diacylglycerol or phorbol ester, direct activators of protein kinase-C, were much less affected by these inhibitors, suggesting that thrombin and collagen may promote formation of diacylglycerol by different mechanisms.  相似文献   

12.
In quiescent cultures of Swiss 3T3 cells, platelet-derived growth factor or fibroblast growth factor known to induce both protein kinase C activation and Ca2+ mobilization raised c-fos mRNA. This action of the growth factors was mimicked by the specific activators for protein kinase C, such as phorbol esters and a membrane-permeable synthetic diacylglycerol, and also by the Ca2+ ionophores, such as A23187 and ionomycin. Prostaglandin E1 known to elevate cyclic AMP also raised c-fos mRNA, and this action was mimicked by 8-bromo-cyclic AMP, dibutyryl cyclic AMP and forskolin. These results suggest that expression of the c-fos gene is regulated by three different intracellular messenger systems, protein kinase C, Ca2+ and cyclic AMP, in Swiss 3T3 cells.  相似文献   

13.
T Mine  I Kojima    E Ogata 《The Biochemical journal》1989,258(3):889-894
The synthetic 1-34 fragment of human parathyroid hormone (1-34hPTH) stimulated glucose production in isolated rat hepatocytes. The effect of 1-34hPTH was dose-dependent and 10(10) M-1-34 hPTH elicited the maximum glucose output, which was approx. 80% of that by glucagon. Although 1-34hPTH induced a small increase in cyclic AMP production at concentrations higher than 10(-9) M, 10(-10) M-1-34hPTH induced the maximum glucose output without significant elevation of cyclic AMP. This is in contrast to the action of forskolin, which increased glucose output to the same extent as 10(-10) M-1-34hPTH by causing a 2-fold elevation of cyclic AMP. In addition to increasing cyclic AMP, 1-34hPTH caused an increase in cytoplasmic free calcium concentration ([Ca2+]c). When the effect of 1-34hPTH on [Ca2+]c was studied in aequorin-loaded cells, low concentrations of 1-34hPTH increased [Ca2+]c: the 1-34hPTH effect on [Ca2+]c was detected at as low as 10(-12) M and increased in a dose-dependent manner. 1-34hPTH increased [Ca2+]c even in the presence of 1 microM extracellular calcium, suggesting that PTH mobilizes calcium from an intracellular pool. In line with these observations, 1-34hPTH increased the production of inositol trisphosphate. These results suggest that: (1) PTH activates both cyclic AMP and calcium messenger systems and (2) PTH stimulates glycogenolysis mainly via the calcium messenger system.  相似文献   

14.
Effects of adrenocorticotropin (ACTH) on cytoplasmic free calcium concentration, [Ca2+]c, have been measured in adrenal glomerulosa cells using a calcium-sensitive photoprotein, aequorin. ACTH causes a rapid and transient increase in [Ca2+]c. Dose response study demonstrates that 1 pM ACTH induces an elevation of [Ca2+]c and that effect of ACTH appears to be saturated at 100 pM. ACTH action is greatly inhibited but not abolished by removal of extracellular calcium and is completely blocked in medium containing no added calcium and 1 mM EGTA. Under similar conditions, angiotensin II induces a remarkable rise in [Ca2+]c. ACTH action is not affected by pretreatment with dantrolene, which considerably decreases angiotensin II action on [Ca2+]c. One micromolar forskolin, which mimics 1 nM ACTH-mediated elevation of intracellular cAMP, does not increase [Ca2+]c nor modulates changes in [Ca2+] induced by a low dose of ACTH. One hundred micromolar forskolin or 1 mM 8-bromo-cAMP, however, increases [Ca2+]c even in calcium-free medium containing 1 mM EGTA. When glomerulosa cells are co-loaded with aequorin and quin2, angiotensin II-induced change in aequorin signal is greatly reduced, and ACTH-induced change is abolished. Quin2 loading results in accumulation of calcium in the cell under both unstimulated and stimulated conditions. These results indicate that ACTH increases [Ca2+]c by cAMP-independent mechanism, that ACTH action on [Ca2+]c is exclusively dependent on extracellular calcium, and that quin2 is unable to detect the rapid change in [Ca2+]c because of its calcium chelating activity.  相似文献   

15.
The interaction between beta-adrenergic signaling and the activation of protein kinase C in alveolar type II cell plays an important role in the regulation of surfactant secretion because the combined application of beta-adrenergic agonist with protein kinase C activator to the cells stimulates the secretion synergistically. However, the mechanisms underlying the interaction are not clear. In the present study, we examined the combined effect of terbutaline with phorbol 12-myristate 13-acetate (PMA) on cytoplasmic free Ca2+ concentration ([Ca2+]i) in rat alveolar type II cells. The combined application of terbutaline with PMA to the cells rapidly increased [Ca2+]i, although neither of them affected it by itself. Similar increases of [Ca2+]i were observed in other combinations, such as terbutaline with 1-oleoyl-2-acetyl-sn-glycerol, and forskolin with PMA. Either the removal of extracellular Ca2+ or the addition of Co2+ remarkably suppressed the increase of [Ca2+]i induced by the combination of terbutaline with PMA. In addition, Co2+ inhibited the phosphatidylcholine secretion induced by the combination of terbutaline and PMA. These results suggested that the [Ca2+]i increased as a result of the interaction between formation of cyclic AMP and activation of protein kinase C in alveolar type II cells, and that the increase in [Ca2+]i was mediated by the Ca2+ influx through the plasma membrane. This mechanism to modulate [Ca2+]i may play a role in the regulation of surfactant secretion by alveolar type II cells.  相似文献   

16.
In general, calcium has been believed to control a variety of cellular processes as a signal transducer, with a high degree of spatial and temporal precision. For the determination of intracellular free-calcium concentrations [( Ca2+]i), the highly selective Ca2+ indicators, quin2/AM and fura2/AM, have been widely used in many mammalian and plant cells. However, intact cells of the cellular slime mold Dictyostelium discoideum Ax-2 are generally impermeable to externally added drugs, thus resulting in a failure to determine [Ca2+]i. Introduction of quin2/AM and fura2/AM by electroporation allowed us to measure [Ca2+]i in D. discoideum cells. The fluorescence images of fura2-loaded single cells showed that resting [Ca2+]i in vegetative and aggregation-competent cells is around 50 nM. Caffeine (10 mM) gave a transient increase in [Ca2+]i, which illustrated a normal responsive ability of electroporated cells to the externally added stimulus. Application of the chemoattractant, cAMP (20 nM), to aggregation-competent cells induced a rapid increase in [Ca2+]i within 1-2 s, and the [Ca2+]i level increased to about four-fold higher than the resting [Ca2+]i within 30 s of chemotactic stimulation. This was followed by a gradual decrease of [Ca2+]i to the basal level. These results strongly suggest that [Ca2+]i is a primary messenger in signal transduction, particularly during the chemotactic response of Dictyostelium cells.  相似文献   

17.
Quin 2-loaded isolated rabbit gastric glands and purified peptic cells were used to measure free cytosolic Ca2+ ([Ca2+]i) during hormone stimulation. Rabbit gastric glands are composed of peptic and parietal cells with less than 1% endocrine cells. Although both cell types responded to the same hormones, they may be distinguished in terms of the source of Ca2+ bringing about the change in [Ca2+]i. Experiments were designed to assign changes in [Ca2+]i to either the peptic or parietal cells and to attempt to maintain these distinctions in the mixed cell population of gastric glands. It was shown that the peptide cholecystokinin octapeptide induced a rapid and transient increase in [Ca2+]i of isolated peptic cells. This signal was independent of medium Ca2+ and insensitive to the Ca2+ channel blockers La3+ and nifedipine. In gastric glands, the Ca2+ outdependent increase in (Ca2+)i (the secondary transient) was slower and dose dependently blocked by La3+ and nifedipine. This allowed [Ca2+]i levels in the physiologically more intact rabbit gastric glands to be dissected and correlated with fluorescence changes of quin 2 in either cell type. The transient increase in [Ca2+]i coincided with a burst of pepsin but not acid secretion. A subsequent slower phase of pepsin secretion took place while the cells restored near resting [Ca2+]i. Using a combination of the Ca2+ ionophore A23187 and the protein kinase C activating phorbol ester 12-O-tetra-decanoylphorbol 13-acetate, the hormone response pattern of pepsin secretion could be mimicked. The intracellular Ca2+ stores of the peptic cells in the gastric gland remained depleted of Ca2+ until specific antagonists were added. The reloading of intracellular stores required medium Ca2+ although [Ca2+]i was maintained at resting level during the entire reloading period. Hence, a specialized pathway of Ca2+ reloading is postulated.  相似文献   

18.
The effect of cAMP and PKC on zymogen granule exocytosis was investigated by simultaneously measuring cytosolic Ca2+ concentration ([Ca2+]c) and individual zymogen granule exocytosis in isolated mouse pancreatic acini. When acinar cells were stimulated with acetylcholine (ACh, 10 microM), exocytic events were detected through granule-attached apical membranes with [Ca2+]c rise. Application of secretin, forskolin (an adenylate cyclase activator), or PMA (a PKC activator) alone did not elicit any [Ca2+]c rise or zymogen granule exocytosis, but co-stimulation with ACh led to exocytosis in that the total number of secreted granules increased markedly without a significant difference in [Ca2+]c rises. When we evoked exocytosis by [Ca2+]c ramps, pretreatment with forskolin or PMA elicited exocytosis at lower [Ca2+]c levels. These results indicate that PKC or cAMP alone could not directly elicit zymogen granule exocytosis, but that they increase the total releasable pool by rendering zymogen granules more sensitive to Ca2+.  相似文献   

19.
Bombesin is an amphibian tetradecapeptide whose mammalian homologue, gastrin-releasing peptide (GRP), is produced by many small-cell lung-cancer (SCLC) cells, and which can function in an autocrine growth-promoting manner in SCLC. Studies reported here show that [Tyr4]bombesin and its congeners increase inositol 1,4,5-trisphosphate within seconds in NCI-H345, a SCLC cell line that constitutively produces GRP. After 30 min in the presence of 0.01 M-Li+ and [Tyr4]bombesin, there is marked accumulation of inositol monophosphates and inositol tetrakisphosphate. Pretreatment with phorbol 12-myristate 13-acetate (PMA) for 20 min inhibited the ability of [Tyr4]bombesin to induce phosphatidylinositol (PtdIns) turnover and to increase intracellular free Ca2+ ([Ca2+]i). Pretreatment with PMA for 48 h attenuated the ability of subsequently added PMA to decrease the response to [Tyr4]bombesin. Pretreatment with pertussis toxin (PT; 1 microgram/ml for 18-24 h) decreased by less than 30% [Tyr4]bombesin-induced increases in [Ca2+]i and PtdIns metabolites. However, interpretation of this result is complicated by the inability of PT to ADP-ribosylate completely its substrates in intact NCI-H345 cells. In contrast, pretreatment with cholera toxin (1 microgram/ml for 18-24 h) lowered basal [Ca2+]i and basal inositol phosphate concentrations, attenuated the response of NCI-H345 to subsequently added [Tyr4]bombesin, and was not mimicked by treatments that increase cellular cyclic AMP. These data demonstrate the activation of phospholipase C in SCLC by bombesin congeners. In addition, the results suggest a regulatory role for protein kinase C, a cholera-toxin substrate, and perhaps a pertussis-toxin substrate in the response of SCLC to bombesin.  相似文献   

20.
《The Journal of cell biology》1984,99(4):1212-1220
The intracellularly trapped fluorescent calcium indicator, quin 2, was used not only to monitor changes in cytosolic-free calcium, [Ca2+]i, but also to assess the role of [Ca2+]i in neutrophil function. To increase cytosolic calcium buffering, human neutrophils were loaded with various quin 2 concentrations, and [Ca2+]i transients, granule content release as well as superoxide [O2-] production were measured in response to the chemotactic peptide formyl-methionyl-leucyl- phenylalanine (fMLP) and the calcium ionophore ionomycin. Receptor- mediated cell activation induced by fMLP caused a rapid rise in [Ca2+]i. The extent of [Ca2+]i rise and granule release were inversely correlated with the intracellular concentration of quin 2, [quin 2]i. These effects of [quin 2]i were more pronounced in the absence of extracellular Ca2+. The initial rate and extent of fMLP-induced O2- production were also inhibited by [quin 2]i. The rates of increase of [Ca2+]i and granule release elicited by ionomycin were also inversely correlated with [quin 2]i in Ca2+-containing medium. As the effects of ionomycin, in contrast to those of fMLP, are sustained, the final increase in [Ca2+]i and granule release were not affected by [quin 2]i. A further reduction of fMLP effects was seen when intracellular calcium stores were depleted by incubating the cells in Ca2+-free medium with ionomycin. The specificity of quin 2 effects on cellular calcium were confirmed by loading the cells with Anis/AM, a structural analog of quin 2 with low affinity for calcium which did not inhibit granule release. In addition, functional responses to phorbol myristate acetate (PMA), which stimulates neutrophils without raising [Ca2+]i, were not affected by [quin 2]i. The findings indicate that rises in [Ca2+]i control the rate and extent of granule exocytosis and O2-generation in human neutrophils exposed to the chemotactic peptide fMLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号