首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Rat liver secretory component is synthesized as an integral membrane protein (mSC) and cleaved to an 80-kD soluble form (fSC) sometime during transcellular transport from the sinusoidal to the bile canalicular plasma membrane domain of hepatocytes. We have used 24-h monolayer cultures of rat hepatocytes to characterize the conversion of mSC to fSC. Cleavage of mSC in cultured hepatocytes is inhibited by the thiol protease inhibitors leupeptin, antipain, and E-64, but not by other inhibitors, including disopropylfluorophosphate, pepstatin, N-ethylmalemide, p-chloromercuribenzoic acid, and chloroquine. Leupeptin-mediated inhibition of cleavage is concentration dependent and reversible. In the presence or absence of leupeptin, only 10-20% of mSC is accessible at the cell surface. To characterize the behavior of surface as opposed to intracellular mSC, cell surface mSC was labeled with 125I by lactoperoxidase-catalyzed iodination at 4 degrees C. Cell surface 125I-mSC was converted to extracellular fSC at 4 degrees C in the absence of detectable internalization. Cleavage was inhibited by leupeptin and by anti-secretory component antiserum. Cleavage also occurred at 4 degrees C after cell disruption. In contrast, 125I-mSC that had been internalized from the cell surface was not converted to fSC at 4 degrees C in either intact or disrupted cells. Hepatocytes metabolically labeled with [35S]cys also released small quantities of fSC into the medium at 4 degrees C. The properties of fSC production indicate that cleavage occurs on the surface of cultured rat hepatocytes and not intracellularly. Other features of the cleavage reaction suggest that the mSC-cleaving protease is segregated from the majority of cell surface mSC, possibly within a specialized plasma membrane domain.  相似文献   

2.
The surface distribution of the plasma membrane Ca2+ (Mg2+)-ATPase (ecto-ATPase) in rat hepatocytes was determined by several methods. 1) Two polyclonal antibodies specific for the ecto-ATPase were used to examine the distribution of the enzyme in frozen sections of rat liver by immunofluorescence. Fluorescent staining was observed at the bile canalicular region of hepatocytes. 2) Plasma membranes were isolated from the canalicular and sinusoidal regions of rat liver. The specific activity of ecto-ATPase in the canalicular membranes was 22 times higher than that of sinusoidal membranes. The enrichment of the ecto-ATPase activity in the canalicular membrane is closely parallel to that of two other canalicular membrane markers, gamma-glutamyltranspeptidase and leucine aminopeptidase. 3) By immunoblots with polyclonal antibodies against the ecto-ATPase and the Na+,K+-ATPase, it was found that the ecto-ATPase protein was only detected in canalicular membranes and not in sinusoidal membranes, while the Na+,K+-ATPase protein was only detected in sinusoidal membranes and not in canalicular membranes. These results indicate that the ecto-ATPase is enriched in the canalicular membranes of rat hepatocytes.  相似文献   

3.
Extrahepatic obstructive cholestasis has been demonstrated to induce a redistribution of domain specific membrane proteins in rat hepatocytes reflecting loss or even reversal of cell polarity. In order to further characterize the redistribution of canalicular antigens, we used the Lowicryl K4M immunogold technique for examination of the effects of bile duct ligation (50 h) on the distribution of antigen in rat hepatocytes at the ultrastructural level and quantitated immuno-gold density in the three domains of the plasma membrane. In normal hepatocytes, antigen was localized almost exclusively in the canalicular domain while the sinusoidal and lateral membranes showed only weak immunoreactivity. Other localizations included organelles compatible with known pathways of biosynthesis and degradation. Bile duct ligation markedly reduced immunolabel in the canalicular and increased it slightly in the sinusoidal domain. The number and staining intensity of immunoreactive subcanalicular lysosomes and vesicles probably representing endosomes was augmented. Number of immunogold particles per micron of plasma membrane were 7.86 vs 2.46 (P less than 0.005) in the canalicular, 1.16 vs 1.38 (n.s.) in the sinusoidal, and 1.23 vs 1.08 (n.s.) in the lateral domain resulting in a canalicular decrease by 68.7% and a sinusoidal increase of 19.0%. Overall decrease in total plasma membranes was by 29.7% (P less than 0.05). Thus, our data show that the sinusoidal and lateral domains behave differently. Furthermore, quantitative immunocytochemistry demonstrates a decrease in the canalicular antigen density and suggests a sinusoidal increase. The present data agree with the concept that bile duct ligation results in a loss or even reversal of cell polarity in hepatocytes.  相似文献   

4.
The redistribution and fate of colchicine-induced alkaline phosphatase (ALPase) in rat hepatocytes were investigated by electron microscopic enzyme cytochemistry and biochemistry. ALPase activity markedly increased in rat hepatocytes after colchicine treatment (2.0 mg/kg body weight, intraperitoneal injection). At 20–24 h after colchicine treatment, the liver showed the highest activity of ALPase. Thereafter, ALPase activity decreased and returned to normal levels at 48 h. In normal hepatocytes from control rats, ALPase activity was seen only on the bile canalicular membrane. However, at 20–24 h after colchicine treatment, colchicine-induced ALPase was redistributed in the sinusoidal and lateral (basolateral) membranes as well as in the bile canalicular membrane. At 30–36 h after colchicine treatment, ALPase activity on the basolateral membrane gradually decreased. In contrast, ALPase in the bile canalicular membrane increased along with the enlargement of bile canaliculi, suggesting that ALPase in the basolateral membrane had been transported to the bile canalicular membrane. Furthermore, ALPase-positive vesicles, cisternae and autophagosome-like structures were frequently seen in the cytoplasm. ALPase was also positive in some lysosomal membranes. ALPase in hepatocytes at 48 h after colchicine treatment returned to almost the same location as in control hepatocytes. Altogether, it is suggested that excessively induced ALPase is at least partially retrieved by invagination of the bile canalicular membrane and then transported to lysosomes for degradation. In addition, this study indicates that excess plasma membrane might be a possible origin of autophagosomal membrane.  相似文献   

5.
Simon et al. (J. Clin. Invest., 70 (1982) 401) studied cholate binding to crude liver plasma membrane vesicles and suggested that the binding may represent mainly the binding to the receptor (carrier) on the canalicular membrane. This hypothesis was supported by finding a good correlation between the number of cholate binding sites on liver plasma membrane and the maximal rate of biliary secretion (Tm) for taurocholate. We studied bile acid binding to sinusoidal and canalicular membrane vesicles isolated from rat liver by a rapid filtration technique. Scatchard analysis of the saturation kinetics showed both [3H]cholate and [3H]chenodeoxycholate bind to two classes of binding site on each membrane. However, little difference was observed between the binding to sinusoidal and canalicular membrane vesicles for each bile acid (cholate, Kd1 = 10.4 and 19.8 microM, n1 = 31.0 23.6 pmol/mg protein, Kd2 = 1.32 and 1.73 mM, n2 = 13.1 and 23.4 nmol/mg protein; and chenodeoxycholate, Kd1 = 0.207 and 0.328 microM, n1 = 36.7 and 27.4 pmol/mg protein, Kd2 = 1.16 and 2.26 mM, and n2 = 20.6 and 24.2 nmol/mg protein; numbers show the mean values sinusoidal and canalicular membrane vesicles, respectively). Chenodeoxycholate binding to sinusoidal membrane vesicles was markedly inhibited by cholate but not by Rose bengal, an organic anion dye. These studies indicate that both membranes (sinusoidal and canalicular membrane vesicles) have two kinds of binding site for bile acids, although no clear difference in the binding properties was observed between the two membranes. Consequently, the cholate binding Simon detected may represent the binding not only to canalicular membrane vesicles but also to sinusoidal membrane vesicles.  相似文献   

6.
Addition of cholestatic doses of chlorpromazine-HC1 to the perfusate of isolated rat livers produces widespread changes in hepatocyte membrane structure. These findings include a marked increase in intrasinusoidal cytoplasmic bullae, appearance of intracellular vacuoles within hepatocytes at both sinusoidal and biliary poles, dilation of bile canaliculi and evagination of canalicular diverticuli, and the formation of myeloid bodies within hepatocytes. These findings obtained in the bile acid depleted perfused liver may result from physiochemical interactions between chlorpromazine or its metabolites and lipid-protein components of cell membranes, consistent with chlorpromazine's properties as a cationic detergent. They occur independently of the vasoconstrictive effects of chlorpromazine and suggest that chlorpromazine may produce cholestasis by altering hepatocyte membrane function.  相似文献   

7.
ATP-dependent trapping of [14C]methylamine was demonstrated in vesicles selectively derived from the sinusoidal plasma membrane of rat hepatocytes; activity was lacking in vesicles prepared from the canalicular domain of the plasma membrane of rat hepatocytes. The proton movement was inhibited by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, strophanthidin, vanadate, amiloride, and absence of sodium. 22Na efflux from sinusoidal membrane vesicles increased inversely to extravesicular pH. The results indicate that the sinusoidal plasma membrane of rat hepatocytes contains a Na+/H+ antiport.  相似文献   

8.
1. Liver plasma membranes originating from the sinusoidal, lateral and canalicular surface domains of hepatocytes were covalently labelled with sulpho-N-hydroxysuccinamide-biotin. After solubilization in Triton X-114, treatment with a phosphatidylinositol-specific phospholipase C (PI-PLC), two-phase partitioning and 125I-streptavidin labelling of the proteins resolved by PAGE, six major polypeptides (molecular masses 110, 85, 70, 55, 38 and 35 kDa) were shown to be anchored in bile canalicular membrane vesicles by a glycosyl-phosphatidylinositol (G-PI) 'tail'. 2. Permeabilized 'early' and 'late' endocytic vesicles isolated from liver were also examined. Two polypeptides (110 and 35 kDa) were shown to be anchored by a G-PI tail in 'late' endocytic vesicles. 3. Analysis of marker enzymes in bile-canalicular vesicles treated with PI-PLC showed that 5'-nucleotidase and alkaline phosphatase, but not leucine aminopeptidase and ecto-Ca2(+)-ATPase activities were released from the membrane. A low release and recovery of alkaline phosphodiesterase activity was noted. The cleavage from the membrane of 5'-nucleotidase as a 70 kDa polypeptide was confirmed by Western blotting using an antibody to this enzyme. 4. Antibodies raised to proteins released from bile-canalicular vesicles by PI-PLC treatment, and purified by partitioning in aqueous and Triton X-114 phases, localized to the bile canaliculi in thin liver sections. Antibodies to proteins not hydrolysed by this treatment stained by immunofluorescence the sinusoidal and canalicular surface regions of hepatocytes. 5. Antibodies generated to proteins cleaved by PI-PLC treatment of canalicular vesicles were shown to identify, by Western blotting, a major 110 kDa polypeptide in these vesicles. Two polypeptides (55 and 38 kDa) were detected in MDCK and HepG-2 cultured cells. 6. Since two of the six G-PI-anchored proteins targeted to the bile-canalicular plasma membrane were also detected in 'late' endocytic vesicles, the results suggest that a junction where exocytic and endocytic traffic routes meet occurs in a 'late' endocytic compartment.  相似文献   

9.
Summary Extrahepatic obstructive cholestasis has been demonstrated to induce a redistribution of domain specific membrane proteins in rat hepatocytes reflecting loss or even reversal of cell polarity. In order to further characterize the redistribution of canalicular antigens, we used the Lowicryl K4M immunogold technique for examination of the effects of bile duct ligation (50 h) on the distribution of antigen in rat hepatocytes at the ultrastructural level and quantitated immuno-gold density in the three domains of the plasma membrane. In normal hepatocytes, antigen was localized almost exclusively in the canalicular domain while the sinusoidal and lateral membranes showed only weak immunoreactivity. Other localizations included organelles compatible with known pathways of biosynthesis and degradation. Bile duct ligation markedly reduced immunolabel in the canalicular and increased it slightly in the sinusoidal domain. The number and staining intensity of immunoreactive sub-canalicular lysosomes and vesicles probably representing endosomes was augmented. Number of immunogold particles per m of plasma membrane were 7.86 vs 2.46 (P<0.005) in the canalicular, 1.16 vs 1.38 (n.s.) in the sinusoidal, and 1.23 vs 1.08 (n.s.) in the lateral domain resulting in a canalicular decrease by 68.7% and a sinusoidal increase of 19.0%. Overall decrease in total plasma membranes was by 29.7% (P<0.05). Thus, our data show that the sinusoidal and lateral domains behave differently. Furthermore, quantitative immunocytochemistry demonstrates a decrease in the canalicular antigen density and suggests a sinusoidal increase. The present data agree with the concept that bile duct ligation results in a loss or even reversal of cell polarity in hepatocytes.This study was supported by the Swiss National Science Foundation grants 3.846.0.87 (to L.L.) and 3.992.0.87 (to P.J.M.)  相似文献   

10.
The liver is the major organ which eliminates leukotriene C4 (LTC4) and other cysteinyl leukotrienes from the blood circulation into bile. Transport of LTC4 was studied using inside-out vesicles enriched in canalicular and sinusoidal membranes from rat liver. The incubation of canalicular membrane vesicles with [3H]LTC4 in the presence of ATP resulted in an uptake of LTC4 into vesicles. The initial rate of ATP-stimulated LTC4 uptake was about 40-fold higher in canalicular than in sinusoidal membrane vesicles. When liver plasma membrane vesicles were incubated in the absence of ATP, an apparent transient uptake of LTC4 was observed which was temperature-dependent and not affected by the osmolarity. This indicates that LTC4 was bound to proteins on the surface of plasma membrane vesicles. Two proteins with relative molecular weights of 17,000 and 25,000 were detected by direct photoaffinity labeling as major LTC4-binding proteins. One protein (Mr 25,000) was ascribed to subunit 1 (Ya) of glutathione S-transferase which was associated with the membrane. LTD4, LTE4, N-acetyl-LTE4, and omega-carboxy-N-acetyl-LTE4 were also transported into liver plasma membrane vesicles in an ATP-dependent manner with initial rates relative to LTC4 (1.0) of 0.46, 0.11, 0.35, and 0.22, respectively. Mutual competition between the cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione for uptake indicated that they are transported by a common carrier. Apparent Km values of the transport system for LTC4, LTD4, and N-acetyl-LTE4 were 0.25, 1.5, and 5.2 microM, respectively. The ATP-dependent transport of LTC4 into vesicles was not inhibited by doxorubicin, daunorubicin, or verapamil, or by the monoclonal antibody C219, suggesting that the transport system differs from P-glycoprotein. Liver plasma membrane vesicles prepared from mutant rats deficient in the hepatobiliary excretion of cysteinyl leukotrienes lacked the ATP-dependent transport of cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione. These results demonstrate that the ATP-dependent carrier system is responsible for the transport of cysteinyl leukotrienes and glutathione S-conjugates from the hepatocytes into bile.  相似文献   

11.
12.
ATP-binding cassette (ABC)-type proteins are essential for bile formation in vertebrate liver. BSEP, MDR1, MDR2, and MRP2 ABC transporters are targeted to the apical (canalicular) membrane of hepatocytes where they execute ATP-dependent transport of bile acids, drugs, amphipathic cations, phospholipids, and conjugated organic anions, respectively. Changes in activity and abundance of transporters in the canalicular membrane regulate bile flow; however, little is known regarding cellular proteins that bind ABC transporters and regulate their trafficking. A yeast two-hybrid screen identified HAX-1 as a binding partner for BSEP, MDR1, and MDR2. The interactions were validated biochemically by glutathione S-transferase pull-down and co-immunoprecipitation assays. BSEP and HAX-1 were over-represented in rat liver subcellular fractions enriched for canalicular membrane vesicles, microsomes, and clathrin-coated vesicles. HAX-1 was bound to BSEP, MDR1, and MDR2 in canalicular membrane vesicles and co-localized with BSEP and MDR1 in the apical membrane of Madin-Darby canine kidney (MDCK) cells. RNA interference of HAX-1 increased BSEP levels in the apical membrane of MDCK cells by 71%. Pulse-chase studies indicated that HAX-1 depletion did not affect BSEP translation, post-translational modification, delivery to the plasma membrane, or half-life. HAX-1 depletion resulted in an increased peak of metabolically labeled apical membrane BSEP at 4 h and enhanced retention at 6 and 9 h. HAX-1 also interacts with cortactin. Expression of dominant negative cortactin increased steady state levels of BSEP 2-fold in the apical membrane of MDCK cells, as did expression of dominant negative EPS15. These findings suggest that HAX-1 and cortactin participate in BSEP internalization from the apical membrane.  相似文献   

13.
Through labeling with the sodium salt of the photolabile bile salt derivative (7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta-[3 beta-3H]cholan-24-oyl)- 2-aminoethanesulfonic acid, a bile salt-binding polypeptide with an apparent molecular weight of 100,000 was identified in isolated canalicular but not basolateral (sinusoidal) rat liver plasma membranes. This labeled polypeptide was isolated from octyl glucoside-solubilized canalicular membranes by DEAE-cellulose and subsequent wheat germ lectin Sepharose chromatography. The purified protein still contained covalently incorporated radioactive bile salt derivative and exhibited a single band with an apparent molecular weight of 100,000 on sodium dodecyl sulfate-gels. Antibodies were raised in rabbits and their monospecificity toward this canalicular polypeptide demonstrated by immunoblot analysis. No cross-reactivity was found with basolateral membrane proteins. The antibodies inhibited taurocholate uptake into isolated canalicular but not basolateral membrane vesicles. In addition, the antibodies also decreased efflux of taurocholate from canalicular vesicles. If the canalicular bile salt-binding polypeptide was immunoprecipitated from Triton X-100-solubilized canalicular membranes and subsequently deglycosylated with trifluoromethanesulfonic acid, the apparent molecular weight was decreased from 100,000 to 48,000 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). These studies confirm previous results in intact liver tissue and strongly indicate that a canalicular specific glycoprotein with an apparent molecular weight of 100,000 is directly involved in canalicular excretion of bile salts.  相似文献   

14.
We have utilized antibodies against five domain-specific integral proteins of the rat hepatocyte plasma membrane to examine the fates of the plasma membrane domains during hepatocyte division in the regenerating rat liver. The proteins were quantified on immunoblots of liver homogenates prepared during the peak of hepatocyte mitotic activity, 28-30 hr after two-thirds hepatectomy. Two sinusoidal/lateral proteins, CE 9 and the asialoglycoprotein receptor, and one bile canalicular protein, dipeptidylpeptidase IV, were not changed significantly in amount; whereas one sinusoidal/lateral protein, the epidermal growth factor receptor, and one bile canalicular protein, HA 4, were reduced to less than or equal to 50% of control levels. Light microscopic examination of plastic sections of regenerating liver tissue revealed that the mitotic hepatocytes generally appeared to retain normal contacts with neighboring interphase hepatocytes. Immunofluorescence was used to localize the domain-specific proteins on mitotic hepatocytes identified in 0.5-micron frozen sections of 28- to 30-hr regenerating liver tissue. Independent of mitotic stage, the hepatocytes retained mutually exclusive bile canalicular and sinusoidal/lateral domains, as defined at the molecular level by the distributions of specific proteins, such as HA 4 and CE 9, respectively.  相似文献   

15.
BSEP, MDR1, and MDR2 ATP binding cassette transporters are targeted to the apical (canalicular) membrane of hepatocytes, where they mediate ATP-dependent secretion of bile acids, drugs, and phospholipids, respectively. Sorting to the apical membrane is essential for transporter function; however, little is known regarding cellular proteins that bind ATP binding cassette proteins and regulate their trafficking. A yeast two-hybrid screen of a rat liver cDNA library identified the myosin II regulatory light chain, MLC2, as a binding partner for BSEP, MDR1, and MDR2. The interactions were confirmed by glutathione S-transferase pulldown and co-immunoprecipitation assays. BSEP and MLC2 were overrepresented in a rat liver subcellular fraction enriched in canalicular membrane vesicles, and MLC2 colocalized with BSEP in the apical domain of hepatocytes and polarized WifB, HepG2, and Madin-Darby canine kidney cells. Expression of a dominant negative, non-phosphorylatable MLC2 mutant reduced steady state BSEP levels in the apical domain of polarized Madin-Darby canine kidney cells. Pulse-chase studies revealed that Blebbistatin, a specific myosin II inhibitor, severely impaired delivery of newly synthesized BSEP to the apical surface. These findings indicate that myosin II is required for BSEP trafficking to the apical membrane.  相似文献   

16.
17.
The hepatic transport of the immunosuppressive Cyclosporin A (CyA) was studied using liposomal phospholipid membranes, freshly isolated rat hepatocytes and bile canalicular plasma membrane vesicles from rat liver. The Na(+)-dependent, saturable uptake of the bile acid 3H-taurocholate into isolated rat liver cells was apparently competitively inhibited by CyA. However, the uptake of CyA into the cells was neither saturable, nor temperature-dependent nor Na(+)-dependent, nor could it be inhibited by bile salts or CyA-derivatives, indicating passive diffusion. In steady state depolarization fluorescence studies, CyA caused a concentration-dependent decrease of anisotropy, indicating a membrane fluidizing effect. Ion flux experiments demonstrated that CyA dramatically increases the permeability of Na+ and Ca2+ across phospholipid membranes in a dose- and time-dependent manner, suggesting a iontophoretic activity that might have a direct impact on cellular ion homeostasis and regulation of bile acid uptake. Photoaffinity labeling with a [3H]-labeled photolabile CyA-derivative resulted in the predominant incorporation of radioactivity into a membrane polypeptide with an apparent molecular weight of 160,000 and a minor labeling of polypeptides with molecular weights of 85,000-90,000. In contrast, use of a photolabile bile acid resulted in the labeling of a membrane polypeptide with an apparent molecular weight of 110,000, representing the bile canalicular bile acid carrier. The photoaffinity labeling as well as CyA transport by canalicular membrane vesicles were inhibited by CyA and the p-glycoprotein substrates daunomycin and PSC-833, but not by taurocholate, indicating that CyA is excreted by p-glycoprotein. CyA uptake by bile canalicular membrane vesicles was ATP-dependent and could not be inhibited by taurocholate. CyA caused a decrease in the maximum amount of bile salt accumulated by the vesicles with time. However, initial rates of [3H]-taurocholate uptake within the first 2.5 min remained unchanged at increasing CyA concentrations. In summary, the data indicate that CyA does not directly interact with the hepatic bile acid transport systems. Its cholestatic action may rather be the result of alterations in membrane fluidity, intracellular effects and an interaction with p-glycoprotein.  相似文献   

18.
Direct photoaffinity labeling of liver plasma membrane subfractions enriched in sinusoidal and canalicular membranes using [35S]adenosine 5'-O-(thiotriphosphate) ([35S]ATP gamma S) allows the identification of ATP-binding proteins in these domains. Comparative photoaffinity labeling with [35S]ATP gamma S and with the photolabile bile salt derivative (7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-[3 beta-3H]-cholan-24-oyl-2'- aminoethanesulfonate followed by immunoprecipitation with a monoclonal antibody (Be 9.2) revealed the identity of the ATP-binding and the bile salt-binding canalicular membrane glycoprotein with the apparent Mr of 110,000 (gp110). The isoelectric point of this glycoprotein was 3.7. Transport of bile salt was studied in vesicles enriched in canalicular and sinusoidal liver membranes. Incubation of canalicular membrane vesicles with [3H] taurocholate in the presence of ATP resulted in an uptake of the bile salt into the vesicles which was sensitive to vanadate. ATP-dependent taurocholate transport was also observed in membrane vesicles from mutant rats deficient in the ATP-dependent transport of cysteinyl leukotrienes and related amphiphilic anions. Substrates of the P-glycoprotein (gp170), such as verapamil and doxorubicin, did not interfere with the ATP-dependent transport of taurocholate. Reconstitution of purified gp110 into liposomes resulted in an ATP-dependent uptake of [3H]taurocholate. These results demonstrate that gp110 functions as carrier in the ATP-dependent transport of bile salts from the hepatocyte into bile. This export carrier is distinct from hitherto characterized ATP-dependent transport systems.  相似文献   

19.
Newly synthesized canalicular ectoenzymes and a cell adhesion molecule (cCAM105) have been shown to traffic from the Golgi to the basolateral plasma membrane, from where they transcytose to the apical bile canalicular domain. It has been proposed that all canalicular proteins are targeted via this indirect route in hepatocytes. We studied the membrane targeting of rat canalicular proteins by in vivo [(35)S]methionine metabolic labeling followed by preparation of highly purified Golgi membranes and canalicular (CMVs) and sinusoidal/basolateral (SMVs) membrane vesicles and subsequent immunoprecipitation. In particular, we compared membrane targeting of newly synthesized canalicular ABC (ATP-binding cassette) transporters MDR1, MDR2, and SPGP (sister of P-glycoprotein) with that of cCAM105. Significant differences were observed in metabolic pulse-chase labeling experiments with regard to membrane targeting of these apical proteins. After a chase time of 15 min, cCAM105 appeared exclusively in SMVs, peaked at 1 h, and progressively declined thereafter. In CMVs, cCAM105 was first detected after 1 h and subsequently increased for 3 h. This findings confirm the transcytotic targeting of cCAM105 reported in earlier studies. In contrast, at no time point investigated were MDR1, MDR2, and SPGP detected in SMVs. In CMVs, MDR1 and MDR2 appeared after 30 min, whereas SPGP appeared after 2 h of labeling. In Golgi membranes, each of the ABC transporters peaked at 30 min and was virtually absent thereafter. These data suggest rapid, direct targeting of newly synthesized MDR1 and MDR2 from the Golgi to the bile canaliculus and transient sequestering of SPGP in an intracellular pool en route from the Golgi to the apical plasma membrane. This study provides biochemical evidence for direct targeting of newly synthesized apical ABC transporters from the Golgi to the bile canaliculus in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号