首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prey can accurately assess predation risk via the detection of chemical cues and take appropriate measures to survive encounters with predators. Research on the chemical ecology of terrestrial invertebrate predator-prey interactions has repeatedly found that direct chemical cues can alter prey organisms’ antipredator behavior. However, much of this research has focused on the chemical mediation of avoidance and immobility by cues from lycosid spiders neglecting other prominent invertebrate predators and behavior such as autotomy. In our study, house crickets (Acheta domesticus) were exposed to cues from cricket-fed orange-footed centipedes (Cormocephalus aurantiipes), red-back spiders (Latrodectus hasselti), an odorous (cologne) control, and a non-odorous control to determine whether direct chemical cues had any influence on two types of anti-predatory behavior: the willingness (latency) to emerge from a refuge and to autotomize limbs. Exposure to C. aurantiipes cues resulted in a significantly slower emergence from a refuge, but exposure to L. hasselti cues did not. Direct chemical cues had no influence on initial autotomy, but exposure to L. hasselti cues did significantly decrease the latency to autotomize a second limb. That cues from L. hasselti had an influence on a second autotomy, but not initial autotomy may be because crickets that undergo autotomy for a second time may perceive themselves to be already at a higher risk of predation as they were already missing a limb. Variation in responses to cues from different predators demonstrates a need to examine the influence of chemical cues from a wider variety of invertebrate predators on anti-predator behavior.  相似文献   

2.

Background

Animal toxins can have medical and therapeutic applications. Principally, toxins produced by insects, arachnids, snakes and frogs have been characterized. Venomous mammals are rare, and their venoms have not been comprehensively investigated. Among shrews, only the venom of Blarina brevicauda has been analysed so far, and blarina toxin has been proven to be its main toxic component. It is assumed that Neomys fodiens employs its venom to hunt larger prey. However, the toxic profile, properties and mode of action of its venom are largely unknown. Therefore, we analysed the cardio-, myo- and neurotropic properties of N. fodiens venom and saliva of non-venomous Sorex araneus (control tests) in vitro in physiological bioassays carried out on two model organisms: beetles and frogs. For the first time, we fractionated N. fodiens venom and S. araneus saliva by performing chromatographic separation. Next, the properties of selected compounds were analysed in cardiotropic bioassays in the Tenebrio molitor heart.

Results

The venom of N. fodiens caused a high decrease in the conduction velocity of the frog sciatic nerve, as well as a significant decrease in the force of frog calf muscle contraction. We also recorded a significant decrease in the frog heart contractile activity. Most of the selected compounds from N. fodiens venom displayed a positive chronotropic effect on the beetle heart. However, one fraction caused a strong decrease in the T. molitor heart contractile activity coupled with a reversible cardiac arrest. We did not observe any responses of the insect heart and frog organs to the saliva of S. araneus. Preliminary mass spectrometry analysis revealed that calmodulin-like protein, thymosin β-10, hyaluronidase, lysozyme C and phospholipase A2 are present in the venom of N. fodiens, whereas thymosin β4, lysozyme C and β-defensin are present in S. araneus saliva.

Conclusion

Our results showed that N. fodiens venom has stronger paralytic properties and lower cardioinhibitory activity. Therefore, it is highly probable that N. fodiens might use its venom as a prey immobilizing agent. We also confirmed that S. araneus is not a venomous mammal because its saliva did not exhibit any toxic effects.
  相似文献   

3.
The degree of development of the mechanisms of postcopulatory isolation was evaluated on the basis of experimental hybridization of representatives of three subspecies of M. musculus (M. m. musculus, M. m. wagneri, and M. m. gansuensis) and remote populations of the subspecies M. m. musculus. Experimental crosses between the different subspecies and populations indicated the presence of initial stages of postcopulatory reproductive isolation between some forms of house mice. In a number of crosses conducted between different populations and subspecies of M. musculus, asymmetry was observed. In one variant of mating, M. m. musculus (male) × M. m. wagneri (female), a reduced intensity of breeding and nonviability of pups were observed. A decrease in the intensity of reproduction was found in all variants of crosses that used male M. m. musculus from the city of Ishim. These data are assumed to confirm the previous assumption about the hybrid origin of mice inhabiting that city. The results confirm a significant level of divergence of the subspecies M. m. musculus and M. m. wagneri. Thus, initial stages both of post- and precopulatory isolation mechanisms between M. m. wagneri and M. m. musculus were shown.  相似文献   

4.
Wasps are able to synthesize toxic compounds known as venoms, which form a part of a mechanism to overcome prey and also to defend their colonies. Study of the compounds that constitute these substances is essential in order to understand how this defense mechanism evolved, since there is evidence that the venoms can vary both intra- and interspecifically. Some studies have used liquid and gas chromatography as a reliable technique to analyze these compounds. However, the use of Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) to analyze the variations in venom’s chemical profile has been proposed recently. This study evaluated whether the FTIR-PAS technique is effective for assessing the role of environmental factors on intra- and interspecific differences in the venom of the wasps Polybia paulista Von Ihering and Polybia occidentalis Olivier by FTIR-PAS. The colonies were collected in three municipalities of Mato Grosso do Sul, Brazil, in different types of environments. The results showed that the venoms of P. paulista and P. occidentalis differed significantly in profile. In addition, the intraspecific differences in the venom’s chemical profile of P. paulista are related to the type of environment where they nested, regardless of the geographical distance between the nests. The FTIR-PAS technique proved to be reliable and effective to evaluate the variations in the venom’s chemical profile in social wasps.  相似文献   

5.
Natural enemies of agricultural pests, such as parasitoids and predators, often use chemical and visual cues in search of their hosts and prey, and they can learn the association between the cues and the host and prey presence. The braconid, egg-larval endoparasitoid wasp Ascogaster reticulata is a promising biological control agent for tortricid pests, such as Adoxophyes honmai, in tea plantations. Although previous studies revealed that A. reticulata uses contact chemicals released by tea plants in response to tortricid egg oviposition and that it can learn the associated cues, the diurnal wasp is also expected to use visual cues, especially color. Therefore, in this study, we investigated the innate color preference and associative color learning ability of A. reticulata. When a green paper and a paper of a different color (black, blue, red or yellow) was offered together to naive females of the wasp, the females spent less time on a black and blue papers. However, wasps trained to associate black or blue with the presence of a host egg-mass showed increased preference for these colors, whereas red- and yellow-trained wasps did not show changes in preference. Our findings indicate that A. reticulata uses colors, in addition to chemical cues, in host searching behavior and has the ability to learn colors associated with host presence.  相似文献   

6.
7.
Organisms are adapted to recognize environmental cues that can provide information about predation risk or competition. Non-vagrant eriophyoid mites mainly avoid predation by using habitats that are difficult for predators to access (galls or confined spaces in plants) such as the meristematic region of the coconut fruit, which is inhabited by the phytophagous mites Aceria guerreronis and Steneotarsonemus concavuscutum. The objective of this study was to investigate the response of A. guerreronis to cues from the predators Neoseiulus baraki and Amblyseius largoensis in coconut fruits, cues from conspecifics (A. guerreronis injured) and cues from the phytophage S. concavuscutum. The test was carried out through the release of about 300 A. guerreronis on coconut fruits previously treated with cues from predators, conspecific or heterospecific phytophagous. We also observed the walking behaviour of A. guerreronis exposed to the same chemical cues using a video tracking system. The infestation of fruits by A. guerreronis was greater in the presence of predator cues and reduced in the presence of S. concavuscutum cues, but cues from injured conspecifics did not interfere in the infestation process. In addition, the cues also altered the walking parameters of A. guerreronis: it walked more in response to cues from predators and the heterospecific phytophage. Aceria guerreronis spent more time in activity in the treatments with clues than in the control treatment. These results suggest that A. guerreronis recognizes cues from predators and competitors and modifies its behaviour to increase its fitness.  相似文献   

8.
Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.  相似文献   

9.
Genetic diversity and geographic distribution of taxon-specific RAPD markers was examined in ten local populations of the house mouse Mus musculus (n = 42). The house mice were generally characterized by moderate genetic variation: polymorphism P 99 = 60%, P 95 = 32.57%; heterozygosity H = 0.12; the observed allele number n a = 1.6; the effective allele number n e = 1.18; the within-population differentiation ?s = 0.388; and Shannon index I = 0.19. The degree of genetic isolation of individual local populations was greatly variable. The genetic subdivision index G st varied from 0.162 to 0.770 at the gene flow of Nm = 2.58?0.149, while the among-population distances D N varied from 0.026 to 0.178. The largest part of the genetic diversity was found among the populations (H T = 0.125), while the within-population diversity was twice lower (H S = 0.06). The samples examined were well discriminated relative to the sets of RAPD markers. The character distribution pattern provided conditional subdivision of the mice into the “western” and the “eastern” groups with the putative boarder along the Baikal Lake. The first group was characterized by the prevalence of the markers typical of M. m. musculus and M. m. domesticus. The second group was characterized by the prevalence of the markers typical of M. m. musculus, M. m. gansuensis, M. m. castaneus, M. m. domesticus, and M. m. wagneri. The genotype of the nominative subspecies M. m. musculus was background for all populations. In the populations examined some of earlier described subspecies-specific molecular markers were found at different frequencies, pointing to the involvement of several subspecies of M. musculus in the process of hybridization.  相似文献   

10.
In aquatic systems, tilapia introductions may result in marked changes in the structure of prey communities. In this study, we experimentally examined the effects of tilapia-mediated water at the individual and population levels of prey by exposing three Daphnia species to predation cues. We hypothesized that tilapia-mediated water determines reduced age and size at primipara, greater and faster reproduction, enhanced intrinsic rates of population increase (r), and longer tail spines in Daphnia; but that the magnitude of these changes would be species and clone-dependent. When three tropical D. laevis and one temperate D. similis clones were exposed to predation cues, adaptive changes were observed in some of the aforementioned parameters for each clone. The three D. laevis clones exhibited changes in all life-history and morphological measures. Temperate Daphnia spinulata displayed no changes but decreased r values in the presence of predators. The observed changes in the species and clones tested here suggest that, overall, both temperate and tropical Daphnia can detect and adaptively react to the risk of tilapia predation. However, only a fraction of the possible defenses may be displayed by individual clones. In contrast, D. spinulata seems more vulnerable to tilapia predation, given its long body length and absence of adaptive changes. Our study indicates that Daphnia can respond to tilapia-mediated water, and that interspecific and clonal variation exists between temperate and tropical species.  相似文献   

11.
In Brazil, the snake genus Bothrops has many venomous species with 90 % of cases of accidents. Snake bites by Bothrops jararacussu result in moderate to severe envenoming, characterized by hemorrhage, coagulation disorders, tissue necrosis, and death. Antivenom has been regularly used for more than a century but poorly neutralizes myonecrosis. And, as a consequence, victims may have their affected limbs amputated. Thus, the production of antivenom must be improved as well as alternative treatments investigated. Thus, the ability of four extracts of the green alga Prasiola crispa to neutralize some toxic effects of B. jararacussu venom was tested. P. crispa was collected in Antarctica, then extracted using four solvents, dichloromethane (DCM), ethyl acetate (ETA), n-hexane (HEX), or methanol (MET). The extracts were incubated with B. jararacussu venom, and in vivo (hemorrhagic, lethal, and edematogenic) or in vitro (coagulating and proteolytic) activities were performed. Moreover, B. jararacussu venom was injected into mice before or after the injection of alga extracts. Overall, extracts inhibited all activities. The MET extract inhibited less and HEX, DCM and ETA inhibited more efficiently the activities. These latter extracts fully protected mice from B. jararacussu-induced hemorrhage and delayed death of mice. Edema was partially inhibited (20 %) by all extracts. Neutralization of hemorrhage was also observed when the extracts of P. crispa were administered after or before the venom injection. These results indicate that the extracts of P. crispa have potential to treat or to prevent some toxic effects of B. jararacussu venom, thus aiding in the antivenom therapy.  相似文献   

12.
Predators often have nonconsumptive effects (NCEs) on prey. For example, upon detection of predator cues, prey can reduce feeding activities to hamper being detected by predators. Previous research showed that waterborne chemical cues from green crabs (Carcinus maenas, predator) limit the dogwhelk (Nucella lapillus, prey) consumption of barnacles regardless of dogwhelk density, even though individual predation risk for dogwhelks decreases with conspecific density. Such NCEs might disappear with dogwhelk density if dogwhelks feed on mussels, as mussel stands constitute better antipredator refuges than barnacle stands. Through a laboratory experiment, we effectively found that crab chemical cues limit the per-capita consumption of mussels by dogwhelks at low dogwhelk density but not at high density. The combination of tactile and chemical cues from crabs, however, limited the dogwhelk consumption of mussels at both dogwhelk densities. The occurrence of such NCEs at both dogwhelk densities could have resulted from tactile cues indicating a stronger predation risk than chemical cues alone. Overall, the present study reinforces the notions that prey evaluate conspecific density when assessing predation risk and that predator cue type affects their perception of risk.  相似文献   

13.
Cathelicidins are phylogenetically ancient, pleiotropic host defense peptides—also called antimicrobial peptides (AMPs)—expressed in numerous life forms for innate immunity. Since even the jawless hagfish expresses cathelicidins, these genetically encoded host defense peptides are at least 400 million years old. More recently, cathelicidins with varying antipathogenic activities and cytotoxicities were discovered in the venoms of poisonous snakes; for these creatures, cathelicidins may also serve as weapons against prey and predators, as well as for innate immunity. We report herein the expression of orthologous cathelicidin genes in the venoms of four different South American pit vipers (Bothrops atrox, Bothrops lutzi, Crotalus durissus terrificus, and Lachesis muta rhombeata)—distant relatives of Asian cobras and kraits, previously shown to express cathelicidins—and an elapid, Pseudonaja textilis. We identified six novel, genetically encoded peptides: four from pit vipers, collectively named vipericidins, and two from the elapid. These new venom-derived cathelicidins exhibited potent killing activity against a number of bacterial strains (S. pyogenes, A. baumannii, E. faecalis, S. aureus, E. coli, K. pneumoniae, and P. aeruginosa), mostly with relatively less potent hemolysis, indicating their possible usefulness as lead structures for the development of new anti-infective agents. It is worth noting that these South American snake venom peptides are comparable in cytotoxicity (e.g., hemolysis) to human cathelicidin LL-37, and much lower than other membrane-active peptides such as mastoparan 7 and melittin from bee venom. Overall, the excellent bactericidal profile of vipericidins suggests they are a promising template for the development of broad-spectrum peptide antibiotics.  相似文献   

14.
In house mice from the superspecies complex Mus musculus s. l., the relative weight of their testicles is higher and the sperm quality is better for wildliving species than for synantropic species. It is shown that this pattern is observed at an intraspecific level as well, since the testicle weight index and sperm concentration were significantly higher in the hemi-synantropic subspecies Mus musculus wagneri and M. m. gansuensis as compared to the synantropic M. m. musculus in a number of comparisons. The heritability of these indices should be considered when interpreting the results of experimental crosses in house mice.  相似文献   

15.
The Sargassum community consists of a unique and diverse assemblage of symbiotic fauna critical to pelagic food chains. Associated symbionts presumably have adaptations to assist in finding Sargassum. In situ scattered Sargassum patches accumulate as they are pushed toward the shoreline (via wind, waves, currents or tides) and are frequently less than 1 m apart and in depths of 10 cm or less as the patches approach the shoreline Crabs, and other symbiotic fauna, must relocate to another patch that is seaward in direction or likely perish as their current patch will likely become beached. This study investigated sensory cues used for host location and selection by the Sargassum crab, Portunus sayi. Chemical detection trials were conducted with a two-chamber choice apparatus with Sargassum spp. and Thalassia testudinum as habitat source odors. Visual detection trials (devoid of chemical cues) and habitat selection trials were conducted in which crabs were given a choice between hosts. Results showed that P. sayi responded to chemicals from Sargassum spp. Crabs visually located host habitats but did not visually distinguish between different hosts. In host selection trials, crabs selected Sargassum spp. over artificial Sargassum and T. testudinum. These results suggest that crabs isolated from Sargassum likely use chemoreception; within visual proximity of a potential patch, crabs likely use both chemical and visual information.  相似文献   

16.
Invasive predators are responsible for the extinction of numerous island species worldwide. The naïve prey hypothesis suggests that the lack of co-evolutionary history between native prey and introduced predators results in the absence of behavioral responses to avoid predation. The lack of terrestrial mammal predators is a core feature of islands at the southern end of the Americas. Recently, however, the American mink (Neovison vison) established as a novel terrestrial predator, where rodents became a main portion of its diet. Here, we investigated on Navarino Island, Chile, macro- and micro-habitat selection of small rodents using Sherman traps. Additionally, we experimentally tested behavioral responses of small rodents to indirect cues of native raptorial predation risk (vegetation cover) and direct cues of novel mink predation risk (gland odor) using Sherman traps and foraging trays (giving-up density (GUD)). At the macro-habitat level, we detected native rodents of the species Abrothrix xanthorhinus and Oligoryzomys longicaudatus and the exotic Mus musculus. In general, rodents preferred scrubland habitats. At the micro-habitat level, we only captured individuals of A. xanthorhinus. They preferred covered habitats with tall vegetation. GUD increased in opened areas (riskier for raptorial predation) regardless of the presence or not of mink odor. These results suggest that A. xanthorhinus can perceive predation risk by raptors, but not by mink, results that accord with the hypothesis that co-evolutionary history is important for rodents to develop antipredator behavior. Given that these rodents represent an important proportion of mink diet, the low abundances together with the apparent lack of antipredator response raise conservation concerns for the small rodent populations inhabiting the southernmost island ecosystems of the Americas.  相似文献   

17.
The predation potential of a generalist predator Rhynocoris marginatus (Fab.) (Hemiptera: Reduviidae) against three important mealybug pests of cotton, Phenacoccus solenopsis Tinsley, Maconellicoccus hirsutus Green, and Coccidohystrix insolita Green (Hemiptera: Pseudococcidae) was evaluated under laboratory conditions. The specific objective of the study was to determine the prey capturing time, prey handling time, and prey preference among the three mealybug species for different developmental stages of R. marginatus. The number of prey consumed/predator/24 h by R. marginatus was dependent on the mealybug species and the predator developmental stage. Rhynocoris marginatus showed a decrease in prey capturing time and handling time as the predator grew older. After evaluating the prey stage preference, results indicated that the developmental stages of R. marginatus preferred adult mealybugs over the younger stages. In a choice-test bioassay including the three mealybug species, no significant difference in prey species selection was observed for the various R. marginatus developmental stages. However, the mortality of P. solenopsis was observed to be highest among the mealybugs, followed by M. hirsutus and C. insolita. This supports the idea that R. marginatus can be effectively utilized for the management of one of the most destructive mealybug pests of cotton, P. solenopsis. Results from this study are important for the development of a knowledge-based management program for cotton agroecosystems affected by various mealybug pests.  相似文献   

18.
We conducted life table experiments on the freshwater rotifer Asplanchna brightwellii to analyze its demography when fed with prey items from several taxonomic groups (cladocerans, protozoans, and rotifers) and under two different temperature regimes (20 and 25°C); the aim of the study was to determine the preferred prey for A. brightwellii in terms of fitness (evaluated as reproductive success) among five cladoceran, protozoan, and rotifer preys, and to test which temperature (20 or 25°C) is better for life table parameters of Asplanchna. Our analysis identified Brachionus calyciflorus as the preferred prey for A. brightwellii based on life table statistics, ingestion rate and electivity indices. The greatest values for net reproductive rate and intrinsic growth rate were achieved when A. brightwellii was fed B. calyciflorus. Greater reproductive values (R o and r) were found at 25°C than at 20°C for A. brightwellii across the five prey species. We found significant differences in the ingestion rate and electivity index among zooplanktonic and benthic preys. The influence of temperature, the cost of predation, and how prey selection by A. brightwellii is influenced by: biomass, size, and swimming speed; they are discussed hoping to gain a better understanding of trophic transfers in zooplankton communities.  相似文献   

19.
The citrus fruit borer, Ecdytolopha aurantiana (Lima, 1927) (Lepidoptera: Tortricidae), is responsible for major losses to the citrus industry because it causes rot and drop of fruits. The current study aimed to select and characterize Bacillus thuringiensis (Berliner, 1911) strains toxic to E. aurantiana. For this purpose, 47 B. thuringiensis strains were evaluated in selective bioassays using first instar larvae of E. aurantiana. The lethal concentration (LC50) of the most toxic strains was estimated, and the strains were characterized by morphological, biochemical, and molecular methods. Of the 47 strains tested, 10 caused mortality above 85% and showed mean lethal concentrations between 1.05E+7 and 1.54E+8 spores mL?1. The lowest LC50 values were obtained for the HD-1 standard strain and the BR145, BR83, BR52, and BR09 strains. The protein profile showed the presence of Cry proteins of 60, 65, 70, 80, and 130 kDa. The molecular characterization showed the presence of cry1, cry2, cry3, and cry11 genes. The morphological analysis identified three different crystalline inclusions: bipyramidal, round, and cuboidal. The cry1 and cry2 genes were the most frequent among the B. thuringiensis strains evaluated and encode Cry proteins toxic to insects of the order Lepidoptera, which agree with the toxicity results obtained by the selective bioassays against E. aurantiana. The results showed four different B. thuringiensis strains toxic to E. aurantiana at the same level as the HD-1 standard strain, and these strains have biotechnological potential for E. aurantiana control through the production of transgenic plants or the formulation of biopesticides.  相似文献   

20.
The results of analysis of the frequencies of t-alleles and heterozygous +/t individuals of house mice of different subspecies (musculus, bactrianus, tataricus, wagneri, and gansuensis) are presented for the natural populations inhabiting eight cities and five regions of Russia and adjacent countries of Eastern Europe and Asia. It is shown that the frequencies of t-alleles are 0.18 ± 0.03 in small samples (1–30 individuals) and 0.09 ± 0.06 in medium-sized samples (31–60 individuals). The factors that reduce the frequencies of t-alleles in natural populations and the mechanisms that prevent invasion and fixation of t-mutant alleles in the Mus musculus genome are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号