首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of electrical stimulation of the optic nerve on various cells in the frog's retina was investigated by two methods: by the histochemical method (measurement of the amount of RNA in separate cells), and by intracellular recording of potentials. Rhythmic (5 per sec) stimulation of the nerve induced an increase in the amount of RNA in ganglion cells, and especially in amacrine cells. The level of RNA in bipolar and horizontal cells did not change. The results of the experiment indicate that in frogs (as in birds) centrifugal effects are produced through amacrine cells. In electrophysiological experiments reactions to stimulation of the nerve were manifested only in ganglion and amacrine cells. In the ganglion cells that was an antidromic impulse, but sometimes also a delayed impulse, which was evidently the result of secondary excitation of the cell. In amacrine cells the response consisted of a short excitant postsynaptic potential with a discharge of impulses superimposed on it. Data are presented indicating the existence of amacrine cells of different types, probably fulfilling different functions.Institute of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 293–300, May–June, 1971.  相似文献   

2.
Intracellular recordings were obtained from amacrine cells afterwards identified morphologically by horseradish peroxidase injection. There is a correlation between the time course of the photoresponses and the distribution of the cell processes across the inner plexiform layer (i.p.l.). Cells producing the shortest duration, transient 'on-off' photoresponses branched in a single, narrow stratum of the i.p.l. (3-7 microns across). Transient photoresponses with a longer time course were recorded from cells branching in a thicker stratum of i.p.l. (up to 20 microns), or from bistratified cells. Amacrine cells producing sustained centre-on or centre-off photoresponses were radially diffused across the whole i.p.l.; therefore this type of photoresponse need not be associated with a specific cellular stratification within the i.p.l. It is concluded that the two main functional types of amacrine cell, i.e. transient on-off and sustained centre-on and centre-off, are subject to different structural organization of inputs than are the homologous physiological types of ganglion cells in this species, in the cat and in the carp. In a summary diagram the observed characteristics of the photoresponses are tentatively explained in terms of a non-homogeneous distribution of bipolar synaptic inputs along amacrine cell processes.  相似文献   

3.
4.
5.
The amacrine cells in the retina of the rat are described in Golgi-stained whole-mounted retinae. Nine morphologically distinct types of cell were found: one type of diffuse cell, five types of unistratified cell, two types of bistratified cell, and one type of stratified diffuse cell. Measurements show that the largest unistratified cells have a dendritic field 2 mm across. One type of interplexiform cell is also described. Wide-field diffuse amacrine cells and unistratified amacrine cells were found with their somata located in either the inner nuclear layer or the ganglion cell layer. It is clear that there may be an amacrine cell system in the ganglion cell layer of the rat retina.  相似文献   

6.
Acetylcholine-synthesizing cells in the rabbit retina are symmetrically distributed about the inner plexiform layer: one population of cholinergic amacrines has cell bodies in the inner nuclear layer and an equivalent population of displaced amacrines has cell bodies in the ganglion cell layer. It has been suggested that the morphological correlates of the acetylcholine-synthesizing cells are either coronate amacrine cells or starburst amacrine cells. Coronate cells have a characteristic nuclear morphology and can be selectively labelled by neurofibrillar methods or with the fluorescent dye4',6-diamidino-2-phenyl-indole (DAPI). Starburst cells have a characteristic dendritic morphology but have only been described from Golgi-stained retinae. This paper bridges the gap between the previous studies. DAPI-labelled coronate cells were impaled with a micropipette under microscopic control and filled with Lucifer yellow by iontophoresis. The results show that the coronate amacrines in the ganglion cell layer are type b starburst cells, and that those DAPI-labelled neurones in the inner nuclear layer with a coronate-like nuclear morphology are type a starburst cells. At a given eccentricity the dendritic field diameter of type a starburst cells is about 1.13 times larger than that of type b starburst cells. The dendritic field coverage of coronate (type b starburst) cells increases linearly with decreasing coronate cell density and ranges from 25 on the peak visual streak to 70+ in the superior periphery.  相似文献   

7.
When cat retina is incubated in vitro with the fluorescent dye, 4',6-diamidino-2-phenyl-indole (DAPI), a uniform population of neurons is brightly labelled at the inner border of the inner nuclear layer. The dendritic morphology of the DAPI-labelled cells was defined by iontophoretic injection of Lucifer yellow under direct microscopic control: all the filled cells had the narrow-field bistratified morphology that is distinctive of the AII amacrine cells previously described from Golgi-stained retinae. Although the AII amacrines are principal interneurons in the rod-signal pathway, their density distribution does not follow the topography of the rod receptors, but peaks in the central area like the cone receptors and the ganglion cells. There are some 512 000 AII amacrines in the cat retina and their density ranges from 500 cells per square millimetre at the superior margin to 5300 cells per square millimetre in the centre (retinal area is 450 mm2). The isodensity contours are kite-shaped, particularly at intermediate densities, with a horizontal elongation towards nasal retina. The cell body size and the dendritic dimensions of AII amacrines increase with decreasing cell density. The lobular dendrites in sublamina a of the inner plexiform layer span a restricted field of 16-45 microns diameter, while the arboreal dendrites in sublamina b form a varicose tree of 18-95 microns diameter. The dendritic field coverage of the lobular appendages is close to 1.0 (+/- 0.2) at all eccentricities whereas the coverage of the arboreal dendrites doubles within the first 1.5 mm and then remains constant at 3.8 (+/- 0.7) throughout the periphery.  相似文献   

8.
The model of the cone-L-HC circuit of the catfish retina (Siminoff 1985a) is extended to Luminosity bipolar cells (BC) and non-linear phasic amacrine cells (AC), but now applicable to the generalized vertebrate cone retina that involves only one cone type. Two types of BC's are simulated by linear transformation of 2 antagonistic inputs of differing time courses; the faster center field hyperpolarization from the cone and the slower surround field depolarization from the L-HC. The phasic AC was made non-linear by various methods: full- or half-wave rectification using either both or only one of the BC's as the inputs with rectification first and then summation or summation first and then rectification. A method is described using Laplace transforms in conjunction with the convolution theorem to obtain the impulse responses of BC's and AC's, in spite of the non-linearities of the AC even when used as feedback to the BC's. Since the input to the BC consists of 2 antagonistic inputs, feedback from the AC reeinforces one input and attenuates the other.  相似文献   

9.
10.
Two different immunohistochemical double labelling techniques have allowed the demonstration of a GABA-immunoreactivity in the dopamine amacrine cells of the rat retina. The functional implications of such a colocalization are of importance because antagonist effects of these two neurotransmitters on retinal horizontal cells have been demonstrated.  相似文献   

11.
H Wang  J Lü  H Zhu 《实验生物学报》1991,24(2):159-167
The centro-peripheral gradient of development in dopaminergic (DA) amacrine cells of cat retina has been studied by TH immunocytochemical method. Type I of TH immunoreactive neurons is typical DA cell. They reveal a clear centro-peripheral gradient of differentiation and maturation in space and time course during postnatal development. (1) At P1 stage, the TH I cells vary in TH immunoreactivity, soma sizes and dendritic maturation. Responding to degree of development, they can be divided into I1, I2 and I3. The more differentiated I1 cells, larger and darkly immuno-stained stellate cells mostly concentrates at central retina, while the less differentiated I3 cells, smaller and lightly immunostained irregular cells concentrate at peripheral retina. I2 cells of moderate differentiation distribute over all the retina. (2) During the postnatal development, from P1 to P13, the dense area of the TH I1 cells spreads peripherally in company with the increase of the total number of TH I1 cells, comprising the central 30% of the retina at P1, 65% at P6 and almost the whole of the retina by P13. After eye opening, as the TH I cells have spread at far peripheral region, the differences in soma diameters and dendritic maturation of TH I cells between central and peripheral retina decrease gradually and the centro-peripheral gradient of maturity of TH I cells becomes less distinct. At P23, no significant difference is visible in either soma diameter or dendritic maturation in these two areas: thus, the centro-peripheral gradient is no longer apparent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Summary Immunocytochemical studies were conducted on goldfish to determine whether a retinal efferent fiber system, immunoreactive to the tetrapeptide Phe-Met-Arg-Phe-NH2 (FMRFamide), might contain instead a substance similar to one of the 36-amino acid pancreatic polypeptides, the C-terminus of which is similar to FMRFamide.Our results demonstrate the presence of two separate peptidergic systems, one containing FMRFamide-like, and the other pancreatic polypeptide-like peptides. Antisera to FMRFamide reveal the efferent fibers, whose axons exit the optic nerve and terminate in layer 1 of the inner plexiform layer, as previously described. Antisera to porcine neuropeptide Y, and to avian and bovine pancreatic polypeptides label a sparse population of putative amacrine cell bodies and a dense fiber plexus in layers 1, 3, and 5 of the inner plexiform layer. Based on intensity of staining, this amacrine cell peptide appears to be most similar to neuropeptide-Y.Radioimmunoassay and immunocytochemical staining of retinas in which the efferent fiber peptide was depleted by optic nerve crush confirm in large part the observation that the two peptide systems are distinct. However, there is some cross-recognition of the FMRFamide-like tissue antigen by pancreatic polypeptide antibodies.Double-label studies with antisera to tyrosine hydroxylase and neuropeptide-Y indicate that the pancreatic polypeptide antigen is not co-localized with catecholamines.  相似文献   

13.
To elucidate the synaptic transmission between bipolar cells and amacrine cells, the effect of polarization of a bipolar cell on an amacrine cell was examined by simultaneous intracellular recordings from both cells in the isolated carp retina. When either an ON or OFF bipolar cell was depolarized by an extrinsic current step, an ON-OFF amacrine cell was transiently depolarized at the onset of the current but no sustained polarization during the current was detected. The current hyperpolarizing the OFF bipolar cell also produced the transient depolarization of the amacrine cell at the termination of the current. These responses had a latency of approximately 10 ms. The amplitude of the current-evoked responses changed gradually with current intensity within the range used in these experiments. They were affected by polarization of the amacrine cell membrane; the amplitude of the current-evoked responses as well as the light-evoked responses was increased when the amacrine cell membrane was hyperpolarized, while the amplitude was decreased when the cell was depolarized. These results confirm directly that ON-OFF amacrine cells receive excitatory inputs from both ON and OFF bipolar cells: the ON transient is due to inputs from ON bipolar cells, and the OFF transient to inputs from OFF bipolar cells. The steady polarization of bipolar cells is converted into transient signals during the synaptic process.  相似文献   

14.
In cat retinal wholemounts, substance-P-like immunoreactivity (SP-IR) was localized in a distinct population of amacrines whose cell bodies were normally placed in the ganglion cell layer. Although displaced amacrines accounted for 80-95% of the SP-IR amacrines in peripheral retina, this proportion decreased considerably within the area centralis, accounting for 50-80% of the labelled cells at maximum density. The SP-IR cells in both the inner nuclear and ganglion cell layers gave rise to well-defined varicose dendrites of uniform appearance that stratified around 60% depth (S3/S4) of the inner plexiform layer. In addition, sparse fine dendrites in stratum 1 (S1) could sometimes be traced to inner nuclear cells and occasionally to displaced amacrines. The combined SP-IR cell density ranged from less than 50 cells mm-2 in the far periphery to more than 500 cells mm-2 in the area centralis; the maximum density showed little individual variation despite wide differences in the proportion of displaced cells. The 39,000 SP-IR amacrines in a mapped retina had a triangular topographic distribution, with intermediate isodensity lines extending vertically in superior retina and horizontally along both arms of the visual streak. Colocalization experiments established that all SP-IR cells in cat retina showed GABA-like immunoreactivity, and that the SP-IR amacrines were quite distinct from the cholinergic amacrines identified by choline acetyltransferase immunohistochemistry.  相似文献   

15.
16.
During development of the nervous system, large numbers of neurons are overproduced and then eliminated by programmed cell death. Puma is a BH3-only protein that is reported to be involved in the initiation of developmental programmed cell death in rodent retinal neurons. The expression and cellular localization of Puma in retinal tissues during development are not, however, well known. Here the authors report the expression pattern of Puma during retinal development in the rat. During the period of programmed cell death in the retina, Puma was expressed in some members of each retinal neuron, including retinal ganglion cells, amacrine cells, bipolar cells, horizontal cells, and photoreceptor cells. Although the developmental programmed cell death of cholinergic amacrine cells is known to be independent of Puma, this protein was expressed in almost all their dendrites and somata of cholinergic amacrine cells at postnatal age 2 to 3 weeks, and it continued to be detected in cholinergic dendrites in the inner plexiform layer for up to 8 weeks after birth. These results suggest that Puma has some significant roles in retinal neurons after eye opening, especially that of cholinergic amacrine cells, in addition to programmed cell death of retinal neurons before eye opening.  相似文献   

17.
We investigated the morphology and synaptic connections of neuropeptide Y (NPY)-containing neurons in the guinea pig retina by immunocytochemistry, using antisera against NPY. Specific NPY immunoreactivity was localized to a population of wide-field and regularly spaced amacrine cells with processes ramifying mainly in stratum 1 of the inner plexiform layer (IPL). Double-label immunohistochemistry demonstrated that all NPY-immunoreactive cells possessed glutamic acid decarboxylase 65 immunoreactivity. The synaptic connectivity of NPY-immunoreactive amacrine cells was identified in the IPL by electron microscopy. The NPY-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in stratum 1 of the IPL. The most frequent postsynaptic targets of NPY-immunoreactive amacrine cells were other amacrine cell processes. Synaptic outputs to bipolar cells were also observed in a small number of cases. This finding suggests that NPY-containing amacrine cells may influence inner retinal circuitry in stratum 1 of the IPL, thus mediating visual processing.  相似文献   

18.
Current knowledge indicates that the adult mammalian retina lacks regenerative capacity. Here, we show that the adult stem cell marker, leucine‐rich repeat‐containing G‐protein‐coupled receptor 5 (Lgr5), is expressed in the retina of adult mice. Lgr5+ cells are generated at late stages of retinal development and exhibit properties of differentiated amacrine interneurons (amacrine cells). Nevertheless, Lgr5+ amacrine cells contribute to regeneration of new retinal cells in the adult stage. The generation of new retinal cells, including retinal neurons and Müller glia from Lgr5+ amacrine cells, begins in early adulthood and continues as the animal ages. Together, these findings suggest that the mammalian retina is not devoid of regeneration as previously thought. It is rather dynamic, and Lgr5+ amacrine cells function as an endogenous regenerative source. The identification of such cells in the mammalian retina may provide new insights into neuronal regeneration and point to therapeutic opportunities for age‐related retinal degenerative diseases.  相似文献   

19.
20.
By gently scraping off the surface of the lateral ventricles of adult bovine brains, we obtained sheets containing the ependymal layer and some attached sub-ependymal cells. Explants were cultured in serum-free medium or in two media enriched with 20% fetal calf serum or 20% adult bovine cerebrospinal fluid, and processed for different time intervals from 4 h to 60 days. For characterization of the ependymal cells we used antisera against S-100 protein, vimentin and glial fibrillary acidic protein (GFAP). For comparison, the ependyma of adult bovines and of fetuses from days 60 to 120 post coitum was studied in situ. The adult ependyma consisted of a ciliated, cuboid cell monolayer with short basal processes; it displayed S-100 immunoreactivity but only scarce deposits of vimentin and no GFAP. The fetal ependyma had the appearance of a pseudostratified epithelium with elongated nuclei and basal processes containing S-100 and vimentin from day 80 post coitum and GFAP from day 100 post coitum. In explants, no differences were seen between the three culture media; the ependyma became pseudostratified, developed basal processes and showed increasing amounts of S-100 and vimentin first, and subsequently also GFAP. These changes were concomitant with the onset of mitotic activity in the subependymal layer leading to the production of numerous cells. The morphological and immunocytochemical features of ependymal cells in cultured explants resembled those of fetal ependyma. Our results indicate that the culture of ependymal explants from adult bovine lateral ventricles is an useful model system for morphological and functional studies of the ependyma and for the analysis of cell proliferation in the subependymal layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号