首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Glenth?j  J Arnt  J Hyttel 《Life sciences》1990,47(15):1339-1346
We have previously demonstrated long-lasting increases in vacuous chewing movements (VCM) and tongue protrusions in rats treated discontinuously (DISC), but not continuously (CONT), with neuroleptics. To test whether this increase in mouth movements could be a result of exaggerated activity at the D-1 site, 34 rats were divided into three groups receiving the neuroleptic zuclopenthixol (ZU) DISC or CONT for 15 weeks, or no treatment. After withdrawal DISC treated animals showed an increase in oral activity compared to CONT treated. Two weeks after termination of medication the animals were tested with the D-1 agonist SK&F 38393. The increases in VCM after SK&F 38393 did not differ among the groups, but in contrast to control (CTRL) rats, treated rats showed a significant increase in tongue protrusions. There were no significant differences in the densities of D-1 and D-2 receptors in the striatum between the groups. The increase in tongue protrusions after SK&F 38393 in neuroleptic treated animals implies behavioural D-1 receptor supersensitivity. No significant differences in the rise in tongue protrusions and VCM after SK&F 38393 were seen between DISC and CONT treated animals. Our results thus do not indicate that increased D-1 receptor responsiveness is significant for the rise in spontaneous oral activity found after neuroleptic withdrawal.  相似文献   

2.
Brain function declines with age and is associated with diminishing mitochondrial integrity. The neuronal mitochondrial ultrastructural changes of young (4 months) and old (21 months) F344 rats supplemented with two mitochondrial metabolites, acetyl-L-carnitine (ALCAR, 0.2%[wt/vol] in the drinking water) and R-α-lipoic acid (LA, 0.1%[wt/wt] in the chow), were analysed using qualitative and quantitative electron microscopy techniques. Two independent morphologists blinded to sample identity examined and scored all electron micrographs. Mitochondria were examined in each micrograph, and each structure was scored according to the degree of injury. Controls displayed an age-associated significant decrease in the number of intact mitochondria (P = 0.026) as well as an increase in mitochondria with broken cristae (P < 0.001) in the hippocampus as demonstrated by electron microscopic observations. Neuronal mitochondrial damage was associated with damage in vessel wall cells, especially vascular endothelial cells. Dietary supplementation of young and aged animals increased the proliferation of intact mitochondria and reduced the density of mitochondria associated with vacuoles and lipofuscin. Feeding old rats ALCAR and LA significantly reduced the number of severely damaged mitochondria (P = 0.02) and increased the number of intact mitochondria (P < 0.001) in the hippocampus. These results suggest that feeding ALCAR with LA may ameliorate age-associated mitochondrial ultrastructural decay and are consistent with previous studies showing improved brain function.  相似文献   

3.
Summary The changes occurring in rat adrenocortical cells (zona fasciculata) during an 8 day period of treatment with ACTH, were investigated by morphometric and autoradiographic methods.The most important ultrastructural change consists in a conspicuous increase in the smooth endoplasmic reticulum, that accounts for about 50% of the total increase of cellular volume. Also the mitochondrial fraction shows a significant increase, which is found to be due both to the increment in the number of mitochondria per cell and to the increase in the mean volume of organelles themselves.The quantitative autoradiographic data, indicating an increment in the incorporation of 3H-orotate and 3H-leucine into adrenocortical cells of the treated animals, allow us to conclude that the ACTH-induced ultrastructural changes are the morphological expression of a stimulation of the cellular protein synthesis.Since mitochondria are largely autonomous in the synthesis of their enzymes and structural proteins, it is possible to hypothesize that ACTH also intervenes in the regulation of the mitochondrial protein synthesis.The authors wish to express their sincere appreciation to Mr. G. Gottardo for his excellent technical assistance.  相似文献   

4.
Ischemic cardiac injury can be substantially alleviated by exposing the heart to pharmacological agents such as volatile anesthetics before occurrence of ischemia-reperfusion. A hallmark of this preconditioning phenomenon is its memory, when cardioprotective effects persist even after removal of preconditioning stimulus. Since numerous studies pinpoint mitochondria as crucial players in protective pathways of preconditioning, the aim of this study was to investigate the effects of preconditioning agent isoflurane on the mitochondrial bioenergetic phenotype. Endogenous flavoprotein fluorescence, an indicator of mitochondrial redox state, was elevated to 195 ± 16% of baseline upon isoflurane application in intact cardiomyocytes, indicating more oxidized state of mitochondria. Isoflurane treatment also elicited partial dissipation of mitochondrial transmembrane potential, which remained depolarized even after anesthetic withdrawal (tetramethylrhodamine fluorescence intensity declined to 83 ± 3 and 81 ± 7% of baseline during isoflurane exposure and washout, respectively). Mild uncoupling, with preserved ATP synthesis, was also detected in mitochondria that were isolated from animals that had been previously preconditioned by isoflurane in vivo, revealing its memory nature. These mitochondria, after exposure to hypoxia and reoxygenation, exhibited better preserved respiration and ATP synthesis compared with mitochondria from nonpreconditioned animals. Partial mitochondrial depolarization was paralleled by a diminished Ca2+ uptake into isoflurane-treated mitochondria, as indicated by the reduced increment in rhod-2 fluorescence when mitochondria were challenged with increased Ca2+ (180 ± 24 vs. 258 ± 14% for the control). In conclusion, isoflurane preconditioning elicits partial mitochondrial uncoupling and reduces mitochondrial Ca2+ uptake. These effects are likely to reduce the extent of the mitochondrial damage after the hypoxic stress. cardioprotection; uncoupling  相似文献   

5.
Introgression of mtDNA appears common in animals, but the implications of acquiring a novel mitochondrial genome are not well known. This study investigates mito‐genome introgression between the lizard species Urosaurus graciosus, a thermal specialist, and U. ornatus, a species that occupies a wider range of thermal environments. As ectotherms, their metabolic rate is strongly influenced by the thermal environment; with mitochondria being linked to metabolic rates, overall energy budgets could be impacted by introgression. I use mitochondrial gene trees, inferred from Bayesian analyses of Cyt‐B and ND1 gene sequences, along with morphology and microsatellites from nineteen populations of these two species to address if the direction and location of mito‐nuclear discordance match predictions of introgression resulting from past population expansions. MtDNA is expected to move from resident species into expanding or invading species. Second, does having a heterospecific form of mitochondria impact body size, a trait strongly associated with fitness? Multiple independent introgression events of historic origin were detected. All introgression was unidirectional with U. ornatus‐type mtDNA found in U. graciosus parental type individuals. This result was consistent with population expansions detected in U. graciosus but not U. ornatus. Females with heterospecific mtDNA were significantly smaller than homospecific forms, and heterospecific males had a different relationship of body mass to body length than those with homospecific mtDNA. These changes indicate a potential selective disadvantage for individuals with heterospecific mitochondria and are consistent with the theoretical expectation that deleterious alleles are more likely to persist in expanding populations.  相似文献   

6.
Acrylamide (ACR), a widely used vinyl monomer, is well known as a neurotoxin to both laboratory animals and man. The experiment reported has demonstrated that ACR induces ultrastructural changes in the parasitic ciliate Nyctotheroides puytoraci, after injecting the host Bufo regularis with 1 mg ACR per toad (single dose). After 1 week of ACR injection, alterations in both nuclear and cytoplasmic organelles were observed. An increase in the number of cisternae of the Golgi complex was visualized which may be due to its division and hence activation. Acrylamide also appeared to cause fusion of mitochondria in the treated trophozoites. Thus trophozoites of these specimens showed a decreased number of irregularly shaped mitochondria with dense matrix and indistinct outer and inner membranes. Such changes may be attributed to a disturbance in mitochondrial protein synthesis. Also, rough endoplasmic reticulum and lysosomes increased in number. The basal cell bodies were degenerated at some sites.  相似文献   

7.
Small lymphocytes differentiate into functionally active blast cells in vitro upon stimulation with such mitogens as phytohemagglutinin and sodium periodate. If stimulated lymphocytes are subsequently treated with the nucleic acid intercalating dye ethidium bromide, electron-dense complexes containing nucleic acid are formed in mitochondria, protein synthesis in mitochondria is inhibited, and lymphoblast division ceases. Formation of complexes and the development of morphologically abnormal mitochondria provide ultrastructural evidence of mitochondrial protein inhibition and serve as markers for mitogen-responsive lymphocytes. The formation of these abnormalities in all mitochondria of treated megakaryocytes and 22% of mitochondria in platelets indicates that platelets contain functional nucleic acid and that the induced structural changes may be occurring in a less-differentiated (i.e., younger) subpopulation of circulating platelets.  相似文献   

8.
To investigate effects of endurance training and iron deficiency, as well as the combination of these two conditions, on mitochondrial ultrastructure, weanling rats at 3 wk of age were assigned to iron-deficient (Fe-) and iron-sufficient (Fe+) groups. Subsequently, groups were subdivided into exercise-trained (T) and sedentary (S) groups. Electron microscopy showed subsarcolemmal and intrafibrillar mitochondria in the Fe-T animals to be enlarged with sparse cristae and vacuole-like areas compared with the other groups. An increase in the number of lipid droplets in both Fe- groups was observed. Stereological measurements revealed a 99% increase in the volume occupied by muscle mitochondria in the Fe-T animals (11.9 +/- 0.8%) over the Fe+T (5.9 +/- 0.4%) and Fe+S (6.0 +/- 0.3%) groups and a 55% increase over the Fe-S groups (7.7 +/- 0.3%). The ratio of mitochondrial surface area to tissue volume was significantly decreased only in the Fe-T group. These results indicate that the combined stresses of iron deficiency and training produce mitochondrial ultrastructural changes far greater than those of iron deficiency or training alone. Because this is also the case with the disproportion among mitochondrial enzymes, it is possible that the ultrastructural changes are indicative of morphological responses that maintain ATP turnover during exercise in iron deficiency when oxygen transport and electron transport chain activities are reduced.  相似文献   

9.
Effects of chronic alcohol treatment have been investigated on the rates of extramitochondrial NADH utilization by hepatic mitochondria in the presence or absence of “malate-aspartate shuttle,” oxidation of ethanol, α-glycerophosphate, and the activity of succinic dehydrogenase, along with the changes in the intrahepatic distribution of aspartate aminotransferase. The rates of blood alcohol clearance, hepatic alcohol dehydrogenase activity, and NADPH-dependent microsomal ethanol oxidation were also studied after different time intervals of alcohol withdrawal from chronically alcohol-fed animals. Hepatic mitochondria from chronically ethanol-fed mice (ethanol withheld 20 hr before sacrifice) utilized extramitochondrial NADH at rates 25–40% higher than the corresponding pair-fed controls. Addition of malateaspartate shuttle components to mitochondria from control and ethanol-fed groups resulted in 70 and 90% stimulation of NADH utilization, respectively. Mitochondria from both groups showed respiratory control upon ADP addition (state 3). Preincubation with amino-oxyacetate or hydrazine, which inhibit aspartate aminotransferase activity, prevented the stimulatory effect of malate-aspartate shuttle on NADH utilization. Mitochondria from livers of chronic ethanol-fed mice in the presence of reconstituted malate-aspartate shuttle showed 30–40% higher utilization of ethanol than the corresponding pair-fed control animals. The rate of mitochondrial α-glycerophosphate utilization by alcohol-fed animals was significantly higher than the control group. Succinic dehydrogenase activity measured as an index of mitochondrial permeability in the absence of Ca2+ showed 85% higher activity in alcoholtreated group than the control animals. Chronic ethanol feeding for 4 weeks resulted in an increase in the activity of hepatic aspartate aminotransferase in the cytoplasmic fraction and a corresponding decrease in the mitochondrial fraction. Alcohol withdrawal from chronic alcohol-fed animals resulted in a decrease in the blood alcohol clearance rate after 10 days. Furthermore, a lack of correlation was observed between the rates of blood alcohol clearance and the activity of hepatic alcohol dehydrogenase on one hand, and between the rates of blood alcohol clearance and the microsomal ethanol-oxidizing activity on the other.  相似文献   

10.
1. The activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (EC 4.1.3.5) in extracts of rapidly frozen rat livers was doubled in animals treated in various ways to increase ketogenic flux. 2. Some 90% of the activity measured was mitochondrial, and changes in mitochondrial activity dominated changes in total enzyme activity. 3. The elevated HMG-CoA synthase activities persisted throughout the isolation of liver mitochondria. 4. Intramitochondrial succinyl-CoA content was lower in whole liver homogenates and in mitochondria isolated from animals treated with glucagon or mannoheptulose. 5. HMG-CoA synthase activity in mitochondria from both ox and rat liver was negatively correlated with intramitochondrial succinyl-CoA levels when these were manipulated artificially. Under these conditions, the differences between mitochondria from control and hormone-treated rats were abolished. 6. These findings show that glucagon can decrease intramitochondrial succinyl-CoA concentration, and that this in turn can regulate mitochondrial HMG-CoA synthase. They support the hypothesis that the formation of ketone bodies from acetyl-CoA may be regulated by the extent of succinylation of mitochondrial HMG-CoA synthase.  相似文献   

11.
We have recently performed molecular characterisation of an intracellular alpha-proteobacterium, named IricES1, which resides in the ovarian tissue of female Ixodes ricinus ticks from Italy. A unique characteristic of this bacterium is its ability to invade the mitochondria of the cells in which it resides. Although some ultrastructural studies have been performed on close relatives of this bacterium from I. ricinus in England and Switzerland, a number of questions remain about its movement within ovarian tissues and mitochondria. We have performed the first detailed ultrastructural examination of IricES1 in engorged female adult I. ricinus. Among our findings was that the bacterium enters mitochondria in a similar way to that employed by the 'predatory' bacterium Bdellovibro bacteriovorus, that is, between the inner and outer membranes. It then appears to multiply, with the new 'colony' consuming the mitochondrial matrix. Despite having many of their mitochondria consumed, oocytes appear to develop normally, and the bacteria are likely to be vertically transferred to all eggs.  相似文献   

12.
Testis of male albino rats treated with depot medroxyprogesterone acetate DMPA, at the dose of 1 mg/animal/day for 60 days showed degenerative changes in the late spermatids. The changes were related with the mitochondrial sheath of the midpiece, including the plasma membrane enclosing the mitochondria and the mitochondrial cristae. Except lactate dehydrogenase and alkaline phosphatase, all the testicular marker enzymes, viz. beta-glucuronidase, hyaluronidase, sorbitol dehydrogenase and acid phosphatase registered a significant decrease. The ultrastructural and biochemical changes are correlated, as the cellular degeneration is responsible for decrease in the activity of the marker enzymes.  相似文献   

13.
In this study initially a precancerous condition, leukoplakia, was develop at 6 weeks treatment of DMBA whereas in the animals treated both DMBA + Vit. A, leukoplakia was seen at 10 weeks followed by papilloma or nodules at 12 weeks. Tumours induced by DMBA were more in number than DMBA + Vit. A treated tumours. The histological and ultrastructural changes were enhanced and prominent in DMBA treated animals at 12 weeks, where as these changes were considerably less in animals treated with DMBA + vit. A at 12 weeks.  相似文献   

14.
Glucocorticoids help animals respond to stressors but excessive glucocorticoids cause muscle atrophy, while insulin can promote anabolism and growth. In order to compare the glucocorticoids-induced ultrastructural changes between skeletal muscle and cardiac muscle, and investigate the preventive effects of insulin on the changes, eighteen male chicks with similar initial weight were randomly divided into three groups. The two test groups were respectively treated with high-dose dexamethasone alone or together with low-dose insulin by intraperitoneal injection, and the control group was treated with an equal volume of saline solution. The experiment lasted for ten days, and then the body weight, muscle size and ultrastructure in skeletal and cardiac muscles of twelve chicks were qualitatively or quantitatively analyzed. The results showed that high-dose dexamethasone induced obvious skeletal and cardiac muscle atrophy. The differences of ultrastructural changes between skeletal muscle and cardiac muscle (such as for the former or the latter, the intermyofibrillar-and-interfilamentary spaces reducing or enlarging, the mitochondria swelling seriously or enlarging lightly, the myofibril filaments compacting or loosing) suggested that dexamethasone induced skeletal and cardiac muscle atrophy by different mechanisms. Low-dose insulin did not affect the dexamethasone-induced decreases of body weight and skeletal muscle size, but alleviated lightly the dexamethasone-induced ultrastructural changes in skeletal muscle. Different from skeletal muscle, low-dose insulin almost resisted the dexamethasone-induced ultrastructural changes in cardiac muscle.  相似文献   

15.
The ultrastructural changes in the adrenal zona glomerulosa and renal juxtaglomerular apparatus have been examined during normal pregnancy in sheep. As pregnancy progressed, increasing numbers of cells in the adrenal zona glomerulosa displayed mitochondria with straight tubular "rod-like" structures replacing their normal lamelliform cristae; groups of cells showing these mitochondrial changes were predominantly located in the middle and superficial regions of the zona glomerulosa, but at all stages remained interspersed with cells with apparently normal mitochondria. In the same animals, the renal juxtaglomerular index was raised, reflecting an increase in renin storage, and juxtaglomerular myoepithelioid cells showed increased numbers of cytoplasmic granules, but no apparent increase in granular endoplasmic reticulum and Golgi profiles; there were no distinguishing morphological changes in juxtaglomerular peripolar cells. These findings provide morphologic evidence of stimulation of the adrenal zona glomerulosa in association with increased juxtaglomerular renin storage during pregnancy. The mitochondrial changes observed in an increasing proportion of cells in the zona glomerulosa closely resemble those seen in sodium-depleted animals, and may reflect the altered steroidogenic capacity of the adrenal gland in pregnant sheep. The finding of groups of cells displaying altered mitochondria lying next to cells with normal mitochondria suggests the presence of cells with different sensitivities to stimuli for aldosterone production or may indicate the presence of different cell types in the zona glomerulosa responding to different stimuli.  相似文献   

16.
The present studies investigate the basis for the marked increase in mitochondrial size and approximately reciprocal decrease in mitochondrial number which have been observed in the livers of rats treated with cortisone acetate. Comparisons of the content and specific activity of mitochondrial DNA in the livers of control and cortisone-treated animals prelabeled with radioactive thymidine support the possibility that these changes in mitochondrial size and number are the result of a process of mitochondrial fusion. A consideration of various conditions now known to result in the formation of large mitochondria in other systems suggests that interference with mitochondrial respiration may provide a stimulus for such a process. The biochemical approach described in the present study may prove useful in investigating the origin of large mitochondria in other systems as well.  相似文献   

17.
The content of iron and protoporphyrin in liver mitochondria from mice with porphyria induced by griseofulvin was measured. The amount of porphyrin was 0.0076 +/- 0.0043, 4.11 +/- 0.58 and 22.2 +/- 6.8 nmol/mg protein (n = 5) in mitochondria from control animals and animals treated with griseofulvin for 3 days and 4-5 weeks, respectively. The energy coupling of the mitochondria was greatly diminished after 4-5 weeks of treatment, and the ferrochelatase activity was inhibited 80-90%, compared to that of control animals. Mitochondrial preparations isolated by differential centrifugation were contaminated with iron-containing lysosomes which could be removed by Percoll density-gradient centrifugation. In purified mitochondrial preparations no change in the amount of non-heme iron was found after griseofulvin feeding, representing 3.36 +/- 0.15, 3.97 +/- 0.40 and 3.59 +/- 0.23 nmol/mg protein for control animals, 3 days- and 4-5 weeks-treated animals, respectively (n = 4). A mitochondrial iron pool previously identified in rat liver mitochondria and shown to be available for heme synthesis in vitro (Tanger?s, A. (1985) Biochim. Biophys. Acta 843, 199-207) was also present in mitochondria from mice. The magnitude of this iron pool, as well as its availability for heme synthesis, was not changed after treatment of the animals with griseofulvin. The fact that porphyrin, but not iron, accumulated in the mitochondria when ferrochelatase was inhibited is discussed with regard to our understanding of the process of heme synthesis and its regulation.  相似文献   

18.
Mice exposed to intermittent hypobaric hypoxia for 20 hours a day, 6 days a week, develop extracellular adaptive responses similar to those found in humans exposed to oxygen tension equivalent to that found at an altitude of 4500 m. Isolated liver mitochondria from these animals show no significant differences in rates of substrate-stimulated respiration, ADP-stimulated respiration and the respiratory control ratio (RCR), when compared with sea level controls. Undetectable or negligible differences in these parameters are also noted when sea level animals are exposed for one hour to severe hypoxia (7% O2). We therefore conclude that the oxidative phosphorylation capacity of the isolated mouse liver mitochondria remains unaltered in both acute and chronic hypoxia. However thein vivo oxygen consumption by mice at this degree of hypoxia was markedly reduced. Lack of observable changes in oxidative phosphorylation could be accounted for by extracellular adaptations in mitochondria isolated from acclimatized animals. This explanation, however, is not consistent with the lack of changes on oxidative phosphorylation in mitochondria isolated from mice undergoing acute hypoxia at sea level. It is then suggested that isolated mitochondrial preparations are of limited value for investigating biochemical mechanisms underlying the variation of cellular respiration occurringin vivo.  相似文献   

19.
Calcium overload of neural cell mitochondria plays a key role in excitotoxic and ischemic brain injury. This study tested the hypothesis that brain mitochondria consist of subpopulations with differential sensitivity to calcium-induced inner membrane permeability transition, and that this sensitivity is greatly reduced by physiological levels of adenine nucleotides. Isolated non-synaptosomal rat brain mitochondria were incubated in a potassium-based medium in the absence or presence of ATP or ADP. Measurements were made of medium and intramitochondrial free calcium, light scattering, mitochondrial ultrastructure, and the elemental composition of electron-opaque deposits within mitochondria treated with calcium. In the absence of adenine nucleotides, calcium induced a partial decrease in light scattering, accompanied by three distinct ultrastructural morphologies, including large-amplitude swelling, matrix vacuolization and a normal appearance. In the presence of ATP or ADP the mitochondrial calcium uptake capacity was greatly enhanced and calcium induced an increase rather than a decrease in mitochondrial light scattering. Approximately 10% of the mitochondria appeared damaged and the rest contained electron-dense precipitates that contained calcium, as determined by electron-energy loss spectroscopy. These results indicate that brain mitochondria are heterogeneous in their response to calcium. In the absence of adenine nucleotides, approximately 20% of the mitochondrial population exhibit morphological alterations consistent with activation of the permeability transition, but less than 10% exhibit evidence of osmotic swelling and membrane disruption in the presence of ATP or ADP.  相似文献   

20.
The purpose of the present research was to determine the effect of in utero ethanol exposure on cardiac muscle development. Pregnant albino mice (Swiss strain) at 8 days of gestation were divided into three groups: a normal group fed Purina lab chow for rodents and water ad libitum; an ethanol group fed the liquid diet ENSURE with 20% of the calories derived from ethanol (12.6 +/- 1.2 gm/kg body weight per day); and an isocaloric group pairfed ENSURE with 20% of the calories derived from sucrose. These diets were continued until birth, at which time the litter size, crown to rump length, and weight were recorded. Randomly selected neonatal pups from each litter were decapitated and their hearts immediately processed for transmission electron microscopy. Litter size, crown to rump length, and body weight of the ethanol-treated mice at birth were significantly less than normal but not less than pairfed controls. Ultrastructural evaluation of cardiac muscle from mice treated in utero with ethanol in comparison to that from both normal and pair-fed control animals revealed various degrees of morphological alterations. The most pronounced alterations were in mitochondrial structure and included an increase in mitochondrial volume per cytoplasmic volume and a marked decrease in the amount of inner mitochondrial membrane. Myofibrillar abnormalities were also evident in the ethanol group but not in either control group. These abnormalities included a decrease in the myofibril volume per cytoplasmic volume and a disruption in myofibril organization particularly the Z-bands. The ultrastructural alterations in the cardiac muscle from the ethanol treated group were not a result of malnutrition or dehydration as the pairfed group did not exhibit these changes. It is apparent from this study that exposure of mice in utero to ethanol can cause ultrastructural abnormalities in cardiac muscle cells. Whether these changes result in heart pathophysiology and persist to adulthood are not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号