首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinic receptors in aging and dementia   总被引:16,自引:0,他引:16  
Activation of neuronal nicotinic acetylcholine receptors (nAChRs) has been shown to maintain cognitive function following aging or the development of dementia. Nicotine and nicotinic agonists have been shown to improve cognitive function in aged or impaired subjects. Smoking has also been shown in some epidemiological studies to be protective against the development of neurodegenerative diseases. This is supported by animal studies that have shown nicotine to be neuroprotective both in vivo and in vitro. Treatment with nicotinic agonists may therefore be useful in both slowing the progression of neurodegenerative illnesses, and improving function in patients with the disease. While increased nicotinic function has been shown to be beneficial, loss of cholinergic markers is often seen in patients with dementia, suggesting that decreased cholinergic function could contribute to both the cognitive deficits, and perhaps the neuronal degeneration, associated with dementia. In this article we will review the literature on each of these areas. We will also present hypotheses that might address the mechanisms underlying the ability of nAChR function to protect against neurodegeneration or improve cognition, two potentially distinct actions of nicotine.  相似文献   

2.
Nicotinic acetylcholine receptors (AChRs) are a family of acetylcholine-gated cation channels that form the predominant excitatory neurotransmitter receptors on muscles and nerves in the peripheral nervous system. AChRs are also expressed on neurons in lower amounts throughout the central nervous system. AChRs are even being reported on unexpected cell types such as keratinocytes. Structures of these AChRs are being determined with increasing precision, but functions of some orphan subunits are just beginning to be established. Functional roles for postsynaptic AChRs in muscle are well known, but in neurons the post-, peri-, extra-, and presynaptic roles of AChRs are just being revealed. Pathogenic roles of AChRs are being discovered in many diseases involving mechanisms ranging from mutations, to autoimmune responses, to the unknown; involving cell types ranging from muscles, to neurons, to keratinocytes; and involving signs and symptoms ranging from muscle weakness to epilepsy, to neurodegenerative disease, to psychiatric disease, to nicotine addiction. Awareness of AChR involvement in some of these diseases has provoked new interests in development of therapeutic agonists for specific AChR subtypes and the use of expressed cloned AChR subunits as possible immunotherapeutic agents. Highlights of recent developments in these areas will be briefly reviewed.  相似文献   

3.
Nicotinic receptors, allosteric proteins and medicine   总被引:1,自引:0,他引:1  
The nicotinic acetylcholine receptor (nAChR) was the first ion channel and membrane receptor of a neurotransmitter to be isolated and chemically identified and is one of the best known membrane proteins involved in signal transduction. Subsequently, nAChRs have been a target for drug discovery because of their potential to impact numerous brain diseases and disorders. Here, we consider recent developments in our understanding of nAChR structure and of the conformational transitions that link the acetylcholine (ACh)-binding site and the ion channel to mediate fast neurotransmission. The knowledge of such allosteric mechanisms is essential to understand pathologies such as congenital myasthenia, autosomal dominant nocturnal frontal lobe epilepsies, sudden infant death syndrome, attention deficit hyperactivity disorder and nicotine addiction and to design novel therapies.  相似文献   

4.
Nicotinic receptors are cation-ion selective ligand-gated ion channels that are expressed throughout the nervous system. Most have significant calcium permeabilities, enabling them to regulate calcium-dependent events. One of the most abundant is a species composed of the alpha 7 gene product and having a relative calcium permeability equivalent to that of NMDA receptors. The alpha 7-containing receptors can be found presynaptically where they modulate transmitter release, and postsynaptically where they generate excitatory responses. They can also be found in perisynaptic locations where they modulate other inputs to the neuron and can activate a variety of downstream signaling pathways. The effects the receptors produce depend critically on the sites at which they are clustered. Instructive preparations for examining alpha 7-containing receptors are the rat hippocampus, where they are thought to play a modulatory role, and the chick ciliary ganglion, where they participate in throughput transmission as well as regulatory signaling. Relatively high levels of alpha 7-containing receptors are found in the two preparations, and the receptors display a variety of synaptic options and functions in the two cases. Progress is starting to be made in understanding the mechanisms responsible for localizing the receptors at specific sites and in identifying components tethered in the vicinity of the receptors that may facilitate signal transduction and downstream signaling.  相似文献   

5.
Nicotinic acetylcholine receptors (nAChRs) are major excitatory neurotransmitter receptors in both vertebrates and invertebrates. In insects, nAChRs are the target site for several naturally occurring and synthetic compounds that exhibit potent insecticidal activity. Several compounds isolated from plants are potent agonists or antagonists of nAChRs, suggesting that these may have evolved as a defence mechanism against insects and other herbivores. Nicotine, isolated from the tobacco plant, has insecticidal activity and has been used extensively as a commercial insecticide. Spinosad, a naturally occurring mixture of two macrocyclic lactones isolated from the microorganism Saccharopolyspora spinosa, acts upon nAChRs and has been developed as a commercial insecticide. Since the early 1990s, one of the most widely used and rapidly growing classes of insecticides has been the neonicotinoids. Neonicotinoid insecticides are potent selective agonists of insect nAChRs and are used extensively in both crop protection and animal health applications. As with other classes of insecticides, there is growing evidence for the evolution of resistance to insecticides that act on nAChRs.  相似文献   

6.
7.
Nicotinic acetylcholine receptors: from structure to brain function   总被引:14,自引:0,他引:14  
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels and can be divided into two groups: muscle receptors, which are found at the skeletal neuromuscular junction where they mediate neuromuscular transmission, and neuronal receptors, which are found throughout the peripheral and central nervous system where they are involved in fast synaptic transmission. nAChRs are pentameric structures that are made up of combinations of individual subunits. Twelve neuronal nAChR subunits have been described, α2–α10 and β2–β4; these are differentially expressed throughout the nervous system and combine to form nAChRs with a wide range of physiological and pharmacological profiles. The nAChR has been proposed as a model of an allosteric protein in which effects arising from the binding of a ligand to a site on the protein can lead to changes in another part of the molecule. A great deal is known about the structure of the pentameric receptor. The extracellular domain contains binding sites for numerous ligands, which alter receptor behavior through allosteric mechanisms. Functional studies have revealed that nAChRs contribute to the control of resting membrane potential, modulation of synaptic transmission and mediation of fast excitatory transmission. To date, ten genes have been identified in the human genome coding for the nAChRs. nAChRs have been demonstrated to be involved in cognitive processes such as learning and memory and control of movement in normal subjects. Recent data from knockout animals has extended the understanding of nAChR function. Dysfunction of nAChR has been linked to a number of human diseases such as schizophrenia, Alzheimer's and Parkinson's diseases. nAChRs also play a significant role in nicotine addiction, which is a major public health concern. A genetically transmissible epilepsy, ADNFLE, has been associated with specific mutations in the gene coding for the α4 or β2 subunits, which leads to altered receptor properties. Electronic Publication  相似文献   

8.
Astrocytes do not merely serve as the supporting cast and scenery against which starring roles would be played by neurons. Rather, these glial cells are intimately involved in many of the brain's functions by responding to neuronal activity and modulating it. Such interplay between two principle neural cells, neurons and astrocytes, is evidenced in bi-directional glutamatergic astrocyte-neuron signaling. A key feature in this signaling pathway is astrocytic excitability based on variations of cytosolic Ca(2+). It enables astrocytes, through the activation of their glutamatergic receptors, to respond to the same signal used by nearby neurons in synaptic transmission. Furthermore, increases in cytosolic Ca(2+) in astrocytes can subsequently lead to Ca(2+)-dependent exocytotic secretion of gliotransmitter glutamate that in turn can signal to adjacent neurons. Astrocytic secretory machinery includes an assortment of exocytotic proteins which governs a merger of secretory vesicles to the plasma membrane. A cumulative knowledge on astrocytic excitability will aid better understanding of operating procedures in the brain in health and disease.  相似文献   

9.
10.
Intracellular recordings were performed in voltage-clamped Xenopus oocytes upon injection with a mixture of cDNAs encoding the beta3 and mutant alpha7 (L247Talpha7) neuronal nicotinic acetylcholine receptor (nAChR) subunits. The expressed receptors maintained sensitivity to methyllycaconitine and to alpha-bungarotoxin but exhibited a functional profile strikingly different from that of the homomeric L247Talpha7 receptor. The heteromeric L247Talpha7beta3 nAChR had a lower apparent affinity and a faster rate of desensitization than L247Talpha7 nAChR, exhibited nonlinearity in the I-V relationship, and was inhibited by 5-hydroxytryptamine, much like wild type alpha7 (WTalpha7) nAChR. Single channel recordings in cell-attached mode revealed unitary events with a slope conductance of 19 picosiemens and a lifetime of 5 ms, both values being much smaller than those of the homomeric receptor channel. Upon injection with a mixture of WTalpha7 and beta3 cDNAs, clear evidence was obtained for the plasma membrane assembly of heteromeric nAChRs, although ACh could not activate these receptors. It is concluded that beta3, long believed to be an orphan subunit, readily co-assembles with other subunits to form heteromeric receptors, some of which may be negative regulators of cholinergic function.  相似文献   

11.

Background

Nicotinic acetylcholine receptors (nAChR) have been identified on a variety of cells of the immune system and are generally considered to trigger anti-inflammatory events. In the present study, we determine the nAChR inventory of rat alveolar macrophages (AM), and investigate the cellular events evoked by stimulation with nicotine.

Methods

Rat AM were isolated freshly by bronchoalveolar lavage. The expression of nAChR subunits was analyzed by RT-PCR, immunohistochemistry, and Western blotting. To evaluate function of nAChR subunits, electrophysiological recordings and measurements of intracellular calcium concentration ([Ca2+]i) were conducted.

Results

Positive RT-PCR results were obtained for nAChR subunits α3, α5, α9, α10, β1, and β2, with most stable expression being noted for subunits α9, α10, β1, and β2. Notably, mRNA coding for subunit α7 which is proposed to convey the nicotinic anti-inflammatory response of macrophages from other sources than the lung was not detected. RT-PCR data were supported by immunohistochemistry on AM isolated by lavage, as well as in lung tissue sections and by Western blotting. Neither whole-cell patch clamp recordings nor measurements of [Ca2+]i revealed changes in membrane current in response to ACh and in [Ca2+]i in response to nicotine, respectively. However, nicotine (100 μM), given 2 min prior to ATP, significantly reduced the ATP-induced rise in [Ca2+]i by 30%. This effect was blocked by α-bungarotoxin and did not depend on the presence of extracellular calcium.

Conclusions

Rat AM are equipped with modulatory nAChR with properties distinct from ionotropic nAChR mediating synaptic transmission in the nervous system. Their stimulation with nicotine dampens ATP-induced Ca2+-release from intracellular stores. Thus, the present study identifies the first acute receptor-mediated nicotinic effect on AM with anti-inflammatory potential.  相似文献   

12.
Metabotropic glutamate receptors in the basal ganglia motor circuit   总被引:5,自引:0,他引:5  
In recent years there have been tremendous advances in our understanding of the circuitry of the basal ganglia and our ability to predict the behavioural effects of specific cellular changes in this circuit on voluntary movement. These advances, combined with a new understanding of the rich distribution and diverse physiological roles of metabotropic glutamate receptors in the basal ganglia, indicate that these receptors might have a key role in motor control and raise the exciting possibility that they might provide therapeutic targets for the treatment of Parkinson's disease and related disorders.  相似文献   

13.
Summary Intracellular microelectrode recording and ionophoretic application of carbamylcholine (CCh) were used to compare the cholinergic sensitivity of postsynaptic dendrites of an identified neurone with that of an identified presynaptic cholinergic axon.The axon of the lateral filiform hair sensory neurone (LFHSN) in the first-instar cockroachPeriplaneta americana was found to be as sensitive to CCh as the dendritic regions of giant interneurone 3 (GI 3). The CCh response of both neurones was unaffected by replacing Ca2+ with Mg2+, confirming that the ACh receptors are present on the neurones under test. The CCh response of both neurones was mimicked by ionophoretic application of nicotine. The responses were blocked by 10–5 M mecamylamine and 10–6 M d-tubocurarine and were not affected by muscarinic antagonists, suggesting that the ACh receptors present on GI 3 and LFHSN are predominantly nicotinic.The muscarinic agonist oxotremorine and the antagonists atropine and quinuclidinyl benzilate had no modulatory effect on LFHSN-GI 3 synaptic transmission.The latency of the LFHSN response to CCh was consistent with the hypothesis that ACh receptors are situated on the main axon/terminal within the neuropil of the ganglion. It has previously been shown that this region of the axon does not form output synapses (Blagburn et al. 1985a). This indirect evidence indicates that presynaptic or extrasynaptic ACh receptors are present in the membrane of a cholinergic axon.LFHSN was depolarized by synaptically-released ACh after normal or evoked spike bursts, suggesting that the nicotinic ACh receptors act as autoreceptors. However, it was not possible to obtain direct evidence to support the hypothesis that these receptors modulate ACh release.Abbreviations CCh carbamylcholine - GI giant interneurone - FHSN filiform hair sensory neurone - LFHSN lateral filiform hair sensory neurone - R in input resistance - V depolarization - V m resting potential  相似文献   

14.
15.
16.
Many populations of vertebrate neurons have a membrane component that binds alpha-bungarotoxin and cholinergic ligands. Despite the abundance of this component and its similarities to nicotinic receptors, its function has remained controversial. Using a fluorescence assay, we show here that activation of the component elevates the intracellular concentration of free Ca2+, demonstrating a receptor function for the toxin-binding component. Whole-cell voltage-clamp and intracellular recordings did not detect a significant current resulting from receptor activation, possibly because the currents were small or the receptors rapidly desensitized. The rise in intracellular free Ca2+ caused by the receptor was prevented by Ca2+ channel blockers. This suggests a signaling cascade likely to have important regulatory consequences for the neuron.  相似文献   

17.
Involvement of NMDA receptors in non-convulsive epilepsy in WAG/Rij rats   总被引:2,自引:0,他引:2  
The involvement of the NMDA receptor in spontaneous non-convulsive epilepsy was studied by intracerebroventricular injections of APH and NMDA in WAG/Rij rats. The WAG/Rij rat strain is recognized as an animal model for human absence epilepsy. EEG registrations showed that APH (5 nmol/5 microliters; 25 nmol/5 microliters; 50 nmol/5 microliters) causes a dose-dependent decrease in the number and mean duration of the spike-wave discharges, while NMDA (50 pmol/5 microliters; 500 pmol/5 microliters; 5 nmol/5 microliters) induces a dose-dependent increase in the number. The effects of NMDA (5 nmol/5 microliters) can be blocked completely by APH (50 nmol/5 microliters). These results suggest an involvement of the NMDA receptor in experimental non-convulsive epilepsy, observed in the WAG/Rij model.  相似文献   

18.
Nicotine consumed upon smoking affects numerous physiological processes through nicotinic acetylcholine receptors, which mediate cholinergic regulation by the neuronal and endogenous acetylcholine. Consequently, nicotinic receptors are expressed in many non-excitable tissues including the blood. In spite of the documented effect of nicotine on hematopoiesis, little is known about the expression and role of nicotinic receptors in the course of blood cell differentiation. The aim of the present study was to investigate whether and how nicotinic receptors are involved in the development of myeloid and erythroid cells within the bone marrow. The presence of nicotinic receptors containing alpha4(beta2) and alpha7 subunits in the bone marrow cells of C57Bl/6 mice was shown by the binding of [125I]-alpha-bungarotoxin or [3H]-Epibatidine and by flow cytometry with subunit-specific antibodies or fluorescein-labeled alpha-cobratoxin. Both TER119+ (erythroid) and CD16+CD43med (myeloid) progenitor cells bound more alpha4-specific antibodies than their mature forms, while the binding of alpha-cobratoxin and alpha7-specific antibodies was also high in mature cells. According to morphological analysis, either the absence of alpha7-containing nicotinic receptors in knockout mice or their desensitization in mice chronically treated with nicotine decreased the number of myeloid and erythroid progenitors and junior cells. In contrast, the absence of beta2-containing receptors favored myelocyte generation and erythroid cell maturation. It is concluded that the development of both myeloid and erythroid cell lineages is regulated by endogenous cholinergic ligands and can be affected by nicotine through alpha7- and alpha4beta2-containing nicotinic receptors, which play different roles in the course of the cell maturation.  相似文献   

19.
Brain function is based on an exquisite balance between excitatory and inhibitory neurotransmission. GABAergic neurons provide the major inhibitory control. By controlling spike timing and sculpting neuronal rhythms they play a key role in regulating behavior. GABAergic neurons are highly diverse and operate with a corresponding diversity of GABAA receptor subtypes. In this article, the contribution of GABAA receptor deficits to central nervous system disorders, in particular anxiety disorders, epilepsy, schizophrenia and insomnia, is reviewed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号