首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1995,128(6):1043-1053
The sorting of apical and basolateral proteins into vesicular carriers takes place in the trans-Golgi network (TGN) in MDCK cells. We have previously analyzed the protein composition of immunoisolated apical and basolateral transport vesicles and have now identified a component that is highly enriched in apical vesicles. Isolation of the encoding cDNA revealed that this protein, annexin XIIIb, is a new isoform of the epithelial specific annexin XIII sub-family which includes the previously described intestine-specific annexin (annexin XIIIa; Wice, B. M., and J. I. Gordon. 1992. J. Cell Biol. 116:405-422). Annexin XIIIb differs from annexin XIIIa in that it contains a unique insert of 41 amino acids in the NH2 terminus and is exclusively expressed in dog intestine and kidney. Immunofluorescence microscopy demonstrated that annexin XIIIb was localized to the apical plasma membrane and underlying punctate structures. Since annexins have been suggested to play a role in membrane-membrane interactions in exocytosis and endocytosis, we investigated whether annexin XIIIb is involved in delivery to the apical cell surface. To this aim we used permeabilized MDCK cells and a cytosol-dependent in vitro transport assay. Antibodies specific for annexin XIIIb significantly inhibited the transport of influenza virus hemagglutinin from the TGN to the apical plasma membrane while the transport of vesicular stomatitis virus glycoprotein to the basolateral cell surface was unaffected. We propose that annexin XIIIb plays a role in vesicular transport to the apical plasma membrane in MDCK cells.  相似文献   

2.
In previous work we reported that long term treatment of polarized HT-29 cells by 1-benzyl-2-acetamido-2-deoxy-alpha-d-galactopyranoside (GalNAcalpha-O-bn) induced undersialylation and intracellular distribution of apical glycoproteins such as dipeptidyl peptidase IV (DPP-IV), and we suggested therefore that sialylation could act as an apical targeting signal. In this work, the apical direct biosynthetic route was studied after transfection of polarized enterocyte-like HT-29 5M12 cloned cells with a murine cDNA coding for a soluble form of DPP-IV, which was secreted into the apical medium. A 24-h treatment of transfected cells by GalNAcalpha-O-bn markedly inhibited the apical secretion and the sialylation of this soluble murine DPP-IV, which became blocked inside the cell. A similar short GalNAcalpha-O-bn treatment also induced an intracellular distribution of both endogenous transmembrane DPP-IV and proteins involved in the regulation of the apical trafficking such as the apical t-SNARE syntaxin-3 and the raft-associated protein annexin XIIIb, whereas the basolateral t-SNARE syntaxin-4 kept its normal localization. These apical membrane proteins moved efficiently from trans-Golgi network to apical carrier vesicles but failed to be transported from carrier vesicles to the apical plasma membrane. Isolation of membrane microdomains showed that GalNAcalpha-O-bn induced the formation of abnormal lipid-rich microdomains in comparison to normal rafts, as shown by their lower buoyant density and their depletion in annexin XIIIb. In conclusion, GalNAcalpha-O-bn blocks the anterograde traffic to the apical surface of polarized HT-29 cells at the transport level or docking/fusion level of carrier vesicles.  相似文献   

3.
A member of the annexin XIII sub-family, annexin XIIIb, has been implicated in the apical exocytosis of epithelial kidney cells. Annexins are phospholipid-binding proteins that have been suggested to be involved in membrane trafficking events although their actual physiological function remains open. Unlike the other annexins, annexin XIIIs are myristoylated. Here, we show by immunoelectron microscopy that annexin XIIIb is localized to the trans-Golgi network (TGN), vesicular carriers and the apical cell surface. Polarized apical sorting involves clustering of apical proteins into dynamic sphingolipid-cholesterol rafts. We now provide evidence for the raft association of annexin XIIIb. Using in vitro assays and either myristoylated or unmyristoylated recombinant annexin XIIIb, we demonstrate that annexin XIIIb in its native myristoylated form stimulates specifically apical transport whereas the unmyristoylated form inhibits this route. Moreover, we show that formation of apical carriers from the TGN is inhibited by an anti-annexin XIIIb antibody whereas it is stimulated by myristoylated recombinant annexin XIIIb. These results suggest that annexin XIIIb directly participates in apical delivery.  相似文献   

4.
Nedd4 is a ubiquitin protein ligase (E3) containing a C2 domain, three or four WW domains, and a ubiquitin ligase HECT domain. We have shown previously that the C2 domain of Nedd4 is responsible for its Ca(2+)-dependent targeting to the plasma membrane, particularly the apical region of epithelial MDCK cells. To investigate this apical preference, we searched for Nedd4-C2 domain-interacting proteins that might be involved in targeting Nedd4 to the apical surface. Using immobilized Nedd4-C2 domain to trap interacting proteins from MDCK cell lysate, we isolated, in the presence of Ca(2+), a approximately 35-40-kD protein that we identified as annexin XIII using mass spectrometry. Annexin XIII has two known isoforms, a and b, that are apically localized, although XIIIa is also found in the basolateral compartment. In vitro binding and coprecipitation experiments showed that the Nedd4-C2 domain interacts with both annexin XIIIa and b in the presence of Ca(2+), and the interaction is direct and optimal at 1 microM Ca(2+). Immunofluorescence and immunogold electron microscopy revealed colocalization of Nedd4 and annexin XIIIb in apical carriers and at the apical plasma membrane. Moreover, we show that Nedd4 associates with raft lipid microdomains in a Ca(2+)-dependent manner, as determined by detergent extraction and floatation assays. These results suggest that the apical membrane localization of Nedd4 is mediated by an association of its C2 domain with the apically targeted annexin XIIIb.  相似文献   

5.
Kinesin superfamily proteins and their various functions and dynamics   总被引:7,自引:0,他引:7  
Kinesin superfamily proteins (KIFs) are motor proteins that transport membranous organelles and macromolecules fundamental for cellular functions along microtubules. Their roles in transport in axons and dendrites have been studied extensively, but KIFs are also used in intracellular transport in general. Recent findings have revealed that in many cases, the specific interaction of cargoes and motors is mediated via adaptor/scaffolding proteins. Cargoes are sorted to precise destinations, such as axons or dendrites. KIFs also participate in polarized transport in epithelial cells as shown in the apical transport of annexin XIIIb-containing vesicles by KIFC3. KIFs play important roles in higher order neuronal activity; transgenic mice overexpressing KIF17, which transports N-methyl-d-asp (NMDA) receptors to dendrites, show enhanced memory and learning. KIFs also play significant roles in neuronal development and brain wiring: KIF2A suppresses elongation of axon collaterals by its unique microtubule-depolymerizing activity. X-ray crystallography has revealed the structural uniqueness of KIF2 underlying the microtubule-depolymerizing activity. In addition, single molecule biophysics and optical trapping have shown that the motility of monomeric KIF1A is caused by biased Brownian movement, and X-ray crystallography has shown how the conformational changes occur for KIF1A to move during ATP hydrolysis. These multiple approaches in analyzing KIF functions will illuminate many basic mechanisms underlying intracellular events and will be a very promising and fruitful area for future studies.  相似文献   

6.
A key aspect in the structure of epithelial and neuronal cells is the maintenance of a polarized organization based on highly specific sorting machinery at the exit site of the trans Golgi network (TGN). Epithelial cells sort protein and lipid components into different sets of carriers for the apical or basolateral plasma membrane. The two intestinal proteins lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) are delivered to the apical plasma membrane of epithelial cells with high fidelity but differ in their affinity to detergent-insoluble, glycolipid-enriched complexes (DIGs). Using a two-color labeling technique, we have recently characterized two post-Golgi vesicle populations that direct LPH and SI separately to the apical cell surface. Here, we investigated the structure and identification of protein components in these vesicle populations and assessed the role of cytoskeletal post-Golgi transport routes for apical cargo. Apart from the central role of microtubules in vesicle transport, we demonstrate that the transport of SI-carrying apical vesicles (SAVs) occurs along actin tracks in the cellular periphery, whereas LPH-carrying apical vesicles (LAVs) are transferred in an actin-independent fashion to the apical membrane. Our data further indicate that myosin 1A is the actin-associated motor protein that drives SAVs along actin filaments to the apical cell surface.  相似文献   

7.
Two integral membrane proteins, influenza virus hemagglutinin (HA) and vesicular stomatitis virus G protein, are transported to and accumulated on the apical and basolateral surfaces, respectively, of the plasma membrane of polarized epithelial cells. We have used chimeric constructions to identify the domains of HA and G proteins which contain the signals for polarized transport. Previously, we have shown that a chimeric protein containing the cleavable leader and the ectodomain of HA fused to the anchoring and cytoplasmic domains of G is transported to the apical surface of polarized MDCK cells (McQueen, N.L., Nayak, D.P., Stephens, E.B., and Compans, R.W. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 9318-9322). In this report we show that a chimera containing the cleavable leader and ectodomain of G fused to the anchoring and cytoplasmic domains of HA is transported to the basolateral surface of polarized cells. Another chimera which contains the leader sequence of G fused to leader minus HA is transported to the apical surface of polarized cells. These results taken together suggest that the signals for the polarized transport of HA and G proteins may reside in their ectodomains.  相似文献   

8.
Mammary epithelial cells (MEC) of lactating animals ferry large amounts of milk constituents in vesicular structures which have mostly been characterized by morphological approaches (Ollivier-Bousquet, 1998). Recently, we have shown that under conditions of lipid deprivation, perturbed prolactin traffic paralleled changes in the membrane phospholipid composition and in the cytosol versus membrane distribution of annexin VI (Ollivier-Bousquet et al., 1997). To obtain additional information on the membrane events involved in the vesicular transport of the hormone to the apical pole of the cell, we conducted a biochemical study on prolactin-containing vesicles in MEC at two different stages of differentiation. We first showed that MEC of pregnant and lactating rabbits exhibited membrane characteristics of non-polarized and polarized cells respectively, using annexin IV and the alpha-6 subunit of integrin as membrane markers. Incubation of both cell types with biotinylated prolactin for 1 h at 15 degrees C, followed by a 10-min chase at 37 degrees C revealed that prolactin transport was activated upon MEC membrane polarization. This was confirmed by subcellular fractionation of prolactin-containing vesicles on discontinuous density gradients. In non-polarized MEC, (125)I-prolactin was mainly recovered in gradient fractions enriched with endocytotic vesicles either after incubation at 15 degrees C or after a 10-min chase at 37 degrees C. In contrast, in polarized MEC, the hormone switched from endocytotic compartments to a fraction enriched in exocytotic clathrin-coated vesicles during the 10-min chase at 37 degrees C. Association of annexin VI to prolactin carriers was next studied in both non-polarized and polarized cells. Membrane compartments collected at each gradient interface were solubilized under mild conditions by Triton X-100 (TX100) and the distribution of annexin VI in TX100-insoluble and TX100-soluble fractions was analyzed by Western blotting. Upon MEC polarization, the amount of annexin VI recovered in TX100-insoluble fractions changed. Quite interestingly, it increased in a membrane fraction enriched with endocytotic clathrin-coated vesicles, suggesting that annexin VI may act as a sorting signal in prolactin transport.  相似文献   

9.
In Madin-Darby canine kidney (MDCK) cells (a polarized epithelial cell line) infected with influenza virus, the hemagglutinin behaves as an apical plasma membrane glycoprotein. To determine biochemically the domain on the plasma membrane, apical or basolateral, where newly synthesized hemagglutinin first appears, cells were cultured on Millipore filters to make both cell surface domains independently accessible. Hemagglutinin in virus-infected cells was pulse-labeled, chased, and detected on the plasma membrane with a sensitive trypsin assay. Under all conditions tested, newly made hemagglutinin appeared simultaneously on both domains, with the bulk found in the apical membrane. When trypsin was continuously present on the basolateral surface during the chase, little hemagglutinin was cleaved relative to the amount transported apically. In addition, specific antibodies against the hemagglutinin placed basolaterally had no effect on transport to the apical domain. These observations suggested that most newly synthesized hemagglutinin does not transiently appear on the basolateral surface but rather is delivered directly to the apical surface in amounts that account for its final polarized distribution.  相似文献   

10.
Bidirectional transport of membrane organelles along microtubules (MTs) is driven by plus‐end directed kinesins and minus‐end directed dynein bound to the same cargo. Activities of opposing MT motors produce bidirectional movement of membrane organelles and cytoplasmic particles along MT transport tracks. Directionality of MT‐based transport might be controlled by a protein complex that determines which motor type is active at any given moment of time, or determined by the outcome of a tug‐of‐war between MT motors dragging cargo organelles in opposite directions. However, evidence in support of each mechanisms of regulation is based mostly on the results of theoretical analyses or indirect experimental data. Here, we test whether the direction of movement of membrane organelles in vivo can be controlled by the tug‐of‐war between opposing MT motors alone, by attaching a large number of kinesin‐1 motors to organelles transported by dynein to minus‐ends of MTs. We find that recruitment of kinesin significantly reduces the length and velocity of minus‐end‐directed dynein‐dependent MT runs, leading to a reversal of the overall direction of dynein‐driven organelles in vivo. Therefore, in the absence of external regulators tug‐of‐war between opposing MT motors alone is sufficient to determine the directionality of MT transport in vivo.   相似文献   

11.
The sorting of apical proteins comprises an initial recognition step in the trans Golgi network and a final partitioning of the apical pool of proteins into at least two different types of vesicular carriers. One criteria of these carriers is the association or non-association of the protein content with lipid rafts. We have previously characterized a population containing the raft-associated sucrase-isomaltase-carrying vesicles (SAVs) and another one, the non-raft-associated lactase-phlorizin hydrolase-carrrying vesicles (LAVs) that are targeted separately to the apical membrane. Here, we demonstrate biochemically and by employing confocal laser microscopy that the annexin II-S100A10 complex is a component of SAVs and is absent from LAVs. The unequivocal role of annexin II in the apical targeting of SI is clearly demonstrated when down-regulation of this protein by annexin II-specific small interfering RNA drastically decreases the apical delivery of SI in the epithelial cell line Madin-Darby canine kidney. The annexin II-S100A10 complex plays therefore a crucial role in routing SAVs to the apical membrane of epithelial cells.  相似文献   

12.
In epithelial cells, polarized growth and maintenance of apical and basolateral plasma membrane domains depend on protein sorting from the trans-Golgi network (TGN) and vesicle delivery to the plasma membrane. Septins are filamentous GTPases required for polarized membrane growth in budding yeast, but whether they function in epithelial polarity is unknown. Here, we show that in epithelial cells septin 2 (SEPT2) fibers colocalize with a subset of microtubule tracks composed of polyglutamylated (polyGlu) tubulin, and that vesicles containing apical or basolateral proteins exit the TGN along these SEPT2/polyGlu microtubule tracks. Tubulin-associated SEPT2 facilitates vesicle transport by maintaining polyGlu microtubule tracks and impeding tubulin binding of microtubule-associated protein 4 (MAP4). Significantly, this regulatory step is required for polarized, columnar-shaped epithelia biogenesis; upon SEPT2 depletion, cells become short and fibroblast-shaped due to intracellular accumulation of apical and basolateral membrane proteins, and loss of vertically oriented polyGlu microtubules. We suggest that septin coupling of the microtubule cytoskeleton to post-Golgi vesicle transport is required for the morphogenesis of polarized epithelia.  相似文献   

13.
KIF3A is a new microtubule-based anterograde motor in the nerve axon   总被引:24,自引:13,他引:11       下载免费PDF全文
《The Journal of cell biology》1994,125(5):1095-1107
Neurons are highly polarized cells composed of dendrites, cell bodies, and long axons. Because of the lack of protein synthesis machinery in axons, materials required in axons and synapses have to be transported down the axons after synthesis in the cell body. Fast anterograde transport conveys different kinds of membranous organelles such as mitochondria and precursors of synaptic vesicles and axonal membranes, while organelles such as endosomes and autophagic prelysosomal organelles are conveyed retrogradely. Although kinesin and dynein have been identified as good candidates for microtubule-based anterograde and retrograde transporters, respectively, the existence of other motors for performing these complex axonal transports seems quite likely. Here we characterized a new member of the kinesin super-family, KIF3A (50-nm rod with globular head and tail), and found that it is localized in neurons, associated with membrane organelle fractions, and accumulates with anterogradely moving membrane organelles after ligation of peripheral nerves. Furthermore, native KIF3A (a complex of 80/85 KIF3A heavy chain and a 95-kD polypeptide) revealed microtubule gliding activity and baculovirus-expressed KIF3A heavy chain demonstrated microtubule plus end-directed (anterograde) motility in vitro. These findings strongly suggest that KIF3A is a new motor protein for the anterograde fast axonal transport.  相似文献   

14.
A key aspect in the structure of epithelial cells is the maintenance of a polarized organization based on a highly specific sorting machinery for cargo destined for the apical or the basolateral membrane domain at the exit site of the trans-Golgi network. We could recently identify two distinct post-trans-Golgi network vesicle populations that travel along separate routes to the plasma membrane, a lipid raft-dependent and a lipid raft-independent pathway. A new component of raft-carrying apical vesicles is alpha-kinase 1 (ALPK1), which was identified in immunoisolated vesicles carrying raft-associated sucrase-isomaltase (SI). This kinase was absent from vesicles carrying raft-non-associated lactase-phlorizin hydrolase. The expression of ALPK1 increases by the time of epithelial cell differentiation, whereas the intracellular localization of ALPK1 on apical transport vesicles was confirmed by confocal analysis. A phosphorylation assay on isolated SI-carrying vesicles revealed the phosphorylation of a protein band of about 105 kDa, which could be identified as the motor protein myosin I. Finally, a specific reduction of ALPK1-expression by RNA interference results in a significant decrease in the apical delivery of SI. Taken together, our data suggest that the phosphorylation of myosin I by ALPK1 is an essential process in the apical trafficking of raft-associated SI.  相似文献   

15.
We previously reported that human cytomegalovirus (CMV) glycoprotein B (gB) is transported to apical membranes in CMV-infected polarized retinal pigment epithelial (ARPE-19) cells and in Madin-Darby canine kidney (MDCK) epithelial cells constitutively expressing gB. The cytosolic domain of gB contains a cluster of acidic amino acids, a motif that plays a pivotal role in vectorial trafficking in polarized epithelial cells and may also function as a signal for entry into the endocytic pathway. Here we compared gB internalization and recycling to the plasma membrane in CMV-infected human fibroblasts (HF) and ARPE-19 cells by using antibody-internalization experiments. Immunofluorescence and quantitative assays showed that gB was internalized from the cell surface into clathrin-coated transport vesicles and then recycled to the plasma membrane. gB colocalized with clathrin-coated vesicles containing the transferrin receptor in the early endocytic/recycling pathway, indicating that gB traffics in this pathway. The specific role of the acidic cluster in regulating the sorting of gB-containing vesicles in the early endocytic/recycling pathway was examined in MDCK cells expressing mutated gB derivatives. Immunofluorescence assays showed that derivatives lacking the acidic cluster were impaired in internalization and failed to recycle. These findings, together with our earlier observation that the acidic cluster is a key determinant for targeting gB molecules to apical membranes in epithelial cells, establish that this signal is recognized by cellular proteins that participate in polarized sorting and transport in the early endocytic/recycling pathway.  相似文献   

16.
A typical feature of epithelial cells is the polarized distribution of their respective plasma membrane proteins. Apical and basolateral proteins can be sorted both in the trans-Golgi network and endosomes, or in both locations. Inclusion into basolateral carriers in the TGN requires the presence of distinct cytoplasmic determinants, which also appear to be recognized in endosomes. Inactivation of the basolateral sorting information leads to the efficient apical delivery, probably due to the unmasking of a recessive apical signal. Factors associated with the cytosolic face of organelles probably not only recognize these signals to mediate the inclusion of the proteins into the correct transport vesicles, but also target the carriers to the corresponding plasma membrane domain. Our interest has focused on analyzing at the molecular level how epithelial MDCK cells generate and maintain a polarized phenotype, taking advantage of immunoglobulin receptors to study the biosynthetic and endocytic pathways and the corresponding sorting events.  相似文献   

17.
The critical role of microtubules in vectorial delivery of post-Golgi carrier vesicles to the apical cell surface has been established for various polarized epithelial cell types. In the present study we used secretory granules of the rat and chicken pancreas, termed zymogen granules, as model system for apically bound post-Golgi carrier vesicles that underlie the regulated exocytotic pathway. We found that targeting of zymogen granules to the apical cell surface requires an intact microtubule system which contains its colchicine-resistant organizing center and, thus, the microtubular minus ends close to the apical membrane domain. Purified zymogen granules and their membranes were found to be associated with cytoplasmic dynein intermediate and heavy chain and to contain the major components of the dynein activator complex, dynactin, i.e. p150Glued, p62, p50, Arp1, and beta-actin. Kinesin heavy chain and the kinesin receptor, 160 kD kinectin, were not detected as components of zymogen granules. Immunofluorescence staining showed a zymogen granule-like distribution for dynein and dynactin (p150Glued, p62, p50, Arpl) in the apical cytoplasm, whereas kinesin and kinectin were largely concentrated in the basal half of the cells in a pattern similar to the distribution of calreticulin, a component of the endoplasmic reticulum. Secretory granules of non-polarized chromaffin cells of the bovine adrenal medulla, that are assumed to underlie microtubular plus end targeting from the Golgi apparatus to the cell periphery, were not found to be associated with dynein or dynactin. To our knowledge, this is the first demonstration of major components of the dynein-dynactin complex associated with the membrane of a biochemically and functionally well-defined organelle which is considered to underlie a vectorial minus end-driven microtubular transport critically involved in precise delivery of digestive enzymes to the apically located acinar lumen.  相似文献   

18.
Intercellular communication is critical for organismal homeostasis, and defects can contribute to human disease states. Polarized epithelial cells execute distinct signaling agendas via apical and basolateral surfaces to communicate with different cell types. Small extracellular vesicles (sEVs), including exosomes and small microvesicles, represent an understudied form of intercellular communication in polarized cells. Human cholangiocytes, epithelial cells lining bile ducts, were cultured as polarized epithelia in a Transwell system as a model with which to study polarized sEV communication. Characterization of isolated apically and basolaterally released EVs revealed enrichment in sEVs. However, differences in apical and basolateral sEV composition and numbers were observed. Genetic or pharmacological perturbation of cellular machinery involved in the biogenesis of intralumenal vesicles at endosomes (the source of exosomes) revealed general and domain-specific effects on sEV biogenesis/release. Additionally, analyses of signaling revealed distinct profiles of activation depending on sEV population, target cell, and the function of the endosomal sorting complex required for transport (ESCRT)-associated factor ALG-2–interacting protein X (ALIX) within the donor cells. These results support the conclusion that polarized cholangiocytes release distinct sEV pools to mediate communication via their apical and basolateral domains and suggest that defective ESCRT function may contribute to disease states through altered sEV signaling.  相似文献   

19.
Translocation of dimeric IgA through neoplastic colon cells in vitro.   总被引:18,自引:0,他引:18  
We studied the translocation of dimeric IgA across epithelium, using neoplastic human colon cells in culture as a source of epithelial cells, and immunoelectronmicroscopy with peroxidase-labeled antigens and antibodies. The cells had some of the ultrastructural characteristics of normal, mature epithelial cells, i.e., polarity, desmosomal junctions, and secretory component on their basal and lateral plasma membranes. Horseradish peroxidase-labeled dimeric IgA, exposed to the cells at 0 degrees C, bound selectively to secretory component on the cell surfaces. At 37 degrees C, the bound dimeric IgA was taken into the cells by endocytosis and transported apically through the cytoplasm in vesicles. After 30 min, IgA was discharged across the apical surface. Neither colchicine (10(-4) M) nor cytochalasin B (10(-5) M) interfered with binding or endocytosis of dimeric IgA, but colchicine inhibited intracellular transport of the IgA-containing vesicles. These experiments demonstrated that dimeric IgA can be transported through living intestinal epithelial cells in vitro. The transport includes 1) specific binding of IgA dimers to secretory component on plasma membranes, 2) endocytosis of IgA in vesicles, 3) transcytoplasmic transport of the IgA-containing vesicles by a process involving microtubules, and 4) discharge of IgA at the apical surfaces.  相似文献   

20.
In the present study, we investigated the polarized expression of annexin IV at various stages in the growth of rabbit kidney proximal tubule cells (PTC) in primary cultures. The results of immunoblotting analysis and indirect immunofluorescence studies using a specific anti-annexin IV monoclonal antibody, indicated that annexin IV is expressed in proximal tubule cultured cells, although it was not detected in the proximal tubules present in frozen sections of kidney cortex and freshly isolated proximal tubule cells. In either non-confluent or confluent cells which remained attached to the collagen-coated support, annexin IV was mainly concentrated around the nucleus, whereas in PTC forming the monolayer of domes, it was restricted to the basolateral membrane domain. This basolateral localization was identical to that observed in other polarized epithelial cell types such as enterocytes. When the domes burst, the cells returned to the collagen-coated support and the annexin IV was again localized around the nuclei. The fact that the change of localization was very rapid suggested the existence of a considerable difference between the differentiation states of dome forming and adherent confluent cells. Moreover, a transient association of annexin IV with the basal body of apically located cilia also seemed to be correlated with a particular polarization state and/or differentiation states of adherent cultured cells, corresponding to the beginning of the polarized expression of aminopeptidase N, a hydrolase located in the apical brush border membrane, and to the falling of cells onto the support, subsequent to the bursting of the domes. In conclusion, these results provide evidence that annexin IV may constitute a new marker of the basolateral membrane domain of polarized epithelial renal cells in primary cultures. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号