首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to determine if annealing altered the susceptibility of different starches to enzyme hydrolysis. Five commercial starches, including waxy corn, common corn, Hylon V, Hylon VII, and potato, were annealed by a multiple-step process, and their susceptibility to α-amylase and glucoamylase and the physicochemical properties of the hydrolyzed native and annealed starches were determined. During 36 h of enzyme hydrolysis, significant differences were noted between annealed starch and its native counterpart in the extent of α-amylolysis for Hylon V, Hylon VII, and potato, and in the extent of glucoamylolysis for potato. Waxy and common corn starches were hydrolyzed to a greater degree by both enzymes when compared with the other starches. The apparent amylose content of both native and annealed starches decreased during α-amylolysis for all starches, but increased for Hylon V, VII, and potato starches during glucoamylolysis. Most native and annealed starches exhibited comparable or increased peak gelatinization temperatures and comparable or decreased gelatinization enthalpy on hydrolysis with the exception of annealed potato starch, which showed a significant decrease in peak gelatinization temperature on hydrolysis. Annealed starches displayed significant higher peak gelatinization temperatures than their native counterparts. The intensity of main X-ray diffraction peaks of all starches decreased upon hydrolysis, and the changes were more evident for glucoamylase-hydrolyzed starches. The annealing process allowed for a greater accessibility of both enzymes to the amorphous as well as the crystalline regions to effect significant changes in gelatinization properties during enzyme hydrolysis.  相似文献   

2.
The gelatinization process of waxy corn starch under different pressures up to 10.0 MPa was investigated using a high pressure DSC. Compressed air and carbon dioxide were used as pressure resources. Effect of pressure and annealing under pressure on gelatinization of waxy corn starch was systematically studied, in particular on the gelatinization temperature and enthalpy. The results show that the peak temperature of gelatinization was increased slightly initially then remained stable with increasing pressure. The gelatinization enthalpy was decreased under pressure processing. Annealing the starch under pressure condition, just below its gelatinization temperature, increased gelatinization temperature but kept gelatinized enthalpy constant. Morphologies of starch granules treated under pressure were studied using an optical microscope and SEM. There is no discernable difference of starch granules treated with and without pressure, which indicates the pressures are not high enough to destroy crystalline structure. The intensity of the pressure acts as a key factor to influence the gelatinization of starch rather than the nature of the gas. Effect of pressure on the multi-endotherm detected by DSC for starch with intermediate water is used to study the mechanisms. The effect of pressure can be explained by the enhancement of water diffusion in the amorphous range.  相似文献   

3.
Multi-endotherms of the gelatinization of corn starch, such as G, M1, M2, and Z endotherms, have been detected by DSC. The retrogradation of corn starch after initial thermal treatment at different temperatures was studied by DSC; in particular, the effect of thermal treatment before and after each endotherm of gelatinization on retrogradation was determined as a function of annealing time. The effect of thermal treatment at a certain temperature on the residual gelatinization endotherm at a higher temperature is also discussed. It was found that the higher temperature of thermal treatment always removed all the endotherms below that temperature. However, a certain thermal treatment temperature could affect the residual endotherm above this treatment temperature. The time-dependent retrogradation of corn starch is mainly due to G and M1 endotherms. The temperature and enthalpy of the melting of amylose–lipid complexes M2 and nonlipid complex amylose Z were not affected by aging time. The final enthalpy of retrogradation was found to be lower than that of gelatinization.  相似文献   

4.
Corn starches with different amylose/amylopectin ratios (waxy 0/100, normal corn 23/77, Gelose 50 50/50, Gelose 80 80/20) were annealed at below their gelatinization temperatures in excess water. The effects of annealing on the gelatinization and microstructures of the starches were studied using DSC, XRD and a microscope equipped with both normal and polarized light. In addition, a high-pressure DSC pan was used to study the effects of high-temperature annealing on the multiphase transitions of starches with different water contents. The granular size of the starches increased after the annealing process, but the size variation rates were different, with higher amylopectin contents resulting in a higher diameter growth rates and final accretion ratios. DSC results showed that annealing increased the gelatinization enthalpy of the amylose-rich starches. The increased enthalpy was mainly attributed to endotherm G – there were no significant changes to endotherms M1, M2 or Z – indicating that annealing mainly affected the helical length of shorter or sub-optional amylopectins, in particular the amylopectin in amylose-rich starches. The XRD traces of all starches after annealing remained unchanged.  相似文献   

5.
The effects of starch/water ratio, amylose content, degree of phosphorylation, and added KI on water mobility in maize starch-water dispersions were studied by oxygen-17 spin-spin relaxation time measurements over a range of temperatures. The results demonstrate that: (i) the changes in spin-spin relaxation time (ΔT2) reflect the degree of starch-water interaction at different stages of the heating process; (ii) the amount of added water affects the initial T2 and ΔT2 during gelatinization; (iii) higher amylose contents result in lower water mobility in starch-water systems; (iv) higher degrees of phosphorylation lead to a decrease in water mobility, accompanied by a decrease in gelatinization temperature; and (v) added KI effectively decreases water mobility and gelatinization temperature in the starch-water systems studied.  相似文献   

6.
The gelatinization process of potato starch was isothermally investigated at 52.5∽65.3°C. The degree of gelatinization was measured by an enzymic digestion method using glucoamylase. When the starch–water suspension was incubated at a definite temperature the gelatinization reached a limit at each temperature after 30∽60 min incubation. So, it can be supposed that starch gelatinization reached an equilibrium state. It was found that gelatinization of potato starch occurred even at 52.5°C, a temperature which is lower than the so-called gelatinization temperature generally reported. Starch gelatinization was found to follow first order kinetics, and from the temperature dependence of the rate constants obtained, the activation energy was calculated to be 22±5 kcal/mol. The relationship between the degree of gelatinization of the starch whose gelatinization reached an equilibrium state at a definite temperature and the incubation temperature gave a transition curve expressed, by the fraction of gelatinized potato starch granules as a function of temperature, and the half-transition temperature was found to be 59.1°C. From the transition curve.the van’t Hoff enthalpy for gelatinization was determined to be +130±3 kcal/mol.  相似文献   

7.
The effect of nixtamalization process on thermal and rheological characteristics of corn starch was studied. Starch of raw sample had higher gelatinization temperature than its raw counterpart, because, the Ca(2+) ions stabilize starch structure of nixtamalized sample; however, the enthalpy values were not different in both samples. The temperature of the phase transition of the retrograded starches (raw and nixtamalized) were not different at the storage times assessed, but the enthalpy values of the above mentioned transition was different, indicating a lower reorganization of the starch structure in the nixtamalized sample. The viscoamylographic profile showed differences between both starches, since raw starch had higher peak viscosity than the nixtamalized sample due to partial gelatinization of some granules during this heat treatment. Rheological test showed that at low temperature (25 degrees C) the raw and nixtamalized starches presented different behaviour; however, the elastic characteristic was more important in the starch gel structure. The nixtamalization process produced changes in thermal and rheological characteristics becoming important in those products elaborated from nixtamalized maize.  相似文献   

8.
The research presented herein provides valuable data with respect to the phosphorus content of starches from many potato (Solanum tuberosum L.) cultivars using an energy-dispersive X-ray fluorescence technique. In all starches examined, the phosphorus content ranged from 308 to 1244 ppm. Furthermore, the estimation of the starch characteristics of representative samples differing manifestly in their phosphorus content indicated that enhancing the starch phosphate resulted in significant increases in the swelling power, peak viscosity, and breakdown and significant but small increases in the onset and peak temperatures of gelatinization. Other starch quality parameters, such as the amylose content, median granule size, and the gelatinization enthalpy, did not change significantly due to the degree of phosphate substitution of starch.  相似文献   

9.
Eight commercial starches, including common corn, waxy corn, wheat, tapioca, potato, Hylon V, Hylon VII, and mung bean starch, were annealed by a multiple-step process, and their gelatinization characteristics were determined. Annealed starches had higher gelatinization temperatures, reduced gelatinization ranges, and increased gelatinization enthalpies than their native starches. The annealed starches with the highest gelatinization enthalpies were subjected to acid hydrolysis with 15.3% H2SO4, and Naegeli dextrins were prepared after 10 days' hydrolysis. Annealing increased the acid susceptibility of native starches in the first (rapid) and the second (slow) phases with potato starch showing the greatest and high amylose starches showing the least changes. Starches with a larger shift in onset gelatinization temperature also displayed a greater percent hydrolysis. The increase in susceptibility to acid hydrolysis was proposed to result from defective and porous structures that resulted after annealing. Although annealing perfected the crystalline structure, it also produced void space, which led to porous structures and possible starch granule defects. The molecular size distribution and chain length distribution of Naegeli dextrins of annealed and native starches were analyzed. The reorganization of the starch molecule during annealing occurred mainly within the crystalline lamellae. Imperfect double helices in the crystalline lamellae improved after annealing, and the branch linkages at the imperfect double helices became protected by the improved crystalline structure. Therefore, more long chains were observed in the Naegeli dextrins of annealed starches than in native starches.  相似文献   

10.
Differential scanning calorimetry (DSC) was used to study how the gelatinization process of starch is affected by the presence of surface active agents. A decrease in gelatinization enthalpy was observed, which was explained by an exothermic formation of amylose-lipid complexes during the gelatinization. It was also found that certain substances (sodium dodecyl sulphate and lysolecithin) made the gelatinization occur earlier, whereas another (sodium stearoyl lactylate) delayed the gelatinization. The results showed further that the phase behaviour of the surface active agent greatly affected the amount of complex formed, and also that the source of starch affected this amount. It was found that the complex formation occurred more easily in wheat starch than in potato starch.  相似文献   

11.
Differential scanning calorimetry and cryomicroscopy were used to investigate the effects of type I antifreeze protein (AFP) from winter flounder on 58% solutions of hydroxyethyl starch. The glass, devitrification, and melt transitions noted during rewarming were unaffected by 100 micrograms/ml AFP. Isothermal annealing experiments were undertaken to detect the effects of AFP-induced inhibition of ice crystal growth using calorimetry. A premelt endothermic peak was detected during warming after the annealing procedure. Increasing the duration or the temperature of the annealing for the temperature range from -28 and -18 degrees C resulted in a gradual increase in the enthalpy of the premelt endotherm. This transition was unaffected by 100 micrograms/ml AFP. Annealing between -18 and -10 degrees C resulted in a gradual decrease in the premelt peak enthalpy. This process was inhibited by 100 micrograms/ml AFP. Cryomicroscopic examination of the samples revealed that AFP inhibited ice recrystallization during isothermal annealing at -10 degrees C. Annealing at lower temperatures resulted in minimal ice recrystallization and no visible effect of AFP. Thus, the 100 micrograms/ml AFP to have a detectable influence on thermal events in the calorimeter, conditions must be used that result in significant ice growth without AFP and visible inhibition of this process by AFP.  相似文献   

12.
This study reports the impact of one step annealing on the composition, molecular structure, granule morphology and physicochemical properties of starches isolated from cultivars of Dioscorea esculenta (kukulala, java-ala-nattala) and Dioscorea alata (hingurala, raja-ala), yam tubers grown in Sri Lanka. In all starches, granule morphology (shape, size, surface appearance), birefringence patterns, acid hydrolysis profile and X-ray patterns remained unchanged on annealing. Crystallinity remained unchanged on annealing in hingurala, kukulala and java-ala. However, crystallinity of raja-ala and nattala increased and decreased, respectively, on annealing. In all starches, annealing decreased the gelatinization temperature range (kukulala ~ hingurala > nattala ~ raja-ala > java-ala), amylose leaching (raja-ala > nattala > hingurala > kukulala > java-ala), granular swelling (raja-ala ~ hingurala > kukulala > java-ala > nattala), peak viscosity (raja-ala > hingurala > kukulala > java-ala > nattala), enthalpy of retrogradation (kukulala ~ java-ala ~ nattala ~ hingurala ~ raja-ala) and susceptibility towards acid hydrolysis (java-ala > raja-ala > hingurala ~ nattala > kukulala). However, annealing increased gelatinization temperatures (kukulala ~ java-ala ~ nattala ~ raja-ala ~ hingurala) and the enthalpy of gelatinization (kukulala > hingurala > java-ala > nattala > raja-ala). Set-back viscosity increased in nattala, but decreased in the other starches (raja-ala > hingurala > kukulala > java-ala) on annealing. The study showed that the different responses shown by the cultivars of the Dioscorea starches towards annealing were to a large extent influenced by their composition and molecular structure.  相似文献   

13.
This work focuses on the effect of annealing and pressure on microstructures of starch, in particular the crystal structure and crystallinity to further explore the mechanisms of annealing and pressure treatment. Cornstarches with different amylose/amylopectin ratios were used as model materials. Since the samples covered both A-type (high amylopectin starch: waxy and maize) and B-type (high amylose starch: G50 and G80) crystals, the results can be used to clarify some previous confusion. The effect of annealing and pressure on the crystallinity and double helices were investigated by X-ray diffraction (XRD) and 13C CP/MAS NMR spectroscopy. The crystal form of various starches remained unchanged after annealing and pressure treatment. XRD detection showed that the relative crystallinity (RC) of high amylopectin starches was increased slightly after annealing, while the RC of high amylose-rich starches remained unchanged. NMR measurement supported the XRD results. The increase can be explained by the chain relaxation. XRD results also indicated that some of the fixed region in crystallinity was susceptible to outside forces. The effect of annealing and pressure on starch gelatinization temperature and enthalpy are used to explore the mechanisms.  相似文献   

14.
《Carbohydrate polymers》1987,7(4):291-300
The influence of pH, and of electrolytes, on the viscoelastic properties of potato and cassava starch gels was investigated, using a cone-and-plate rheometer run in the oscillatory mode. The gel strength of the potato starch gels had a maximum around pH 8·5, and was markedly lowered by the addition of even small amounts of electrolytes. This may be due to an electrostatic interaction between potato starch phosphate groups and added cations which blocks the normal phosphate-to-phosphate cross-linking. Neither pH nor electrolytes affected the viscoelastic properties of cassava starch gels. The gelatinization temperature and the gelatinization enthalpy of potato starch, as measured by differential scanning calorimetry, were insensitive to pH and to low electrolyte concentrations.  相似文献   

15.
The change in enthalpy and rate constants for the reactions of yeast hexokinase isozymes, PI (Hxk1) and PII (Hxk2), was determined at pH 7.6 and 25 degrees C by isothermal titration calorimetry. The reactions were done in five buffer systems with enthalpy of protonation varying from -1.22 kcal/mol (phosphate) to -11.51 kcal/mol (Tris), allowing the determination of the number of protons released during glucose phosphorylation. The reaction is exothermic for both isozymes with a small, but significant (p < 0.0001), difference in the enthalpy of reaction (Delta HR), with an Delta HR of -5.1 +/- 0.2 (mean +/- S.D.) kcal/mol for Hxk1, and an Delta HR of -3.3 +/- 0.3 (mean +/- S.D.) kcal/mol for Hxk2. The Km for ATP determined by ITC was very similar to those reported in the literature for both isozymes. The effect of NaCl and KCl, from 0 to 200 mM, showed that although the rate of reaction decreases with increasing ionic strength, no change in the Delta HR was observed suggesting an entropic nature for the ionic strength. The differences in Delta HR obtained here for both isozymes strongly suggest that, besides glucose phosphorylation, another side reaction such as ATP hydrolysis and/or enzyme phosphorylation is taking place.  相似文献   

16.
Native new cocoyam starch (nNCS) was subjected to annealing (aNCS) and heat moisture treatment at 18% moisture level (h18NCS), 21% moisture level (h21NCS), 24% moisture level (h24NCS) and 27% moisture level (h27NCS) as hydrothermal treatments. Scanning electron and light microscopy revealed round and polygonal shapes with sizes ranging from 15 to 40 μm for native and modified starches. nNCS showed “A” pattern X-ray diffraction and no significant differences were observed in the X-ray pattern of the modified starches. Swelling power and solubility reduced following heat moisture treatment. At all pH studied (2–12), unmodified new cocoyam starch exhibited higher swelling capacity and solubility than the modified derivatives. Hydrothermal modifications improved water absorption capacity but reduced oil absorption capacity. Pasting temperature of native starch shifted to higher values following annealing and heat moisture treatment. Hot paste viscosity (Hv), viscosity after 30 min holding at 95 °C (Hv30) and cold paste viscosity (Cv) reduced after annealing and heat moisture treatment. The result also indicates that hydrothermal treatments reduced the tendency for setback. As the number of days of storage of starch paste increased from 1 to 10, light transmittance of all the starches reduced but marked reduction of light transmittance was observed in native starch. DSC studies revealed increase in gelatinization temperature following annealing and heat moisture treatment. Starch hydrothermal modifications reduced retrogradation as enthalpies of regelatinization reduced following modifications. The regelatinization peak in the second day scanning shifted to lower temperature than the gelatinization peak in first run heating DSC curve for all samples. The regelatinization peak also became larger and shifted to higher temperature range when the storage days increased from 2 to 7.  相似文献   

17.
This study investigated the effect of aging rice on the freeze–thaw stability of rice flour gels since repeated freeze–thaw cycles can lead to reduced food quality. A rice grain cultivar called ‘Khoa Dawk Mali 105’ was aged for three different time periods, ranging from 0 to 12 months. Rice gels made from the aged rice were then freeze–thawed for up to 5 cycles. Repeated freeze–thaw cycles lead to an increase in syneresis values and hardness with increasing rice aging. Differential scanning calorimetry showed an increase in the enthalpy of melting of the amylose–lipid complex after 5 freeze–thaw cycles and an increase in peak gelatinization temperature and gelatinization enthalpy with longer rice aging. Moreover, aging length of the rice correlated significantly with a decrease in peak viscosity and breakdown but also an increase in final viscosity and setback. These results demonstrate that aging the rice reduced the freeze–thaw stability of the rice flour gels.  相似文献   

18.
Nuclear phosphoprotein HMGA1a, high mobility group A1a, (previously HMGI) has been investigated during apoptosis. A change in the degree of phosphorylation of HMGA1a has been observed during apoptosis induced in four leukemic cell lines (HL60, K562, NB4, and U937) by drugs (etoposide, camptothecin) or herpes simplex virus type-1. Both hyper-phosphorylation and de-phosphorylation of HMGA1a have been ascertained by liquid chromatography-mass spectrometry. Hyper-phosphorylation (at least five phosphate groups/HMGA1a molecule) occurs at the early apoptotic stages and is probably related to HMGA1a displacement from DNA and chromatin release from the nuclear scaffold. De-phosphorylation (one phosphate or no phosphate groups/HMGA1a molecule) accompanies the later formation of highly condensed chromatin in the apoptotic bodies. We report for the first time a direct link between the degree of phosphorylation of HMGA1a protein and apoptosis according to a process that involves the entire amount of HMGA1a present in the cells and, consequently, whole chromatin. At the same time we report that variously phosphorylated forms of HMGA1a protein are also mono-methylated.  相似文献   

19.
Samples of epichlorohydrin crosslinked potato starch were prepared by using a high ratio of starch to water and alkali concentration below the gelatinization level. This yielded crosslinked samples that were partially crystalline, and where the number of crosslinks could be varied between 1 and 20 crosslinks per 100 anhydroglucose units. The degree of swelling varied regularly with degree of crosslinking, and the molecular weight between crosslinks Mc as derived from swelling data in a good swelling agent compared favorably with Mc derived from chemical analysis. From the heat of gelatinization of the crosslinked starches, as observed in a differential scanning calorimeter, for gelatinization in glycerol, water, and dimethylsulfoxide, a model for the gel state of the crosslinked starch is proposed. It is concluded that the entropy of melting is the determining factor in establishing the temperature of gelatinization.  相似文献   

20.
Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号