首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
2.
Abstract: In vivo microdialysis coupled with HPLC and electrochemical detection was used to monitor extracellular levels of 3, 4-dihydroxyphenylacetic acid (DOPAC) of the locus ceruleus (LC) in halothane-anesthetized rats. The identity of DOPAC was confirmed by experiments showing that the chromatographic peak was totally suppressed after inhibition of monoamine oxidase by pargyline. Histological examinations allowed to relate the quantity of DOPAC measured in the dialysates with the localization of the probe implantation site. We found that the DOPAC concentration was inversely proportional to the distance between the probe and the lateral border of the LC. Regardless of the caudorostral level of the nucleus, concentrations were maximal when the axis of the probe was 100 μ M from the lateral border of the LC and decreased by 53% when this distance reached 300 μ M . Activation of LC noradrenergic neurons by systemic administration of the α2-antagonist piperoxane increased by 100% DOPAC concentrations in LC dialysates. These results suggest that the DOPAC measured by microdialysis could be considered an indicator of the functional state of LC noradrenergic neurons.  相似文献   

3.
Abstract: Basal levels of endogenous 3,4-dihydroxyphenylalanine (DOPA) were detected by HPLC coupled with coulometric detection in dialysates from freely moving rats implanted 48–72 h earlier with transversal dialysis fibers in the dorsal caudate. Because decarboxylase inhibitor is absent in the Ringer's solution, this method allows monitoring of basal output of dopamine (DA) and 3,4-dihydroxyphenylacetic acid, as well as DOPA. Extracellular DOPA concentrations were reduced by the tyrosine hydroxylase inhibitor α-methylparatyrosine (200 mg/kg, i.p.) and by the dopaminergic agonist apomorphine (0.25 mg/kg, s.c.). The dopaminergic antagonist haloperidol (0.2 mg/kg, s.c.) stimulated DOPA output by about 60% over basal values. γ-Butyrolactone, at doses of 700 mg/kg, i.p., which are known to block dopaminergic neuronal firing and which reduce DA release, stimulated DOPA output maximally by 130% over basal values. Tetrodotoxin, which blocks DA release by blocking voltage-dependent Na+ channels, increased DOPA output maximally by 100% over basal values. The results indicate that basal DOPA can be detected and monitored in the extracellular fluid of the caudate of freely moving rats by transcerebral dialysis and can be taken as a dynamic index of DA synthesis in pharmacological conditions.  相似文献   

4.
Phorbol 12,13-dibutyrate (PDBu) increased the production of 3,4-dihydroxyphenylalanine (DOPA) in the superior cervical ganglion of the rat. This effect occurred without a detectable lag and persisted for at least 90 min of incubation. The action of PDBu was half-maximal at a concentration of approximately 0.1 microM; at high concentrations, PDBu produced about a twofold increase in DOPA accumulation. PDBu increased DOPA production in decentralized ganglia and in ganglia incubated in a Ca2+-free medium. The action of PDBu was additive with the actions of dimethylphenylpiperazinium, muscarine, and 8-Br-cyclic AMP, all of which also increase DOPA accumulation, and was not inhibited by the cholinergic antagonists hexamethonium (3 mM) and atropine (6 microM). Finally, PDBu did not increase the content of cyclic AMP in the ganglion. Thus, the action of PDBu does not appear to be mediated by the release of neurotransmitters from preganglionic nerve terminals, by the stimulation of cholinergic receptors in the ganglion, or by an increase in ganglionic cyclic AMP. PDBu also increased the incorporation of 32Pi into tyrosine hydroxylase. PDBu activates protein kinase C, which in turn may phosphorylate tyrosine hydroxylase and increase the rate of DOPA synthesis in the ganglion.  相似文献   

5.
To elucidate the source and physiological significance of plasma 3,4-dihydroxyphenylalanine, the immediate product of the rate-limiting step in catecholamine biosynthesis, plasma 3,4-dihydroxyphenylalanine was quantified in conscious rats after administration of reserpine, desipramine, clorgyline, or forskolin, treatments that affect tyrosine hydroxylase activity. Plasma 3,4-dihydroxyphenylalanine was also examined during infusions of norepinephrine with or without clorgyline, reserpine, or desipramine pretreatment. After reserpine, the plasma 3,4-dihydroxyphenylalanine level decreased by 22% and then increased by 40%, a result consistent with modulation of tyrosine hydroxylase activity first by an increased axoplasmic norepinephrine content and then by depletion of norepinephrine stores. After desipramine, the plasma 3,4-dihydroxyphenylalanine level decreased by 20%, reflecting the depressant effect of neuronal uptake blockade on norepinephrine turnover. Forskolin increased the plasma 3,4-dihydroxyphenylalanine level by 30%, consistent with activation of tyrosine hydroxylase by cyclic AMP-dependent phosphorylation. Acute administration of clorgyline was without effect on the plasma 3,4-dihydroxyphenylalanine level. Norepinephrine infusions decreased the plasma 3,4-dihydroxyphenylalanine concentration, as expected from end-product inhibition of tyrosine hydroxylase. Pretreatment with desipramine prevented the norepinephrine-induced decrease in plasma dihydroxyphenylalanine content, indicating that inhibition of tyrosine hydroxylase required neuronal uptake of norepinephrine. Both reserpine and clorgyline augmented the norepinephrine-induced decrease in plasma 3,4-dihydroxyphenylalanine level, suggesting that retention of norepinephrine in the axoplasm--due to inhibition of norepinephrine sequestration into storage vesicles or catabolism--caused further inhibition of tyrosine hydroxylase. Changes in plasma 3,4-dihydroxyphenylalanine concentration during norepinephrine infusions were negatively correlated with those in plasma 3,4-dihydroxyphenylglycol level, a finding consistent with modulation of tyrosine hydroxylase activity by axoplasmic norepinephrine. In reserpinized animals, clorgyline and norepinephrine infusion together decreased the plasma 3,4-dihydroxyphenylalanine content by 50%, a result demonstrating that hydroxylation of tyrosine was depressed by at least half. The results indicate that quantification of plasma 3,4-dihydroxyphenylalanine can provide a simple and direct approach for examination of the rate-limiting step in catecholamine biosynthesis.  相似文献   

6.
We examined the effects of hypoxia (8% O2) on in vivo tyrosine hydroxylation, a rate-limiting step for catecholamine synthesis, in the rat adrenal gland. The hydroxylation rate was determined by measuring the rate of accumulation of 3,4-dihydroxyphenylalanine (DOPA) after decarboxylase inhibition. One hour after hypoxic exposure, DOPA accumulation decreased to 60% of control values, but within 2 h it doubled. At 2 h, the apparent Km values for tyrosine and for biopterin cofactor of tyrosine hydroxylase (TH) in the soluble fraction were unchanged, whereas the Vmax value increased by 30%. The content of total or reduced biopterin was unchanged, but the content of tyrosine increased by 80%. Tyrosine administration had little effect on DOPA accumulation under room air conditions but enhanced DOPA accumulation under hypoxia. After denervation of the adrenal gland, the hypoxia-induced increase in DOPA accumulation and in the Vmax value was abolished, whereas the hypoxia-induced increase in tyrosine content was persistent. These results suggest that in vivo tyrosine hydroxylation is enhanced under hypoxia, although availability of oxygen is reduced. The enhancement is the result of both an increase in tyrosine content coupled with increased sensitivity of TH to changes in tyrosine tissue content and of an increase in dependence of TH on tyrosine levels. The increase in the sensitivity of TH and in the Vmax value is neurally induced, whereas the increase in tyrosine content is regulated by a different mechanism.  相似文献   

7.
Long-Term Effects of RU24722 on Tyrosine Hydroxylase of the Rat Brain   总被引:5,自引:4,他引:1  
The effects of RU24722 (14,15-dihydro-20,21-dinoreburnamine-14-ol) on tyrosine hydroxylase in central catecholaminergic neurons were studied in rats treated with different quantities of the molecule, and a time course was done for the minimal dose that gave the maximal effect. RU24722 induced increases in tyrosine hydroxylase activities and specific protein content in noradrenergic cells of the locus ceruleus and decreased all these parameters in dopaminergic neurons of the substantia nigra and ventral tegmental area. The results pointed out that the specific activity of newly synthesized tyrosine hydroxylase in the loci cerulei was potentially greater but was not expressed "in vivo" except 7 days after injection. The phenotypic specificity and the time course pattern of the action could be considered as a consequence of an induction mechanism. The comparison of long-term change in tyrosine hydroxylase values after piperoxane, RU24722, clonidine, and combined RU24722-clonidine treatment demonstrated that an activation during a few hours did not induce tyrosine hydroxylase in central noradrenergic neurons. Clonidine antagonized the activating effect of RU24722 following its injection but did not affect its long-term induction properties.  相似文献   

8.
An on-line microdialysis system was developed which monitored the 3,4-dihydroxyphenylalanine (DOPA) formation in the striatum during infusion of a submicromolar concentration of an L-aromatic amino-acid decarboxylase inhibitor (NSD 1015). The absence of DOPA in dialysates of 6-hydroxydopamine-pretreated rats and the disappearance of DOPA after administration of alpha-methyl-p-tyrosine indicated that the dialyzed DOPA was derived from dopaminergic nerve terminals. Next we investigated whether the steady-state DOPA concentration in striatal dialysates could be considered as an index of tyrosine hydroxylase activity. The increase in DOPA output after intraperitoneal administration of haloperidol or gamma-butyrolactone and the decrease in DOPA output after intraperitoneal administration of apomorphine are in excellent agreement with results of postmortem studies, in which a decarboxylase inhibitor was used to measure the activity of tyrosine hydroxylase. The effect of haloperidol on DOPA formation was not visible when a U-shaped cannula (0.80 mm o.d.) was used. Some methodological problems related to microdialysis of the haloperidol-induced increase in DOPA formation are discussed. We concluded that the proposed model is a powerful and reliable in vivo method to monitor tyrosine hydroxylase activity in the brain. The method is of special interest for investigating the effect of compounds which are not able to pass the blood-brain barrier. As an application of the method in the latter situation, we report the effect of infusion the neurotoxin 1-methyl-4-phenylpyridinium ion (10 mmol/L infused over 20 min) on the activity of striatal tyrosine hydroxylase.  相似文献   

9.
Abstract: We developed a rapid and sensitive radioimmunohistochemical method for the quantification of tyrosine hydroxylase (TH) at both the anatomical and cellular level. Coronal tissue sections from fresh-frozen rat brains were incubated in the presence of a TH monoclonal antibody. The reaction was revealed with a 35S-labeled secondary antibody. TH content was quantified in catecholaminergic brain areas by measuring optical density on autoradiographic films or silver grain density on autoradiographic emulsion-coated sections. Regional TH concentrations determined in the locus ceruleus (LC), substantia nigra pars compacta (SNC), and ventral tegmental area (VTA) were significantly increased by 45% after reserpine treatment in the LC but unchanged in the SNC and VTA. Microscopic examination of TH radioimmunolabeling showed a heavy accumulation of silver grains over catecholaminergic cell bodies. In the LC, grain density per cell was heterogeneous and higher in the ventral than in the dorsal part of the structure. After reserpine treatment, TH levels were significantly increased (57%) in the neurons of the LC but not in those of the SNC or VTA. The data support the validity of this radioimmunohistochemical method as a tool for quantifying TH protein at the cellular level and they confirm that TH protein content is differentially regulated in noradrenergic and dopaminergic neurons in response to reserpine.  相似文献   

10.
An immunoblot procedure was developed to quantify the amount of tyrosine hydroxylase protein in homogenate of small brain regions. With the use of this method we have studied the variations in tyrosine hydroxylase activity and protein levels in some catecholaminergic neurons at different times following a single reserpine injection (10 mg/kg s.c.) and reevaluated the anatomical specificity of tyrosine hydroxylase induction by this drug. Reserpine administration provoked a long-lasting increase in both tyrosine hydroxylase activity and protein levels within locus ceruleus neurons. This effect culminated at day 4 after injection. At this time, the enzyme activity and protein levels in treated animals were respectively 2.7 and 2.6 times that measured in vehicle-treated animals. Both parameters varied in parallel so that tyrosine hydroxylase specific activity did not change over time. In contrast, reserpine did not cause any changes in tyrosine hydroxylase activity in the dopaminergic neurons of the substantia nigra, but provoked a moderate increase in tyrosine hydroxylase protein level. This latter effect was maximal (1.5 times) 4 days after treatment. In the adjacent dopaminergic area, i.e., the ventral tegmental area, a small decrease in the enzyme activity was recorded at day 2 without any significant change in the level of the protein. In conclusion, first, our data show the capacity of our method to assay tyrosine hydroxylase protein amounts in small brain catecholaminergic nuclei. Second, our results confirm and extend previous studies on the effect of reserpine on the regulation of tyrosine hydroxylase level within brain noradrenergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: Recent data have indicated that the long-lasting increase in tyrosine hydroxylase (TH) protein could be differently expressed in the anterior and posterior locus coeruleus (LC) after a single intraperitoneal injection of RU24722, which has been proposed as a potent activator of catecholaminergic systems. In the present study, we have evaluated the dose and time course responses and the effect of a repeated treatment with RU24722 at 3-day intervals on TH protein level in the anterior and posterior rat LC. The results showed that RU24722 induces a long-lasting increase of TH protein level in the anterior and posterior LC that was maximal 3 days following a single injection of 30 mg/kg. The increase in TH protein was maintained at a constant level after repeated administrations of RU24722 at 3-day intervals. Furthermore, we have investigated whether the effect of the drug on TH protein could be modulated via several hormonal systems. The long-term increase of TH steady-state content after RU24722 was still observed 15 days after castration, adrenalectomy, hypophysectomy, and thyroidectomy. The initial steady-state TH protein level was significantly higher in the anterior LC of thyroid- or hypophysectomized and in the posterior LC of hypophysectomized rats. However, this increase was reversed when animals were housed at 28°C.  相似文献   

12.
Abstract: Tyrosine hydroxylase activity was measured under optimal and suboptimal assay conditions in hippocampal extracts from young (2 month), mature (12 month), and old (24 month) Fischer 344 male rats 72 h after the infusion of 200 µg of the neurotoxin 6-hydroxydopamine or vehicle into the lateral ventricle. The lesion resulted in a 45–55% decrease of tyrosine hydroxylase activity measured under optimal conditions (pH 6.1, 3.0 m M 6-methyl-5,6,7,8-tetrahydropterin) and an ∼35% decrease in the relative concentration of immunoreactive tyrosine hydroxylase. When measured under suboptimal conditions (pH 6.6, 0.7 m M 6-methyl-5,6,7,8-tetrahydropterin), tyrosine hydroxylase activity in 2- and 12-month-old lesioned animals was twice that measured in vehicle-treated animals. However, in the old lesioned animals, tyrosine hydroxylase activity measured under suboptimal conditions was not different from that measured in age-matched vehicle-treated animals. Isoforms of tyrosine hydroxylase were identified on immunoblots after two-dimensional gel electrophoresis using enhanced chemiluminescence. The relative proportion of lower pl isoforms of tyrosine hydroxylase in the 2-month-old lesioned animals was greater than that observed in vehicle-treated controls. In contrast, no difference was seen in the relative proportion of tyrosine hydroxylase isoforms in the 24-month-old lesioned versus control animals. These data indicate that the ability of locus ceruleus neurons to rapidly respond to and compensate for insult is attenuated in 24-month-old Fischer 344 rats due to a deficit in stimulus-evoked enzyme phosphorylation.  相似文献   

13.
Elevated Tyrosine Hydroxylase in the Locus Coeruleus of Suicide Victims   总被引:3,自引:4,他引:3  
Abstract: The amounts of tyrosine hydroxylase protein in locus coeruleus from nine pairs of antidepressant-free suicide victims and age-matched, sudden-death control cases were determined by quantitative blot immunolabeling of cryostat-cut sections from the caudal portion of the nucleus. In each of the nine age-matched pairs, the concentration of tyrosine hydroxylase was greater in the sample from the suicide victim, with values ranging from 108 to 172% of the matched control value (\-x = 136%). By contrast, there were no differences in the concentrations of neuron-specific enolase protein in the same set of samples. Similarly, the number of neuromelanin-containing cells, counted in sections of locus coeruleus adjacent to those taken for blot immunolabeling analyses, did not differ between the two groups. These data indicate that locus coeruleus neurons from suicide victims contain higher than normal concentrations of tyrosine hydroxylase, thus raising the possibility that the expression of tyrosine hydroxylase in locus coeruleus may be relevant in the pathophysiology of suicide.  相似文献   

14.
An in vivo voltammetric technique was used to determine whether striatal nondopaminergic neurons take up and decarboxylate exogenous L-3,4-dihydroxyphenylalanine (L-DOPA) and release it as dopamine. After the striatal serotonergic neurons of the rat had been destroyed by intraventricular injection of 5,7-dihydroxytryptamine, L-DOPA was administered intraperitoneally. It was found that changes in the dopamine concentration in the striatal extracellular fluid of the rat were the same as those in the nonlesioned rat. L-DOPA was also administered to the rat after the striatal perikarya had been destroyed by the intrastriatal injection of kainate. The striatal dopamine concentrations of the lesioned rat changed in parallel with 5,7-dihydroxytryptamine-lesioned rats, as well as the nonlesioned rats. Moreover, when normal rats were administered L-DOPA, the dopamine concentration was not increased in the cerebellum, where dopamine neurons do not exist. From these observations, it is concluded that exogenous L-DOPA is taken up, decarboxylated to dopamine, and released only in the striatal dopamine neurons.  相似文献   

15.
The ontogenetic variations of tyrosine hydroxylase (TH) have been studied in locus coeruleus of developing rats. During the first 2 weeks after birth, a large increase in TH content (6.04-23.99 TH units) in the noradrenergic structure was observed, followed by a period of progressive increase of the protein concentration (42 TH units in adult rats). The expression of TH was studied in the same ontogenetic period after treatment by RU24722 (20 mg/kg, i.p.). The long-term increase in TH concentration produced by the drug was found to follow ontogenetic variations. It becomes significant around the middle of the second week after birth and gradually increases until the 24th day of postnatal development, indicating a maturation of the mechanisms involved in the inducing effect.  相似文献   

16.
Abstract— Circadian variations in the activity of tyrosine hydroxylase, tyrosine aminotransferase, and tryptophan hydroxylase were observed in the rat brain stem. Tyrosine hydroxylase exhibited a bimodal pattern with peaks occurring during both the light and dark phases of the circadian cycle. Tyrosine aminotransferase had one daily peak of activity occurring late in the light phase, whereas tryptophan hydroxylase activity was maximal late in the dark phase. Circadian fluctuations in tyrosine hydroxylase activity did not correlate well with circadian variations in the turnover rates of norepinephrine or dopamine nor with levels of these catecholamines. This supports the idea that although tyrosine hydroxylase is the rate-limiting enzyme in the synthesis of catecholamines, other factors must also be involved in the in vivo regulation of this process. Administration of α -methyl- p -tyrosine (AMT) methyl ester HC1 (100 mg/kg) had no effect on the activity of tryptophan hydroxylase, but effectively eliminated the peak of tyrosine hydroxylase activity that occurred during the light phase. AMT also lowered levels of tyrosine aminotransferase, but only at times near the daily light to dark transition. These chronotypic effects of AMT emphasize the importance of "time of day" as a factor that must be taken into account in evaluating the biochemical as well as the pharmacological and toxicological effects of drugs.  相似文献   

17.
A chemical assay of 3,4-dihydroxyphenylalanine (DOPA) in nervous tissue is described. The method is based on a rapidly performed isolation of DOPA on small Sephadex G-10 columns, followed by reverse-phase HPLC with a trichloroacetic acid-containing eluent, in conjunction with a rotating disk electrochemical detector. The detection limit of the assay (about 100 pg/tissue sample) permits a detailed investigation of the regional distribution of endogenous DOPA levels in the rat brain. DOPA as well as dopamine (DA) could be quantified in the same chromatographic run. The assay was applied to a study of the effects of alpha-methyl-p-tyrosine, apomorphine, chlorpromazine, clonidine, gamma-butyrolactone, haloperidol, morphine, oxotremorine, pargyline, reserpine, and tyrosine methylester on the concentration of DOPA in the striatum, hypothalamus, frontal cortex, and cerebellum of the rat brain. Drugs known to interact with DA biosynthesis all caused characteristic changes of the DOPA content in the striatum and not in nondopaminergic brain areas. A close correlation existed between drug-induced changes in tyrosine hydroxylase activity and changes in the DOPA content in the striatum. Tyrosine methylester increased DOPA concentrations in all brain areas studied.  相似文献   

18.
Abstract: Tyrosine hydroxylase activity is reversibly modulated by the actions of a number of protein kinases and phosphoprotein phosphatases. A previous report from this laboratory showed that low-molecular-weight substances present in striatal extracts lead to an irreversible loss of tyrosine hydroxylase activity under cyclic AMP-dependent phosphorylation conditions. We report here that ascorbate is one agent that inactivates striatal tyrosine hydroxylase activity with an EC50 of 5.9 μM under phosphorylating conditions. Much higher concentrations (100 mM) fail to inactivate the enzyme under nonphosphorylating conditions. Isoascorbate (EC50, 11 μM) and dehydroascorbate (EC50, 970 μM) also inactivated tyrosine hydroxylase under phosphorylating but not under nonphosphorylating conditions. In contrast, ascorbate sulfate was inactive under phosphorylating conditions at concentrations up to 100 mM. Since the reduced compounds generate several reactive species in the presence of oxygen, the possible protecting effects of catalase, peroxidase, and superoxide dismutase were examined. None of these three enzymes, however, afforded any protection against inactivation. We also examined the effects of ascorbate and its congeners on the activity of tyrosine hydroxylase purified to near homogeneity from a rat pheochromocytoma. This purified enzyme was also inactivated by the same agents that inactivated the impure corpus striatal enzyme. Under conditions in which ascorbate almost completely abolished enzyme activity, we found no indication for significant prote-olysis of the purified enzyme as determined by sodium do-decyl sulfate-polyacrylamide gel electrophoresis. We also found that pretreatment of PC12 cells in culture for 4 h with 1 mM ascorbate, dehydroascorbate, or isoascorbate (but not ascorbate sulfate) also decreased tyrosine hydroxylase activity 25–50%. The inactivation seen under in vitro conditions appears to have a counterpart under more physiological conditions.  相似文献   

19.
Abstract: The effect of graded hypoxia induced by hyperventilation on the activity of tyrosine hydroxylase was measured in vivo by microdialysis. Microdialysis probes were inserted into the striatum of newborn piglets and perfused with medium containing 3-hydroxybenzylhydrazine, an inhibitor of L-aromatic amino acid decarboxylase. The level of 3,4-dihydroxyphenylalanine (DOPA) measured in the effluent dialysate was then an index of tyrosine hydroxylase activity. The oxygen pressure in the veins and capillaries of the cortex was measured, through a cranial window placed over the parietal cortex, by the phosphorescence lifetime of palladium-meso-tetra(4-carboxyphenyl)porphine added to the blood. After baseline measurements, PaCO2 was decreased from 38 torr (control value) to 19, 13, and 11 torr resulting in decreases in the cortical oxygen pressure from 40 ± 6 torr to 26 ± 3, 23 ± 4, and 20 ± 4 torr, respectively. Decrease in the oxygen pressure to 26 ± 3 torr caused a statistically significant increase of 25–30% in the level of DOPA in the effluent perfusate. During the next step of increase in ventilator rate, when oxygen decreased only slightly, the level of DOPA remained at the higher level. Ventilation rates that lowered the oxygen pressure to below 20 torr, however, caused a progressive decrease in the level of DOPA. During recovery, the level of DOPA steadily increased, attaining 160% of control value after 1.5 h. When the oxygen pressure was decreased to 16 ± 2 torr by a single increase in ventilator rate, the DOPA level decreased in the effluent to 15–20% below control. With return of the ventilator rate to control values, the DOPA levels again increased to well above control and stayed higher even after 1.5 h. The slow return of tyrosine hydroxylase activity to control indicates relatively long-term modification of the enzyme activity. Activation of tyrosine hydroxylase occurs when the oxygen pressure is decreased, but at <16 torr the reaction rate becomes limited by the availability of oxygen and decreases with further decrease in oxygen pressure. Our results showed that even small changes in cortical oxygen pressure modulate the activity of tyrosine hydroxylase. This alteration in the metabolism of catecholamines in newborn brain may have significant impact on later development of the organism.  相似文献   

20.
Abstract: Using microdialysis, changes in monoamine metabolism were monitored in the locus coeruleus of freely moving rats during opiate withdrawal concomitantly with behavioral symptoms. Rats were infused with morphine (2 mg/kg/h, s.c.) or saline for 5 days and challenged with naltrexone (100 mg/kg, s.c.) on day 6. Following naltrexone challenge, the classic behavioral symptoms of morphine withdrawal were observed in rats treated with morphine but not in saline-infused rats. In morphine-dependent rats, naltrexone induced a marked increase (280%) in dialysate concentrations of 3,4-dihydroxyphenylacetic acid, an index of the functional activity of the noradrenergic neurons in the locus coeruleus. The local concentrations of the serotonin metabolite 5-hydroxyindoleacetic acid were also increased (70%) during morphine withdrawal. Taken together, these results (a) confirm in unanesthetized rats the hypothesis of an activation by opiate withdrawal of noradrenergic neurons in the locus coeruleus and (b) suggest an increase in serotonergic transmission in the same nucleus during morphine withdrawal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号