首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been shown that adipose tissue lipolytic activity is increased in endurance-trained subjects. In women, adipose tissue is extensive and it was thought interesting to confirm that endurance training increases the capacity of female adipose tissue to mobilize lipids, and moreover to more fully understand the mechanisms involved. So, biopsies of fat were obtained from the periumbilical region of 13 trained female runners (T) and 17 sedentary women (S) and the in vitro response to catecholamines of the collagenase-isolated fat cells was studied. Glycerol release, chosen as adipocyte lipolysis indicator, was measured by bioluminescence for various epinephrine and norepinephrine concentrations. In both groups, these substances provoked an increase in lipolysis, but the response was significantly higher in T. In both groups, isoproterenol increased the lipolytic activity above basal concentrations at 10(-8) M and above. Lipolytic activity in T was significantly higher (P less than 0.01) than the S control at 10(-7) M and above. Epinephrine plus propranolol decreased lipolysis in both groups, but at 10(-5) M, lipolytic activity was significantly lower in S than in T (P less than 0.05). It is concluded that in female subjects, endurance training increases the sensitivity of subcutaneous abdominal adipose tissue to the lipolytic action of catecholamines; this effect seems to be related both to a decreased efficiency of the alpha 2-adrenergic pathway and to an increased efficiency of the beta-adrenergic pathway. This latter effect seems to take place at a step beyond the receptor-adenylate cyclase system in the lipolytic cascade.  相似文献   

2.
Adipose tissue lipolytic activity is increased in endurance-trained subjects, but little is known about the mechanisms of this increase. To understand more fully the mechanisms involved and to discover whether sex-related differences exist, biopsies of fat were performed in the periumbilical region of 20 sedentary subjects (10 women (W) and 10 men (M)) and 20 trained subjects (10 W, 10 M); the in vitro response to epinephrine of the collagenase-isolated fat cells was studied. Glycerol release, chosen as an adipocyte lipolysis indicator, was measured by bioluminescence. Dose-response curves with epinephrine (alpha 2 and beta agonist), with isoproterenol (beta agonist) and epinephrine + propranolol and adenosine deaminase, were studied. Epinephrine-induced lipolysis was enhanced in trained subjects and this was due to an increased efficiency of the beta-adrenergic pathway. However, differences were found between the two sexes. In trained men, the lipolysis increase resulted from the enhancement of the beta-adrenergic pathway efficiency without any significant decrease in the alpha 2-adrenergic pathway efficiency. In trained women, the lipolysis increase was not only due to the enhancement of the beta-adrenergic pathway efficiency (which was greater than in trained men), but also to a significant decrease in the alpha 2-adrenergic pathway efficiency. Despite the decrease, the alpha 2-adrenergic pathway remained more efficient in trained women than in trained men, as was the case in sedentary subjects. It is concluded that endurance training led to better lipid mobilization and that this effect seemed greater in women than in men.  相似文献   

3.
(Log dose)-response curves have been determined for lipolysis and for the conversion of glucose-(14)C to (14)CO(2) by adipose tissue from rats in the presence of epinephrine, corticotropin, and thyrotropin. The stimulatory effect of epinephrine on lipolysis was greater than that of corticotropin or thyrotropin. Lipolysis induced by epinephrine was inhibited by propranolol but only slightly by phenoxybenzamine, whereas lipolysis induced by corticotropin was inhibited by phenoxybenzamine to a much greater extent than by propranolol. Neither blocking drug had a pronounced effect on the response to thyrotropin. Epinephrine stimulated the oxidation of glucose-(14)C to CO(2) more than did either thyrotropin or corticotropin. Moreover, epinephrine stimulated the conversion of glucose-(14)C to CO(2) and fatty acids even when lipolysis was not increased. These studies indicate that epinephrine can affect glucose utilization independently of its effect on lipolysis.  相似文献   

4.
Pharmacological properties of adrenergic receptors have been investigated in fat cells isolated from omental adipose tissue of the Dog. From the results, the following points can be stated. 1. Lipolysis is markedly enhanced by isoproterenol. This effect is competitively inhibited by propranolol (a beta-adrenoceptor blocking agent). (Fig 1). 2. The beta 2-sympathomimetic salbutamol is found to have only a slight effect on lipolysis rate (Fig. 2). 3. The epinephrine-induced lipolysis is potentiated by phentolamine (an alpha-adrenoceptor blocking agent) only on large sized adipose cells (mean fat cell size 96.7 +/- 5.3 micrometer; Fig. 5). 4. The isoproterenol-induced lipolysis is partially inhibited by phenylephrine (an alpha-adrenomimetic drug) (Table I). These findings show that beta 1 nature of the receptors involved in the adrenergic control of lipolysis in Dog adipose tissue. Moreover an antilipolytic effect of epinephrine, via alpha-adrenergic receptors, is observed, especially in large adipose cells.  相似文献   

5.
Epinephrine increases the oxidation of glucose in adipose tissue even when its lipolytic effects are markedly reduced or abolished by propranolol, nicotinic acid, ouabain, or thyroidectomy. In order to locate the site(s) at which epinephrine stimulates glucose utilization, we studied the effects of epinephrine on the oxidation of various metabolites of glucose. Epinephrine neither increased the production of (14)CO(2) from 1- or 3-(14)C-pyruvate nor affected pyruvate conversion to glyceride-glycerol. To assess the possibility that epinephrine might accelerate the entry of glucose into adipocytes, we studied the accumulation of the nonmetabolized sugar l-arabinose in the intracellular water of adipose tissue. Epinephrine increased arabinose penetration into adipocytes to a degree comparable with that caused by 0.1 mU/ml of insulin. Virtually identical results were obtained in tissues from thyroidectomized rats in which the lipolytic effects of epinephrine were significantly reduced. It is concluded that epinephrine increases glucose oxidation by promoting its entry into adipose tissue and that the effect is independent of lipolysis.  相似文献   

6.
Lipolytic activity of human isolated fat cells from different fat deposits was studied. The purpose of the present investigations was to determine the epinephrine responsiveness, with regard to alpha- and beta-adrenergic receptor site activity, of omental and subcutaneous adipocytes (abdominal or from the lateral part of the thigh). Adipocytes were obtained from normal subjects or from obese subjects on iso- or hypocaloric diets. The lipolytic effect of epinephrine varied according to the fat deposits, while the beta-lipolytic effect of isoproterenol was more stable (Fig. 1). We explored the possible involvement of adrenergic alpha-receptors, in order to explain these results. The potentiating action of phentolamine on epinephrine-induced lipolysis, and the antilipolytic effect of alpha-agonists on basal or theophylline--induced lipolysis, were found to be a good indication of alpha-adrenergic activity. The alpha-adrenergic antilipolytic effect was most prominent in adipose tissue from the lateral part of the thigh, and less noticeable in omental adipocytes. In conclusion, the inability of epinephrine to induce lipolysis, and the epinephrine-induced inhibition of lipolysis observed when the basal rate of FFA release was spontaneously increased in subcutaneous fat-cells of the thigh, could be explained by an increased alpha adrenergic responsiveness (Fig. 2). Moreover, various alpha-adrenergic agonists (phenylephrine, noradrenaline and adrenaline) showed a clear inhibiting effect on theophylline-stimulated adipocytes from the thigh. The pharmacological study of the antilipolytic effect of epinephrine on theophylline-induced lipolysis showed that the inhibition was linked to a specific stimulation of the alpha-receptors of the subcutaneous adipocytes (Fig. 4). From the different sets of experiments, it is shown that the modifications in the lipolytic effect of epinephrine on adipocytes of different areas could be explained by the occurrence of a variable alpha-adrenergic effect initiated by catecholamine. Furthermore, theophylline stimulation of lipolysis provides an accurate system to investigate the alpha-inhibiting effect of catecholamines. Our study was completed by the investigation of the lipolytic activity of subcutaneous fat cells from obese subjects submitted to a hypocaloric diet (800-1 000 Cal/day). An increased alpha-inhibitory effect of epinephrine was shown on the increased basal lipolytic activity observed in the fat cells of obese subjects on a hypocaloric diet (Fig. 5); a similar effect was observed when these adipocytes were stimulated by theophylline. To conclude, these investigations allow the alpha-adrenergic effect to be considered as a regulator mechanism of the in vitro lipolytic activity in human adipose tissue, since the antilipolytic effect is operative whenever the basal rate of lipolysis is increased (spontaneously, after caloric restriction, or with a lipolytic agent such as theophylline).  相似文献   

7.
The acute in vitro and in vivo effects of long-chain fatty acids (LCFAs) on the regulation of adrenergic lipolysis were investigated in human adipose tissue. The effect of a 2 h incubation, without or with LCFA (200 mumol/l), on basal and hormonally induced lipolysis was tested in vitro on isolated fat cells. The lipolytic response to epinephrine was enhanced by suppression of the antilipolytic alpha(2)-adrenergic effect. Then, healthy lean and obese male subjects performed a 45 min exercise bout at 50% of their heart rate reserve either after an overnight fast or 3 h after a high-fat meal (HFM: 95% fat, 5% carbohydrates). Subcutaneous adipose tissue lipolysis was measured by microdialysis in the presence or absence of an alpha-antagonist (phentolamine). In vivo, a HFM increased plasma levels of nonesterified fatty acids in lean and obese subjects. In both groups, the HFM did not alter hormonal responses to exercise. Under fasting conditions, the alpha(2)-adrenergic antilipolytic effect was more pronounced in obese than in lean subjects. The HFM totally suppressed the alpha(2)-adrenergic antilipolytic effect in lean and obese subjects during exercise. LCFAs per se, in vitro as well as in vivo, suppress alpha(2)-adrenergic-mediated antilipolysis in adipose tissue. LCFA-mediated suppression of antilipolytic pathways represents another mechanism whereby a high fat content in the diet might increase adipose tissue lipolysis.  相似文献   

8.
The effects of training and detraining on adipose tissue lipolysis were studied in 19 healthy subjects (7 women and 12 men) who were submitted to a 20-week aerobic training program. Thereafter, subjects refrained from exercise for a period of 50 days. Suprailiac fat biopsies were performed before training, after training, and at the end of the detraining period. Mean fat cell diameter and epinephrine stimulated lipolysis (ESL) were assessed on collagenase isolated fat cells. Body density through underwater weighing and skinfolds at seven different sites were also obtained. Training significantly increased ESL (P less than 0.05) in men but not in women. However, ESL values in men returned to pretraining values after the exercise restriction period. No significant changes in women lipolysis were observed under any conditions. Changes in lipolysis were not correlated with changes in body fatness. However, a significant correlation was observed between the increase in ESL produced by training and the subsequent decrease caused by detraining (r = -0.53; P less than 0.05). The present results suggest that lipolysis in fat cells from the female subjects seems to be insensitive to changes in energy expenditure. Moreover, the present study demonstrates that there are high and low responders in adipocytes ESL to variations in habitual energy expenditure.  相似文献   

9.
The adrenergic inhibition of lipogenesis and stimulation of lipolysis in the avian has been examined using chicken hepatocytes and adipose tissue explants in vitro. Lipogenesis was inhibited by adrenergic agonists: epinephrine (alpha + beta) greater than isoproterenol (beta 1/beta 2) greater than norepinephrine (alpha 1/alpha 2, beta 1) greater than metaproterenol (beta 2), phenylephrine (alpha 1). Dobutamine (beta 1 agonist) and dopamine (dopaminergic agonist) did not significantly affect [14C]acetate incorporation into lipid, while clonidine and para-aminoclonidine (alpha 2 agonists) were slightly stimulatory. Lipolysis in young and adult chicken adipose tissue was stimulated by epinephrine, isoproterenol, phenylephrine, dobutamine and metaproterenol, but was inhibited by clonidine and para-aminoclonidine. Both the antilipogenic and lipolytic effects of epinephrine were partially blocked by phentolamine (alpha 1 = alpha 2 antagonist) or propranolol (beta 1 = beta 2 antagonist), but completely inhibited by phentolamine and propranolol administered together.  相似文献   

10.
Fat mobilization was studied in vitro with epididymal fat pad tissue and also with cell suspensions from epididymal, retroperitoneal, and subcutaneous fat from the obese mutant "fatty" (fafa) and control rats of four different ages. Fat mobilization per cell in response to epinephrine was well above normal in young "fatties"; in older "fatties" the output per cell fell to near normal, but the much greater number of fat cells per rat indicated that the fat mobilizing capacity of the older "fatty" is well above normal. The "fatty" showed normal reactions to epinephrine in vivo: hyperglycemia, glycogenolysis, lipolysis with elevated free fatty acids and glycerol, and increased entry of free fatty acids into muscle and liver. Response was at least as great in "fatty" as in control animals. Metabolic indices-levels of circulating free fatty acids, glycerol, and in some cases glucose and lipid-determined at various ages in fed "fatties" and controls, and at intervals during prolonged fasting (70 days), were consistent with a picture of excessive adipose tissue lipolysis, excessive reesterification in the adipose tissue, fat mobilization in excess of need, and return of the excess to the adipose tissue via lipoproteins.  相似文献   

11.
The aim of this study was to investigate whether hyperinsulinemia modifies adrenergic control of lipolysis, with particular attention paid to the involvement of antilipolytic alpha2-adrenergic receptors (AR). Eight healthy male subjects (age: 23.9 +/- 0.9 yr; body mass index: 23.8 +/- 1.9) were investigated during a 6-h euglycemichyperinsulinemic clamp and in control conditions. Before and during the clamp, the effect of graded perfusions of isoproterenol (0.1 and 1 microM) or epinephrine (1 and 10 microM) on the extracellular glycerol concentration in subcutaneous abdominal adipose tissue was evaluated by using the microdialysis method. Both isoproterenol and epinephrine induced a dose-dependent increase in extracellular glycerol concentration when infused for 60 min through the microdialysis probes before and during hours 3 and 6 of the clamp. The catecholamine-induced increase was significantly lower during the clamp than before it, with the inhibition being more pronounced in hour 6 of the clamp. Isoproterenol (1 microM)-induced lipolysis was reduced by 28 and 44% during hours 3 and 6 of the clamp, respectively, whereas the reduction of epinephrine (100 microM)-induced lipolysis was significantly greater (by 63 and 70%, P < 0.01 and P < 0.04, respectively) during the same time intervals. When epinephrine was infused in combination with 100 microM phentolamine (a nonselective alpha-AR antagonist), the inhibition of epinephrine (10 microM)-induced lipolysis was only of 19 and 40% during hours 3 and 6 of the clamp, respectively. The results demonstrate that, in situ, insulin counteracts the epinephrine-induced lipolysis in adipose tissue. The effect involves 1) reduction of lipolysis stimulation mediated by the beta-adrenergic pathway and 2) the antilipolytic component of epinephrine action mediated by alpha2-ARs.  相似文献   

12.
AIM: The aim of this study was to estimate the lipolytic activity of the human growth hormone variant, 20-kD human growth hormone (20K-hGH). METHODS: Obese KV-A(y) mice were given daily subcutaneous injections of 20K-hGH (0.25, 0.5, 1.0 mg/kg), 22K-hGH (0.25 mg/kg) or saline as a control for 2 weeks. Body composition (fat, water and protein), lipolysis and lipoprotein lipase (LPL) activity were measured 24 h after the final injection. RESULTS: Both growth hormone isoforms significantly reduced relative fat pad and whole body lipids. In addition, 20K-hGH produced an inhibition of LPL activity in adipose tissue and stimulated lipolysis in adipocytes. CONCLUSION: These data strongly suggest that inhibition of LPL activity in adipose tissue and stimulation of lipolysis in adipocytes by 20K-hGH treatment reduce adipose tissue mass, resulting in body fat reduction.  相似文献   

13.
The effect of the beta-adrenoblocker propranolol on adrenaline-stimulated lipolysis was studied in the adipose tissue of spontaneously hypertensive rats (SHR) and control rats. The lipolytic activity was estimated from the increase in glycerol concentration in the incubation medium in vitro. The adipose tissue of SHR responded to adrenaline similarly to that of control rats, but the concentration of adrenaline inducing the half-maximum response (KA) was 2 times less for SHR than KA for normotensive controls. Under propranolol effect this parameter was increased more significantly in SHR than in controls. These data indicate higher sensitivity of SHR adipose tissue to propranolol that may well be relative to alteration of the properties of beta-adrenergic receptors of adipose tissue in this form of hypertension.  相似文献   

14.
Regional variation in adipose tissue lipolysis in lean and obese men.   总被引:7,自引:0,他引:7  
Biopsies of adipose tissue were obtained from two subcutaneous regions (abdominal and femoral) in a sample of 54 men (32 obese and 22 lean subjects). Clonidine-induced antilipolysis in femoral adipose cells was similar in both groups, whereas subcutaneous abdominal adipocytes of obese individuals showed a higher alpha 2-adrenergic response than did subcutaneous abdominal adipose cells from lean subjects. In addition, epinephrine had a biphasic effect in subcutaneous abdominal adipocytes from obese individuals, as it induced antilipolysis at low concentrations, and a net lipolytic response at higher doses. In contrast, the physiological amine promoted lipolysis in subcutaneous abdominal adipose cells of lean subjects. Epinephrine- and clonidine-induced antilipolysis of subcutaneous abdominal adipocytes was positively associated with the level of subcutaneous abdominal fat measured by computed tomography (CT). Finally, men with a high alpha 2-adrenergic response of subcutaneous abdominal fat cells were fatter than those with a low alpha 2-adrenergic component. These results suggest that, in men with a wide range of body fatness, variations in the lipolytic response of subcutaneous abdominal adipose cells to epinephrine appear to involve changes in the functional balance between alpha 2- and beta-adrenoceptors.  相似文献   

15.
Atrial natriuretic peptide (ANP) controls lipolysis in human adipocytes. Lipid mobilization is increased during repeated bouts of exercise, but the underlying mechanisms involved in this process have not yet been delineated. The relative involvement of catecholamine- and ANP-dependent pathways in the control of lipid mobilization during repeated bouts of exercise was thus investigated in subcutaneous adipose tissue (SCAT) by microdialysis. The study was performed in healthy males. Subjects performed two 45-min exercise bouts (E1 and E2) at 50% of their maximal oxygen uptake separated by a 60-min rest period. Extracellular glycerol concentration (EGC), reflecting SCAT lipolysis, was measured in a control probe perfused with Ringer solution and in two other probes perfused with either Ringer plus phentolamine (alpha(1/2)-AR antagonist) or Ringer plus both phentolamine and propranolol (beta-AR antagonist). Plasma epinephrine, plasma glycerol, and EGC were 1.7-, 1.6-, and 1.2-fold higher in E2 than in E1, respectively. Phentolamine potentiated exercise-induced EGC increase during E2 only. Propranolol reduced the lipolytic rate during both E1 and E2 compared with the probe with phentolamine. Plasma ANP concentration increased more during E2 than during E1 and was correlated with the increase in EGC in the probe containing phentolamine plus propranolol. The results suggest that ANP is involved in the control of lipolysis during exercise and that it contributes to stimulation of lipolysis during repeated bouts of exercise.  相似文献   

16.
The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate leaving the adipose tissue. Seven male subjects performed two repeated bouts of 60-min exercise at 50% of their maximal aerobic power, separated by a 60-min recovery period. The exercise-induced increases in extracellular glycerol concentrations in adipose tissue and in plasma glycerol concentrations were significantly higher during the second exercise bout compared with the first (P < 0.05). The responses of plasma nonesterified fatty acids and plasma epinephrine were higher during the second exercise bout, whereas the response of norepinephrine was unchanged and that of growth hormone lower. Plasma insulin levels were lower during the second exercise bout. The results suggest that adipose tissue lipolysis during aerobic exercise of moderate intensity is enhanced when an exercise bout is preceded by exercise of the same intensity and duration performed 1 h before. This response pattern is associated with an increase in the exercise-induced rise of epinephrine and with lower plasma insulin values during the repeated exercise bout.  相似文献   

17.
The aim of this study was to explain the unresponsiveness of rabbit perirenal adipose tissue to epinephrine. The in vitro lipolytic response to isoproterenol and to epinephrine alone or associated with alpha- or beta-adrenergic blocking agents, was studied in the adipocytes of rabbits of various ages. Epinephrine induces a large glycerol release in young rabbit adipocytes whereas an increase in the rate of lipolysis cannot be shown with adult rabbit fat cells. Moreover, an antilipolytic effect can be shown for low concentrations of epinephrine when the basal rate of lipolysis is high in older rabbit adipocytes. Isoproterenol (beta-adrenomimetic) always exerts a strong adipokinetic effect, thus revealing functional beta-receptor sites. The blockade of alpha-adreneoceptor sites by phentolamine, which has no effect on young rabbits, abolishes the antilipolytic effect and unmasks strong lipolytic effect of epinephrine on aged and normal rabbit adipocytes. The loss of beta-adrenergic responsiveness towards epinephrine in the aging rabbit is linked to the involvement of an increased alpha-adrenergic responsiveness. The stimulation of alpha receptor sites by epinephrine leads to a depressive effect on lipolysis (lack of adipokinetic effect or antilipolytic action).  相似文献   

18.
The objective of this work was to study the possible impact of DHEA-S on body fat distribution and the specific action of the hormone on lipolysis from visceral and subcutaneous human adipose tissue. First, a clinical evaluation was performed in 84 obese patients (29 men, 55 women), measuring serum DHEA-S, computed tomography (CT) anthropometric parameters of abdominal fat distribution. In a second experiment, subcutaneous and visceral adipose tissue samples were obtained from 20 obese patients (10 men, 10 women) and cultured in vitro under stimulation with DHEA-S to further assess a possible effect of this hormone on adipose tissue lipolysis. Serum DHEA-S was inversely and specifically associated with visceral fat area (VA) as assessed by CT in men and with waist-to-hip ratio in women. In vitro, DHEA-S increased lipolysis in women's subcutaneous adipose tissue at 2 h, while in men, the effect was evident in visceral tissue and after 24 h of treatment. In conclusion, DHEA-S contributes to gender-related differences in body fat distribution probably by a differential lipolytic action. We have demonstrated for the first time in vitro that DHEA-S stimulates lipolysis preferably in subcutaneous fat in women and in visceral fat in men.  相似文献   

19.
Given the strong link between visceral adiposity and (hepatic) insulin resistance as well as liver steatosis, it is crucial to characterize obesity-associated alterations in adipocyte function, particularly in fat depots drained to the liver. Yet these adipose tissues are not easily accessible in humans, and the most frequently studied depot in rodents is the perigonadal, which is drained systemically. In the present study, we aimed to study alterations in lipolysis between mesenteric and perigonadal adipocytes in mice. Basal free fatty acid and glycerol release was significantly lower in perigonadal compared with mesenteric adipocytes isolated from chow-fed C57BL/6J mice. However, this difference completely vanished in high-fat diet-fed mice. Consistently, protein levels of the G(0)/G(1) switch gene 2 (G0S2), which were previously found to be inversely related to basal lipolysis, were significantly lower in mesenteric compared with perigonadal fat of chow-fed mice. Similarly, perilipin was differently expressed between the two depots. In addition, adipocyte-specific overexpression of G0S2 led to significantly decreased basal lipolysis in mesenteric adipose tissue of chow-fed mice. In conclusion, lipolysis is differently regulated between perigonadal and mesenteric adipocytes, and these depot-specific differences might be explained by altered regulation of G0S2 and/or perilipin.  相似文献   

20.
Intrauterine growth retardation (IUGR) is associated with a central fat distribution and risk of developing type 2 diabetes in adults when exposed to a sedentary Western lifestyle. Increased lipolysis is an early defect of metabolism in IUGR subjects, but the sites and molecular mechanisms involved are unknown. Twenty IUGR and 20 control (CON) subjects, aged 20-30 years, were studied before and after 10 days of bed rest using the glucose clamp technique combined with measurements of in vivo metabolism by microdialysis technique and blood flow by (133)Xe washout technique in subcutaneous abdominal (SCAAT) and femoral (SCFAT) adipose tissue. Additionally, mRNA expression of lipases was evaluated in biopsies from SCAAT. Lipolysis in SCAAT was substantially higher in IUGR than in CON subjects despite markedly lower mRNA expression of lipases. Blood flow was higher in IUGR compared with CON in both SCAAT and SCFAT. Whole body insulin sensitivity did not differ between groups and decreased after bed rest. After bed rest, SCAAT lipolysis remained higher in IUGR compared with CON, and SCFAT lipolysis decreased in CON but not in IUGR. Prior to the development of whole body insulin resistance, young men with IUGR are characterized by increased in vivo adipose tissue lipolysis and blood flow with a paradoxically decreased expression of lipases compared with CON, and 10 days of physical inactivity underlined the baseline findings. Subjects with IUGR exhibit primary defects in adipose tissue metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号