首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The noble gas xenon seems to have minimal cardiovascular side-effects and so may be an ideal anaesthetic agent when investigating cardiovascular physiology. In comparison with standard modern anaesthetics, we investigated the haemodynamic and hormonal effects of xenon in Beagle dogs. After a 30 min baseline period, anaesthesia was induced with propofol and maintained with either (1) 1.2% isoflurane/70% nitrous oxide (N(2)O), (2) 0.8% isoflurane/0.5 microg/kg/min remifentanil or (3) 63% xenon/0.5 microg/kg/min remifentanil (n = 6 per group). Haemodynamics were recorded and blood samples taken before and 60 min after induction. Mean arterial blood pressure (MAP) was higher in conscious dogs than during isoflurane/N(2)O (86 +/- 2 vs. 65 +/- 2 mmHg, mean +/- SEM) and isoflurane/remifentanil anaesthesia (95 +/- 2 vs. 67 +/- 3 mmHg), whereas MAP did not decrease significantly in response to xenon/remifentanil anaesthesia (96 +/- 4 vs. 85 +/- 6 mmHg). Bradycardia was present during isoflurane/remifentanil (54 +/- 2/min) and xenon/remifentanil (40 +/- 3/min), but not during isoflurane/N(2)O anaesthesia (98 +/- 3/min, P < 0.05). Xenon/remifentanil anaesthesia induced the highest reduction in cardiac output (CO) (-61%), and the highest increase in systemic vascular resistance (+120%) among all treatment groups (P < 0.05). A simultaneous increase in endogenous adrenaline and noradrenaline concentrations could only be observed in the xenon/remifentanil group, whereas angiotensin II and vasopressin concentrations increased in all groups. In conclusion, xenon/remifentanil anaesthesia maintains MAP but reduces heart rate and CO and is associated with a considerable stimulation of vasopressor hormones in Beagle dogs. Therefore, xenon/remifentanil exerts a new quality of adverse haemodynamic effects different from volatile anaesthetics and may not perform better during studies of cardiovascular physiology.  相似文献   

2.
The effects of endothelin receptor subtype A (ETA) blockade on hemodynamics and hormonal adaptation during hemorrhage were studied in xenon/remifentanil-anesthetized dogs (n=6) pretreated with an angiotensin II type 1 (AT1)-receptor blocker. Controls: after a baseline awake period, anesthesia was induced in the dogs with propofol and maintained with xenon/remifentanil (baseline anesthesia). Sixty minutes later, 20 mL x kg(-1) of blood was withdrawn within 5 min and the dogs observed for another hour (hemorrhage). AT1 group followed the same protocol as controls except the AT1-receptor blocker losartan (i.v. 100 microg x kg(-1) x min(-1)) was started at the beginning of the experiment. AT1+ETA group was the same as AT1 group but with the addition of the ETA-receptor blocker atrasentan (i.v. 1 mg x kg(-1), then 0.01 mg x kg(-1) x min(-1)). In controls, mean arterial pressure (MAP) remained unchanged during baseline anesthesia, whereas systemic vascular resistance (SVR) increased from 3282+/-281 to 7321+/-803 dyn.s.cm-5, heart rate (HR) decreased from 86+/-4 to 40+/-3 beats x min(-1), and cardiac output (CO) decreased from 2.3+/-0.2 to 0.9+/-0.1 L x min(-1) (p<0.05), with no further changes after hemorrhage. In AT1-inhibited dogs, MAP (71+/-6 mm Hg) and SVR (5939+/-611 dyn x s x cm(-5)) were lower during baseline anesthesia and after hemorrhage, but greater than those in AT1+ETA (66+/-7 mm Hg, 5034+/-658 dyn x s x cm(-5)) (p<0.05). HR and CO were not different between groups. Plasma concentration of vasopressin was highest with AT1+ETA inhibition after hemorrhage. Combined AT1+ETA-receptor blockade impaired vasoconstriction more than did AT1-receptor blockade alone, both during baseline xenon anesthesia and after hemorrhage. Even a large increase in vasoconstrictor hormones could not prevent the decrease in blood pressure and the smaller increase in SVR. Thus, endothelin is an important vasoconstrictor during hemorrhage, and both endothelin and angiotensin II are essential hormones for cardiovascular stabilization after hemorrhage.  相似文献   

3.
The role of endothelin-B (ET(B)) receptors in circulatory homeostasis is ambiguous, reflecting vasodilator and constrictor effects ascribed to the receptor and diuretic and natriuretic responses that could oppose the hypertensive effects of ET excess. With the use of conscious, telemetry-instrumented cynomolgus monkeys, we characterized the hypertension produced by ET(B) blockade and the role of ET(A) receptors in mediating this response. Mean arterial pressure (MAP) and heart rate (HR) were measured 24 h/day for 24 days under control conditions and during administration of the ET(B)-selective antagonist A-192621 (0.1, 1.0, and 10 mg/kg bid, 4 days/dose) followed by coadministration of the ET(A) antagonist atrasentan (5 mg/kg bid) + A-192621 (10 mg/kg bid) for another 4 days. High-dose ET(B) blockade increased MAP from 79 +/- 3 (control) to 87 +/- 3 and 89 +/- 3 mmHg on the first and fourth day, respectively; HR was unchanged, and plasma ET-1 concentration increased from 2.1 +/- 0.3 pg/ml (control) to 7.24 +/- 0.99 and 11.03 +/- 2.37 pg/ml. Atrasentan + A-192621 (10 mg/kg) decreased MAP from hypertensive levels (89 +/- 3) to 75 +/- 2 and 71 +/- 4 mmHg on the first and fourth day, respectively; plasma ET-1 and HR increased to 26.64 +/- 3.72 and 28.65 +/- 2.89 pg/ml and 113 +/- 5 (control) to 132 +/- 5 and 133 +/- 7 beats/min. Thus systemic ET(B) blockade produces a sustained hypertension in conscious nonhuman primates, which is mediated by ET(A) receptors. These data suggest an importance clearance function for ET(B) receptors, one that influences arterial pressure homeostasis indirectly by reducing plasma ET-1 levels and minimizing ET(A) activation.  相似文献   

4.
From June 1998 to August 1999, 39 California sea lions (Zalophus californianus) were immobilized at a rehabilitation center in northern California (USA) using medetomidine plus zolazepam and tiletamine (MZT), alone and in combination with isoflurane, with atipamezole reversal. Animals were given 70 microg/kg medetomidine with 1 mg/kg of a 1:1 solution of tiletamine and zolazepam intramuscularly. Mean (+/-SD) time to maximal effect was 5+/-3 min. At the end of the procedure, animals were given 200 microg/kg atipamezole intramuscularly. Immobilization and recovery times were, respectively, 28+/-18 and 9+/-7 min for 15 animals maintained with MZT alone and 56+/-47 and 9+/-6 min for 18 animals intubated and maintained with isoflurane. One mortality occurred during anesthesia. Other disadvantages of the MZT combination included some prolonged ataxia, weakness and disorientation during recovery. However, the use of MZT resulted in faster induction and a more reliable plane of anesthesia that was reversible with atipamezole and safer than other previously used intramuscular agents. Physiological parameters including heart rate, respiratory rate, temperature, pulse oximeter saturation, and end-tidal carbon dioxide were monitored.  相似文献   

5.
The use of medetomidine and ketamine, alone and in combination with isoflurane, with atipamezole reversal was evaluated for immobilizing 51 California sea lions (Zalophus californianus) for a variety of medical procedures at a rehabilitation center in northern California (USA) between May 1997 and August 1998. Animals were given 140 microg/kg medetomidine with 2.5 mg/kg ketamine intramuscularly. Mean (+/-SD) time to maximal effect was 8+/-5 min. At the end of the procedure, animals were given 200 microg/kg atipamezole intramuscularly. Immobilization and recovery times were, respectively, 25+/-12 and 9+/-7 min for 35 animals maintained with medetomidine and ketamine alone and 58+/-30 and 9+/-9 min for 16 animals intubated and maintained with isoflurane. No mortalities occurred as a result of the immobilizations. Disadvantages of the medetomidine and ketamine combination included a moderate variation in time to maximal effect and plane of sedation, a large injection volume and high cost. However, this combination offers safe and reversible immobilization that can be easily administered by the intramuscular route and that produces a plane of anesthesia that is sufficient to carry out most routine diagnostic procedures.  相似文献   

6.
The net contribution of endothelin type A (ET(A)) and type B (ET(B)) receptors in blood pressure regulation in humans and experimental animals, including the conscious mouse, remains undefined. Thus we assessed the role of ET(A) and ET(B) receptors in the control of basal blood pressure and also the role of ET(A) receptors in maintaining the hypertensive effects of systemic ET(B) blockade in telemetry-instrumented mice. Mean arterial pressure (MAP) and heart rate were recorded continuously from the carotid artery and daily (24 h) values determined. At baseline, MAP ranged from 99 +/- 1 to 101 +/- 1 mmHg and heart rate ranged between 547 +/- 15 and 567 +/- 19 beats/min (n = 6). Daily oral administration of the ET(B) selective antagonist A-192621 [10 mg/kg twice daily] increased MAP to 108 +/- 1 and 112 +/- 2 mmHg on days 1 and 5, respectively. Subsequent coadministration of the ET(A) selective antagonist atrasentan (5 mg/kg twice daily) in conjunction with A-192621 (10 mg/kg twice daily) decreased MAP to baseline values on day 6 (99 +/- 2 mmHg) and to below baseline on day 8 (89 +/- 3 mmHg). In a separate group of mice (n = 6) in which the treatment was reversed, systemic blockade of ET(B) receptors produced no hypertension in animals pretreated with atrasentan, underscoring the importance of ET(A) receptors to maintain the hypertension produced by ET(B) blockade. In a third group of mice (n = 10), ET(A) blockade alone (atrasentan; 5 mg/kg twice daily) produced an immediate and sustained decrease in MAP to values below baseline (baseline values = 101 +/- 2 to 103 +/- 2 mmHg; atrasentan decreased pressure to 95 +/- 2 mmHg). Thus these data suggest that ET(A) and ET(B) receptors play a physiologically relevant role in the regulation of basal blood pressure in normal, conscious mice. Furthermore, systemic ET(B) receptor blockade produces sustained hypertension in conscious telemetry-instrumented mice that is absent in mice pretreated with an ET(A) antagonist, suggesting that ET(A) receptors maintain the hypertension produced by ET(B) blockade.  相似文献   

7.
Interleukin (IL)-6 has been implicated as a contributing factor in the pathogenesis of hypertension, although the mechanisms involved are unclear. Studies conducted in vitro suggest that IL-6 may have a direct effect on vascular tone and may modulate constrictor responses to agonists. Whether this effect can be observed in vivo is unknown. Therefore, mice were treated with either IL-6 (16 ng/h sc) or vehicle for 14 days, and the acute blood pressure and heart rate responses to endothelin (ET)-1, angiotensin II (ANG II), and phenylephrine (PE) were assessed under isoflurane anesthesia. Blood pressure responses to ET-1 were identical in vehicle- and IL-6-infused mice, both in the presence and the absence of ganglion blockade with chlorisondamine. The fall in heart rate during ET-1 responses was significantly attenuated in IL-6-infused mice with autonomic reflexes intact (vehicle vs. IL-6, P < 0.05 at 1 and 3 nmol/kg of ET-1), but this difference was not observed after ganglionic blockade. Both blood pressure and heart rate responses to ANG II were indistinguishable between IL-6- and vehicle-infused mice, as were responses to PE except for a significant increase in the blood pressure response and decrease in the heart rate response in IL-6-infused mice observed only at the highest dose of PE (300 microg/kg; P < 0.05). These findings show that, despite what might be predicted from studies conducted in vitro, chronic exposure to elevated plasma IL-6 concentrations in itself does not predispose the mouse to enhanced responsiveness to vasoconstrictors in vivo.  相似文献   

8.
Experiments were designed to determine the influence of endothelin A (ET(A)) receptors on the pressor response to acute environmental stress in Dahl salt-resistant (DR) and Dahl-sensitive (DS) rats. Mean arterial pressure (MAP) was chronically monitored by telemetry before and after treatment with the selective ET(A) receptor antagonist ABT-627. Rats were restrained and subjected to pulsatile air jet stress (3 min). In untreated animals, the total pressor response (area under the curve) to acute stress was not different between DR vs. DS rats (8.1 +/- 1.7 vs. 15.6 +/- 2.6 mmHg x 3 min, P = 0.10). Conversely, treatment with ABT-627 potentiated the total pressor response only in DR rats (36.3 +/- 6.2 vs. 22.6 +/- 5.9 mmHg x 3 min, DR vs. DS, P < 0.05). Treatment with ABT-627 allowed greater responses in anesthetized DR rats to exogenous phenylephrine (1-4 microg/kg) during ganglionic blockade (P < 0.05) and produced a significant increase in plasma norepinephrine at baseline and during stress in conscious DR rats compared with untreated animals (P < 0.05). ET(A) receptor blockade had no effect on these responses in DS rats. Our results suggest that endothelin-1 can inhibit alpha-adrenergic-mediated effects in DR, but not DS rats, consistent with the hypothesis that ET(A) receptor activation functions to reduce sympathetic nerve activity and responses in vascular smooth muscle to sympathetic stimulation.  相似文献   

9.
Studies involving substantially lengthy rat surgeries require extended anesthesia periods and often involve use of sodium pentobarbital (PENT). Results of previous experiments from our laboratory and elsewhere suggest that the duration of anesthesia and the need for anesthetic supplementation may differ between male and female rats. In the study reported here, we induced anesthesia in male and female Sprague Dawley rats (n = 10 for each sex), using a three-step procedure: brief induction with 5% isoflurane inhalation, PENT (50 mg/kg of body weight, i.p.), combined with 50 mg of PENT/kg given intragastrically. Adequate anesthesia depth was confirmed by absence of a response to a toe pinch. Plasma PENT concentration was measured at sequential 20-min periods and was found, on average, to be lower (P = 0.03) in male (13.28 +/- 1.13 microg/ml) than in female (20.27 +/- 0.66 microg/ml) rats, and decreased more rapidly (P = 0.003) in male rats. Distribution to a fractionally greater lean body mass and more rapid metabolism in males may account for these differences and explain the need for anesthetic supplementation in male, but not female rats.  相似文献   

10.
The effects of nonselective ET(A)/ET(B) receptor blockade with intravenous bolus injection of bosentan (10 mg/kg) on renal excretory function and blood pressure were investigated in conscious, male, normotensive Wistar rats before and one week after bilateral renal denervation. Renal denervation was followed by an increase in urine flow rate from 4.54+/-0.38 to 5.72+/-0.36 microl/min x 100 g b.w. (p<0.05) and a decrease in urine osmolality from 855.5+/-44.6 to 707.4+/-47.5 mosm/kg H(2)O (p<0.05). Bosentan administration in sham-operated rats resulted in decrease in urine flow rate from 4.54+/-0.38 to 3.49+/-0.34 microl/min x 100 g b.w. (p<0.05), and increase in urine osmolality from 855.5+/-44.6 to 1075.0+/-76.1 mosm/kg H(2)O (p<0.05). Sodium excretion decreased from 226.9+/-20.0 to 155.1+/-11.0 nmol/min x 100 g b.w. (p<0.01). Bosentan administration in renal denervated rats did not produce any changes in renal water or electrolyte excrections. Blood pressure, heart rate, clearance of Inulin or clearance of paraaminohippuric acid (PAH) did not change in sham-operated or renal denervated rats during nonselective ET(A)/ET(B) receptor blockade. Bosentan did not alter the baroreflex sensitivity or sympatho-vagal balance in sham-operated or renal denervated rats. In conclusion, an interaction between renal nerves and endothelins appears to be involved in the regulation of the renal excretory function.  相似文献   

11.
Preterm infants are often treated with intravenous dopamine to increase mean arterial blood pressure (MAP). However, there are few data regarding cerebrovascular responses of developing animals to dopamine infusions. We studied eight near-term and eight preterm chronically catheterized unanesthetized fetal sheep. We measured cerebral blood flow and calculated cerebral vascular resistance (CVR) at baseline and during dopamine infusion at 2.5, 7.5, 25, and 75 microg x kg(-1) x min(-1). In preterm fetuses, MAP increased only at 75 microg x kg(-1) x min(-1) (25 +/- 5%), whereas in near-term fetuses MAP increased at 25 microg x kg(-1) x min(-1) (28 +/- 4%) and further at 75 microg x kg(-1) x min(-1) (51 +/- 3%). Dopamine infusion was associated with cerebral vasoconstriction in both groups. At 25 microg x kg(-1) x min(-1), CVR increased 77 +/- 51% in preterm fetuses and 41 +/- 11% in near-term fetuses, and at 75 microg x kg(-1) x min(-1), CVR increased 80 +/- 33% in preterm fetuses and 83 +/- 21% in near-term fetuses. We tested these responses to dopamine in 11 additional near-term fetuses under alpha-adrenergic blockade (phenoxybenzamine, n = 5) and under dopaminergic D(1)-receptor blockade (SCH-23390, n = 6). Phenoxybenzamine completely blocked dopamine's pressor and cerebral vasoconstrictive effects, while D(1)-receptor blockade had no effect. Therefore, in unanesthetized developing fetuses, dopamine infusion is associated with cerebral vasoconstriction, which is likely an autoregulatory, alpha-adrenergic response to an increase in blood pressure.  相似文献   

12.
Pulmonary vascular response to endothelin in rats   总被引:3,自引:0,他引:3  
This study investigated the pulmonary vascular response to endothelin (ET) in rats. In conscious rats, an incremental intravenous bolus of ET-1 (100-1,000 pM) caused, after an initial drop in systemic arterial pressure (Psa), a secondary dose-dependent increase of Psa concomitant with a decrease of cardiac output (CO) and heart rate (HR). Pulmonary arterial pressure (Ppa) remained unchanged, and pulmonary vascular resistance (PVR) increased significantly only after 1,000 pM (+ 40.0 +/- 10.4 at 15 min). Meclofenamate (6 mg/kg iv) did not alter hemodynamic response to ET (300 pM). After autonomic blockade with hexamethonium (6 mg/kg iv) plus atropine (0.75 mg/kg iv), bradycardia response to ET (300 pM) was blocked, but CO decreased, systemic vascular resistance increased, and PVR remained unchanged as in controls. In anesthetized ventilated rats, bolus injections of ET (10-1,000 pM) induced a transient dose-related decrease in compliance (-10.9 +/- 1.8% after 1,000 pM) but no change of conductance. In isolated lungs, Ppa increased at doses greater than 100 pM, and edema developed in response to 1,000 pM ET. The rise of Ppa in response to 300 pM was not altered by meclofenamate (3.2 x 10(-6) M) but was potentiated by inhibitors of endothelium-derived relaxing factor(s) (EDRF), methylene blue (10(-4) M), pyrogallol (3 x 10(-5) M), and NG-monomethyl-L-arginine (6 x 10(-4) M) (3.9 +/- 0.3, 4.6 +/- 0.5, and 5.9 +/- 0.3 mmHg, respectively, compared with 1.5 +/- 0.5 mmHg in control lungs). These results suggest that circulating ET is a more potent constrictor of the systemic circulation than of the pulmonary vascular bed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Angiotensin (ANG) II effects may be partly mediated by endothelin (ET)-1. This study analyses the hemodynamic, renal, and hormonal responses of acute ET(A) receptor antagonism (LU-135252) at two ANG II plasma levels in eight conscious dogs. Protocol 1 involved a 60-min baseline, followed by two doses of ANG II for 60 min each (4 and 20 ng. kg(-1). min(-1)), termed ANG II 4 (slightly increased) and ANG II 20 (pathophysiologically increased ANG II plasma concentration). Protocol 2 was the same as protocol 1 but included 15 mg/kg iv LU-135252 after the baseline period. Protocol 3 was a 3-h time control. ANG II without LU-135252 did not increase plasma big ET-1 and ET-1, whereas LU-135252 increased ET-1 transiently after injection. This transient ET-1 increase was not reflected in urinary ET-1 excretion. The ANG II induced decreases in sodium, water, and potassium excretion, glomerular filtration rate, and fractional sodium excretion were not different with and without LU-135252. Mean arterial pressure increased during ANG II and was not lower with LU-135252 (-6 mmHg, not significant). Most importantly, during ANG II 20 LU-135252 prevented the decrease in cardiac output. Simultaneously, systemic vascular resistance increased 40% less, pulmonary vascular resistance was maintained at baseline levels, and central venous and wedge pressure were lower. Because ANG II stimulated endothelin de novo synthesis should just have started after 2 h of ANG II infusion, there must be mechanisms other than blocking the coupling of de novo synthesized endothelins to the ET(A) receptors to explain the effects of acute ET(A) receptor inhibition in our setting.  相似文献   

14.
Trigeminal neuropathic pain, which is associated with marked orofacial mechanical allodynia, is frequently refractory to currently available drugs. Because endothelins (ETs) can contribute to nociceptive changes in animal models of inflammatory, cancer, and diabetic neuropathic pain, the present study evaluated the influence of ET(A) and ET(B) receptor antagonists on orofacial mechanical allodynia in a rat model of trigeminal neuropathic pain. Unilateral constriction (C) of the infraorbital nerve (ION) caused pronounced and sustained bilateral mechanical allodynia, evaluated by application of von Frey hairs to the vibrissal pad. Mechanical allodynia on postoperative days 12-15 after nerve injury was abolished for up to 90 mins by subcutaneous administration of 2.5 mg/kg morphine, but was fully refractory to intravenous (iv) administration of 10 mg/kg of the dual ET(A) plus ET(B) or selective ET(A) receptor antagonists, bosentan and atrasentan, respectively. In sharp contrast, iv administration of 20 mg/kg of the selective ET(B) receptor antagonist, A-192621, caused a net 61 +/- 15% reduction of mechanical threshold, lasting 2 hrs. Co-injection of atrasentan plus A-192621 did not modify ION injury-induced mechanical allodynia. Injection of 10 pmol ET-1 into the upper lip of naive rats caused ipsilateral mechanical allodynia lasting up to 5 hrs. Thus, ET(B) receptor-mediated mechanisms contribute to orofacial mechanical allodynia induced by CION injury, but, some-how, functional ET(A) receptors are required for expression of the antiallodynic effect of ET(B) receptor blockade.  相似文献   

15.
Skin blood flow increases in response to local heat due to sensorineural and nitric oxide (NO)-mediated dilation. It has been previously demonstrated that arteriolar dilation is inhibited with NO synthase (NOS) blockade. Flow, nonetheless, increases with local heat. This implies that the previously unexamined nonarteriolar responses play a significant role in modulating flow. We thus hypothesized that local heating induces capillary recruitment. We heated a portion (3 cm2) of the Pallid bat wing from 25 degrees C to 37 degrees C for 20 min, and measured changes in terminal feed arteriole (approximately 25 microm) diameter and blood velocity to calculate blood flow (n = 8). Arteriolar dilation was reduced with NOS and sensorineural blockade using a 1% (wt/vol) NG-nitro-L-arginine methyl ester (L-NAME) and 2% (wt/vol) lidocaine solution (n = 8). We also measured changes in the number of perfused capillaries, and the time precapillary sphincters were open with (n = 8) and without (n = 8) NOS plus sensorineural blockade. With heat, the total number of perfused capillaries increased 92.7 +/- 17.9% (P = 0.011), and a similar increase occurred despite NOS plus sensorineural blockade 114.4 +/- 30.0% (P = 0.014). Blockade eliminated arteriolar dilation (-4.5 +/- 2.1%). With heat, the percent time precapillary sphincters remained open increased 32.3 +/- 6.0% (P = 0.0006), and this increase occurred despite NOS plus sensorineural blockade (34.1 +/- 5.8%, P = 0.0004). With heat, arteriolar blood flow increased (187.2 +/- 28.5%, P = 0.00003), which was significantly attenuated with NOS plus sensorineural blockade (88.6 +/- 37.2%, P = 0.04). Thus, capillary recruitment is a fundamental microvascular response to local heat, independent of arteriolar dilation and the well-documented sensorineural and NOS mechanisms mediating the response to local heat.  相似文献   

16.
In order to evaluate the role of the alpha-adrenergic system in the systemic and renal hemodynamic changes of the acute combined blood gas derangement, seven conscious mongrel dogs in careful sodium balance (80 mEq/day for 4 days) were evaluated. Each animal was evaluated during combined acute hypoxemia (PaO2 = 35 +/- 1 mm Hg) and hypercapnic acidosis (PaCO2 = 56 +/- 2 mm Hg; pH = 7.18 +/- 0.01) with (i) vehicle (D5W) alone and (ii) alpha 1-adrenergic blockade with prazosin, 0.1 mg/kg iv. Mean arterial pressure increased during the combined blood gas derangement with vehicle. In contrast, mean arterial pressure fell during combined acute hypoxemia and hypercapnic acidosis with alpha 1-adrenergic blockade. The mechanism for abrogation of the rise in mean arterial pressure during the combined blood gas derangement by alpha 1-adrenergic blockade appeared to be through attenuation of the rise in cardiac output rather than an exaggerated fall in total peripheral resistance. These observations suggest that the alpha-adrenergic system is important in circulatory homeostasis during the combined blood gas derangement.  相似文献   

17.
The responses to AT(1)-receptor blockade (candesartan 1 mg/kg) and to concomitant volume expansion (saline 35 ml/kg for 90 min) with and without nitric oxide synthase (NOS) inhibition (N(G)-nitro-L-arginine methyl ester 30 microg small middle dot kg(-1) small middle dot min(-1)) were investigated in separate experiments in normal dogs. AT(1) blockade decreased arterial pressure (106 +/- 4 to 96 +/- 5 mmHg) and increased glomerular filtration rate (GFR) by 17% and sodium excretion threefold. NOS inhibition increased arterial pressure (103 +/- 3 to 116 +/- 3 mmHg) and decreased GFR by 21% and reduced sodium excretion by some 80%. Volume expansion increased arterial pressure significantly in all series involving this procedure, most pronounced during combined AT(1) blockade and NOS inhibition (21 +/- 4 mmHg). Volume expansion during AT(1) blockade elicited marked natriuresis (26 +/- 11 to 274 +/- 55 micromol/min) that was severely reduced by concomitant NOS inhibition (10 +/- 3 to 45 +/- 11 micromol/min), but still much larger than that seen with volume expansion during NOS inhibition alone (2 +/- 1 to 23 +/- 7 micromol/min). Volume expansion during AT(1) blockade increased GFR (+30%), less so during combined AT(1) blockade and NOS inhibition (+13%), but it did not increase GFR significantly (P = 0.07) during NOS inhibition alone. Plasma ANG II increased greater than sevenfold with AT(1) blockade and doubled with NOS inhibition (paired t-test, P < 0.05), whereas it decreased by 50-80% during volume expansion irrespective of pretreatment, i.e., during NOS inhibition, volume expansion did not generate subnormal plasma ANG II concentrations. In conclusion, 1) acute AT(1) blockade leads to hyperfiltration, natriuresis, and hyperresponsiveness to volume expansion, 2) these responses are >85% inhibitable by unspecific NOS inhibition, and 3) NOS inhibition alone is followed by increases in plasma ANG II, hypofiltration, and severe antinatriuresis that may be counterbalanced but not overwhelmed by volume expansion. Thus NOS inhibition virtually abolishes the volume expansion natriuresis, at least in part, due to the lack of appropriate inhibition of the renin-angiotensin-aldosterone system.  相似文献   

18.
Abstract: We immobilized elk with either isoflurane to produce general anesthesia (control), 0.01 mg/kg carfentanil plus 0.1 mg/kg xylazine, or 0.25 mg/kg butorphanol plus 0.4 mg/kg azaperone plus 0.15 mg/kg medetomidine (BAM) and measured the bispectral index (BIS). The carfentanil-xylazine BIS (70.4 + 1.4) and the BAM BIS (60.2 + 1.5) were higher than the control BIS (47.2 + 4.1; P ≤ 0.001). These data indicate that opioids produce neuroleptanalgesia and not general anesthesia or sedation, which explains observed elk responses to these drugs.  相似文献   

19.
Postoperative cognitive decline (POCD) is a common complication following surgery, but its aetiology remains unclear. We hypothesized that xenon pretreatment prevents POCD by suppressing the systemic inflammatory response or through an associated protective signaling pathway involving heat shock protein 72 (Hsp72) and PI3-kinase. Twenty-four hours after establishing long-term memory using fear conditioning training, C57BL/6 adult male mice (n = 12/group) received one of the following treatments: 1) no treatment group (control); 2) 1.8% isoflurane anesthesia; 3) 70% xenon anesthesia; 4) 1.8% isoflurane anesthesia with surgery of the right hind leg tibia that was pinned and fractured; or 5) pretreatment with 70% xenon for 20 minutes followed immediately by 1.8% isoflurane anesthesia with the surgery described above. Assessments of hippocampal-dependent memory were performed on days 1 and 7 after treatment. Hsp72 and PI3-kinase in hippocampus, and plasma IL-1β, were measured using western blotting and ELISA respectively, from different cohorts on day 1 after surgery. Isoflurane induced memory deficit after surgery was attenuated by xenon pretreatment. Xenon pretreatment prevented the memory deficit typically seen on day 1 (P = 0.04) but not on day 7 (P = 0.69) after surgery under isoflurane anesthesia, when compared with animals that underwent surgery without pretreatment. Xenon pretreatment modulated the expression of Hsp72 (P = 0.054) but had no significant effect on PI3-kinase (P = 0.54), when compared to control. Xenon pretreatment also reduced the plasma level increase of IL-1β induced by surgery (P = 0.028). Our data indicated that surgery and/or Isoflurane induced memory deficit was attenuated by xenon pretreatment. This was associated with a reduction in the plasma level of IL-1β and an upregulation of Hsp72 in the hippocampus.  相似文献   

20.
To better understand the central mechanisms that mediate increases in heart rate (HR) during psychological stress, we examined the effects of systemic and intramedullary (raphe region) administration of the serotonin-1A (5-HT(1A)) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) on cardiac changes elicited by restraint in hooded Wistar rats with preimplanted ECG telemetric transmitters. 8-OH-DPAT reduced basal HR from 356 +/- 12 to 284 +/- 12 beats/min, predominantly via a nonadrenergic, noncholinergic mechanism. Restraint stress caused tachycardia (an initial transient increase from 318 +/- 3 to 492 +/- 21 beats/min with a sustained component of 379 +/- 12 beats/min). beta-Adrenoreceptor blockade with atenolol suppressed the sustained component, whereas muscarinic blockade with methylscopolamine (50 microg/kg) abolished the initial transient increase, indicating that sympathetic activation and vagal withdrawal were responsible for the tachycardia. Systemic administration of 8-OH-DPAT (10, 30, and 100 microg/kg) attenuated stress-induced tachycardia in a dose-dependent manner, and this effect was suppressed by the 5-HT(1A) antagonist WAY-100635 (100 microg/kg). Given alone, the antagonist had no effect. Systemically injected 8-OH-DPAT (100 microg/kg) attenuated the sympathetically mediated sustained component (from +85 +/- 19 to +32 +/- 9 beats/min) and the vagally mediated transient (from +62 +/- 5 to +25 +/- 3 beats/min). Activation of 5-HT(1A) receptors in the medullary raphe by microinjection of 8-OH-DPAT mimicked the antitachycardic effect of the systemically administered drug but did not affect basal HR. We conclude that tachycardia induced by restraint stress is due to a sustained increase in cardiac sympathetic activity associated with a transient vagal withdrawal. Activation of central 5-HT(1A) receptors attenuates this tachycardia by suppressing autonomic effects. At least some of the relevant receptors are located in the medullary raphe-parapyramidal area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号