首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
In the present study, we investigated the effects of lipoic acid (LA) in the brain oxidative stress caused by pilocarpine-induced seizures in adult rats. Wistar rats were treated with 0.9% saline (i.p., control group), lipoic acid (10 mg/kg, i.p., LA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of LA (10 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before the administration of LA (LA plus pilocarpine group). After the treatments, all groups were observed for 1 h. The enzyme activities [δ-aminolevulinic dehydratase (δ-ALA-D), glutathione peroxidase (GPx), glutathione reductase (GR), and Na+,K+-ATPase] as well as the glutathione-reduced (GSH) and ascorbic acid (AA) concentrations were measured using spectrophotometric methods, and the results were compared to values obtained from saline and pilocarpine-treated animals. Protective effects of LA were also evaluated on the same parameters. In pilocarpine group, no changes were observed in GPx and GR activities and AA content. Moreover, in the same group, decrease in GSH levels as well as a reduction in δ-ALA-D and Na+,K+-ATPase activities after seizures was observed. In turn, in LA plus pilocarpine group, the appearance of seizures was abolished, and the decreases in δ-ALA-D and Na+,K+-ATPase activities produced by seizures as well as increases in GSH levels and GPx activity were reversed, when compared to the pilocarpine seizing group. The results of the present study demonstrated that preadministration of LA abolished seizure episodes induced by pilocarpine in rat, probably by reducing oxidative stress in rat hippocampus caused by seizures.  相似文献   

2.
Sublethal stress stimuli such as systemic endotoxin treatment can induce tolerance of the brain to subsequent ischemic stress, which results in a decreased infarct size. Based on this evidence, we hypothesized that lipopolysaccharide (LPS)-induced preconditioning could protect hippocampal neurons in epileptic rats. To test this hypothesis, the anticonvulsant effect of a low dose of LPS against seizures elicited by pilocarpine hydrochloride was measured. Using the pilocarpine model of temporal lobe epilepsy and LPS-preconditioning, we also investigated hippocampal pathology in the rat brain. Based on the behavioural observations conducted, it can be assumed that the preconditioning procedure used may decrease seizure excitability in epileptic rats. However, determination of the seizure excitability threshold needs to be elaborated. Qualitative and quantitative analyses of histological brain sections in the LPS-preconditioned rats showed markedly decreased intensity of neurodegenerative changes in the CA1, CA3 and DG hippocampal fields. The tendency was observed in all the periods of the pilocarpine model of epilepsy. We suggest that preconditioning with LPS may have neuroprotective effects in the CA1, CA3 and DG hippocampal sectors; however, it has no influence on the course of the seizures in rats in the pilocarpine model of epilepsy.  相似文献   

3.
Biochemical abnormalities have been implicated in possible mechanisms underlying the epileptic phenomena. Some of these alterations include changes in the activity of several enzymes present in epileptic tissues. Systemic administration of pilocarpine in rats induces electrographic and behavioral limbic seizures and status epilepticus, that is followed by a transient seizure-free period (silent period). Finally a chronic phase ensues, characterized by spontaneous and recurrent seizures (chronic period), that last for the rest of the animal's life. The present work aimed to study the activity of the enzyme Na+ K+ ATPase, in rat hippocampus, during the three phases of this epilepsy model. The enzyme activity was determined at different time points from pilocarpine administration (1 and 24 h of status epilepticus, during the silent and chronic period) using a spectrophotometric assay previously described by Mishra and Delivoria-Papadopoulos [Neurochem. Res. (1988) 13, 765–770]. The results showed decreased enzyme activities during the acute and silent periods and increased Na+K+ ATPase activity during the chronic phase. These data show that changes in Na+K+ ATPase activity could be involved in the appearance of spontaneous and recurrent seizures following brain damage induced by pilocarpine injection.  相似文献   

4.
In the present study, we investigated the effect of seizures on rat performance in the Morris water maze task, as well as on choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities in rat hippocampus. Wistar rats were treated with 0.9% saline (i.p., control group) and pilocarpine (400 mg/kg, i.p., pilocarpine group). After the treatments all groups were observed for 1 h. The changes on reference and working spatial memory caused by pilocarpine administration were observed in seized rats. The ChAT and AChE activities were measured using spectrophotometric methods and the results compared to values obtained from saline animals. Its activities were also determined after behavioral task. Results showed that seizures alter reference memory when compared to saline-treated animals. In the working memory task, we observed a significant day’s effect with significant differences between control and pilocarpine-induced seizures. In pilocarpine group, it was observed a significant decreased in ChAT and AChE activities, when compared to control group. Our findings suggest that seizures caused cognitive dysfunction and a decrease of ChAT and AChE activities that might be related, at least in part, to the neurological problems presented by seizures induced by pilocarpine.  相似文献   

5.
Administration of the muscarinic agonist pilocarpine is commonly used to induce seizures in rodents for the study of epilepsy. Activation of muscarinic receptors has been previously shown to increase the production of endocannabinoids in the brain. Endocannabinoids act at the cannabinoid CB1 receptors to reduce neurotransmitter release and the severity of seizures in several models of epilepsy. In this study, we determined the effect of CB1 receptor activity on the induction in mice of seizures by pilocarpine. We found that decreased activation of the CB1 receptor, either through genetic deletion of the receptor or treatment with a CB1 antagonist, increased pilocarpine seizure severity without modifying seizure-induced cell proliferation and cell death. These results indicate that endocannabinoids act at the CB1 receptor to modulate the severity of pilocarpine-induced seizures. Administration of a CB1 agonist produced characteristic CB1-dependent behavioral responses, but did not affect pilocarpine seizure severity. A possible explanation for the lack of effect of CB1 agonist administration on pilocarpine seizures, despite the effects of CB1 antagonist administration and CB1 gene deletion, is that muscarinic receptor-stimulated endocannabinoid production is acting maximally at CB1 receptors to modulate sensitivity to pilocarpine seizures.  相似文献   

6.
Focal, limbic seizures were produced by systemically administered pilocarpine (200 mg/kg, i.p.); as previously described this dose produces limbic stereotypies but neither convulsions nor seizure-related brain damage. The pretreatment, 5 minutes prior pilocarpine, with the D-1 agonist SKF 38393 (-ED50 = 1 mg/kg; i.p.) induced convulsions similar to those produced by a higher, convulsant dose of pilocarpine. On the other hand, the pretreatment with the D-2 agonist LY 171555 failed to induce convulsions. The D-1 receptor antagonist SCH 23390 prevented the convulsions induced by SKF 38393 plus pilocarpine (200 mg/kg). This study indicates that D-1, but not D-2, receptor stimulation converts subconvulsant doses of pilocarpine into convulsant ones.  相似文献   

7.
Benzodiazepine binding to brain membrane preparations obtained from epileptic and nonepileptic carrier fowl was compared. [3H]Flunitrazepam binding to whole brain homogenates from 2-day-old chicks and [3H]diazepam binding to synaptosomal membranes and homogenates from adult chickens were determined. Scatchard analysis revealed no differences in either the number of receptors or their affinity for the ligands when the epileptics were sacrificed in the interictal state. Evoked seizures in adult epileptics had no effect on the number or affinity of binding sites using [3H]diazepam as the ligand. Moreover, the ability of gamma-aminobutyric acid to facilitate benzodiazepine binding was not different in epileptic fowl when compared with carriers.  相似文献   

8.
Glavan G  See RE  Živin M 《PloS one》2012,7(5):e36114
Previous studies in rat models of neurodegenerative disorders have shown disregulation of striatal synaptotagmin7 mRNA. Here we explored the expression of synaptotagmin7 mRNA in the brains of rats with seizures triggered by the glutamatergic agonist kainate (10 mg/kg) or by the muscarinic agonist pilocarpine (30 mg/kg) in LiCl (3 mEq/kg) pre-treated (24 h) rats, in a time-course experiment (30 min-1 day). After kainate-induced seizures, synaptotagmin7 mRNA levels were transiently and uniformly increased throughout the dorsal and ventral striatum (accumbens) at 8 and 12 h, but not at 24 h, followed at 24 h by somewhat variable upregulation within different parts of the cerebral cortex, amigdala and thalamic nuclei, the hippocampus and the lateral septum. By contrast, after LiCl/pilocarpine-induced seizures, there was a more prolonged increase of striatal Synaptotagmin7 mRNA levels (at 8, 12 and 24 h), but only in the ventromedial striatum, while in some other of the aforementioned brain regions there was a decline to below the basal levels. After systemic post-treatment with muscarinic antagonist scopolamine in a dose of 2 mg/kg the seizures were either extinguished or attenuated. In scopolamine post-treated animals with extinguished seizures the striatal synaptotagmin7 mRNA levels (at 12 h after the onset of seizures) were not different from the levels in control animals without seizures, while in rats with attenuated seizures, the upregulation closely resembled kainate seizures-like pattern of striatal upregulation. In the dose of 1 mg/kg, scopolamine did not significantly affect the progression of pilocarpine-induced seizures or pilocarpine seizures-like pattern of striatal upregulation of synaptotagmin7 mRNA. In control experiments, equivalent doses of scopolamine per se did not affect the expression of synaptotagmin7 mRNA. We conclude that here described differential time course and pattern of synaptotagmin7 mRNA expression imply regional differences of pathophysiological brain activation and plasticity in these two models of seizures.  相似文献   

9.
Brain cooling has pronounced effects on seizures and epileptic activity. The aim of the present study is to evaluate the anticonvulsant effect of brain cooling on the oxidative stress and changes in Na+, K+-ATPase and acetylcholinesterase (AchE) activities during status epilepticus induced by pilocarpine in the hippocampus of adult male rat in comparison with α-lipoic acid. Rats were divided into four groups: control, rats treated with pilocarpine for induction of status epilepticus, rats treated for 3 consecutive days with α-lipoic acid before pilocarpine and rats subjected to whole body cooling for 30 min before pilocarpine. The present findings indicated that pilocarine-induced status epilepticus was accompanied by a state of oxidative stress as clear from the significant increase in lipid peroxidation (MDA) and superoxide dismutase (SOD) and significant decrease in reduced glutathione and nitric oxide (NO) levels and the activities of catalase, AchE and Na+, K+-ATPase. Pretreatment with α-lipoic acid ameliorated the state of oxidative stress and restored AchE to nearly control activity. However, Na+, K+-ATPase activity showed a significant decrease. Rats exposed to cooling for 30 min before the induction of status epilepticus revealed significant increases in MDA and NO levels and SOD activity. AchE returned to control value while the significant decrease in Na+, K+-ATPase persisted. The present data suggest that cooling may have an anticonvulsant effect which may be mediated by the elevated NO level. However, brain cooling may have drastic unwanted insults such as oxidative stress and the decrease in Na+, K+-ATPase activity.  相似文献   

10.
The widely used antidepressants Specific Serotonin Reuptake Inhibitors (SSRI) have been tried with success as anticonvulsants in cases of nonsymptomatic epilepsy. This attempt was performed on the basis of experimental data suggesting the involvement of impairments of the serotonin system in the genesis of epilepsy. This overview summarizes the clinical data and presents biochemical and neurochemical evidences suggesting the mechanism of the therapeutic effects of SSRI in nonsymptomatic epilepsy. In particular, studies on blood-borne neutral amino acids and platelet serotonin transporter (SERT) in epileptics suggest: (a) That a decreased brain availability of tryptophan may be related to some types of epilepsy. (b) That reduction of the density of SERT may be a homeostatic reaction in the brain following epileptic seizures.  相似文献   

11.
Reactive oxygen species have been implicated in seizure-induced neurodegeneration, and there is a correlation between free radical level and scavenger enzymatic activity in the epilepsy. It has been suggested that pilocarpine-induced seizures is mediated by an increase in oxidative stress. Current research has found that antioxidant may provide, in a certain degree, neuroprotection against the neurotoxicity of seizures at the cellular level. Alpha-tocopherol has numerous nonenzymatic actions and is a powerful liposoluble antioxidant. The objective of the present study was to evaluate the neuroprotective effects of alpha-tocopherol (TP) in rats, against oxidative stress caused by pilocarpine-induced seizures. 30 min prior to behavioral observation, Wistar rats were treated with, 0.9% saline (i.p., control group), TP (200 mg/kg, i.p., TP group), pilocarpine (400 mg/kg, i.p., P400 group), or the combination of TP (200 mg/kg, i.p.) and pilocarpine (400 mg/kg, i.p.). After the treatments all groups were observed for 6 h. The enzymatic activities, lipid peroxidation and nitrite concentrations were measured using speccitrophotometric methods and these data were assayed. In P400 group mice there was a significant increase in lipid peroxidation and nitrite levels. However, no alteration was observed in superoxide dismutase (SOD) and catalase activities. In the TP and pilocarpine co-administered mice, antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content, as well as increased the SOD and catalase activities in rat hippocampus after seizures. Our findings strongly support the hypothesis that oxidative stress occurs in hippocampus during pilocarpine-induced seizures, indicate that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and imply that strong protective effect could be achieved using alpha-tocopherol.  相似文献   

12.
The effect of Cavalheiro's pilocarpine model of epileptogenesis upon conditioned taste aversion (CTA), an important example of nondeclarative memory, was studied in adult Long Evans rats. Deterioration of CTA was studied during the silent period between pilocarpine-induced status epilepticus (SE) and delayed spontaneous recurrent seizures. SE was elicited by i.p. injection of pilocarpine (320 mg/kg ) and interrupted after 2 hours by clonazepame (1 mg/kg i.p.). Peripheral cholinergic symptoms were suppressed by methylscopolamine (1 mg/kg i.p.), administered together with pilocarpine. CTA was formed against the salty taste of isotonic LiCl. In the experiment of CTA acquisition, the CTA was formed and tested during the silent period after SE. In the experiment of CTA retrieval, the CTA was acquired before SE and the retrieval itself was tested during the silent period. Retrieval of CTA acquired before SE was impaired more than the retrieval of CTA formed during the silent period. Our findings indicate that epileptic seizures can disrupt even non-declarative memory but that CTA formed by the damaged brain can use its better preserved parts for memory trace formation. Ketamine (50 mg/kg i.p.) applied 2 min after the onset of pilocarpine-induced status epilepticus protected memory deterioration.  相似文献   

13.
The frequency of epileptic seizures was observed in a controlled therapeutic trial on 23 epileptic inpatients before and after treatment with vitamin D2 or placebo in addition to anticonvulsant drugs. The number of seizures was reduced during treatment with vitamin D2 but not with placebo. The effect was unrelated to changes in serum calcium or magnesium. The results may support the concept that epileptics should be treated prophylactically with vitamin D.  相似文献   

14.
AY-9944 (AY) exacerbates chronic recurrent seizures in rats that are analogous to atypical absence epilepsy in humans. The mechanism by which AY affects the slow spike-and-wave discharges associated with these seizures is not known, but is thought to involve inhibition of cholesterol synthesis. We tested the hypothesis that seizures seen with AY are due to significant reduction in brain cholesterol and/or elevated brain 7-dehydrocholesterol by assessing whether three other cholesterol synthesis inhibitors mimic AY seizures in rats. Effects of AY on brain sterols and spike-and-wave discharge duration were compared with those of two other late-stage cholesterol inhibitors [BM 15.766 (BM) and U18666A (UA)] and to an HMG-CoA reductase (early-stage cholesterol) inhibitor, lovastatin. With BM or UA, prolongation of seizure duration and brain sterol changes was similar to that caused by AY. AY effects on both brain sterols and seizure duration were dose-related. Lovastatin, with or without concurrent AY, mimicked AY seizures but reduced brain cholesterol by <10% and did not significantly change brain 7-dehydrocholesterol. Either lovastatin has a different mechanism of action than these late-stage cholesterol inhibitors or the brain sterol changes are not directly responsible for seizures in this model.  相似文献   

15.
In the present study we investigated the effect of seizures on rat performance in the Morris water maze task, as well as on choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities in rat hippocampus. Wistar rats were treated with 0.9% saline (i.p., control group), lipoic acid (20 mg/kg, i.p., LA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of LA (20 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of LA (LA plus pilocarpine group). After the treatments all groups were observed for 1 h. The effect of lipoic acid administration was observed on reference and working spatial memory of seized rats. The ChAT and AChE activities were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Its activity was also determined after behavioral task. Results showed that pretreatment with lipoic acid did not alter reference memory when compared to saline-treated animals. In the working memory task, we observed a significant day’s effect with significant differences between control and pilocarpine-induced seizures and pretreated animals with lipoic acid. In LA plus pilocarpine group was observed a significantly increased in ChAT and AChE activities, when compared to pilocarpine group. Results showed that acute administration of lipoic acid alone did not alter hippocampal ChAT and AChE activities. Our findings suggest that seizures caused cognitive dysfunction and a decrease of ChAT and AChE activities that might be related, at least in part, to the neurological problems presented by epileptic patients. Lipoic acid can reverse cognitive dysfunction observed in seized rats as well as increase the ChAT and AChE activities in hippocampus of rats prior to pilocarpine-induced seizures, suggesting that this antioxidant could be used in clinic treatment of epilepsy.  相似文献   

16.
Seizures induced by three convulsant treatment produced differential effects on the concentration of acetylcholine in rat brain. Status epilepticus induced by (i) coadministration of lithium and pilocarpine caused massive increases in the concentration of acetylcholine in the cerebral cortex and hippocampus, (ii) a high dose of pilocarpine did not cause an increase of acetylcholine, and (iii) kainate increased acetylcholine, but the magnitude was lower than with the lithium/pilocarpine model. The finding that the acetylcholine concentration increases in two models of status epilepticus in the cortex and hippocampus is in direct contrast with manyin vitro reports in which excessive stimulation causes depletion of acetylcholine. The concentration of choline increased during seizures with all three models. This is likely to be due to calcium- and agonist-induced activation of phospholipase C and/or D activity causing cleavage of choline-containing lipids. The excessive acetylcholine present during status epilepticus induced by lithium and pilocarpine was responsive to pharmacological manipulation. Atropine tended to decrease acetylcholine, similar to its effects in controls. The N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, reduced the excessive concentration of acetylcholine, especially in the cortex. Inhibition of choline uptake by hemicholinium-3 (HC-3) administered icv reduced the acetylcholine concentration in controls and when given to rats during status epilepticus. These results demonstrate that the rat brain concentrations of acetylcholine and choline can increase during status epilepticus. The accumulated acetylcholine was not in a static, inactive compartment, but was actively turning-over and was responsive to drug treatments. Excessive concentrations of acetylcholine and/or choline may play a role in seizure maintenance and in the neuronal damage and lethality associated with status epilepticus.  相似文献   

17.
In the rat pilocarpine model, 1 h of status epilepticus caused significant inhibition of Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in cortex endoplasmic reticulum (microsomes) isolated immediately after the status episode. The rat pilocarpine model is also an established model of acquired epilepsy. Several weeks after the initial status epilepticus episode, the rats develop spontaneous recurrent seizures, or epilepsy. To determine whether inhibition of Ca(2+) uptake persists after the establishment of epilepsy, Ca(2+) uptake was studied in cortical microsomes isolated from rats displaying spontaneous recurrent seizures for 1 year. The initial rate and total Ca(2+) uptake in microsomes from epileptic animals remained significantly inhibited 1 year after the expression of epilepsy compared to age-matched controls. The inhibition of Ca(2+) uptake was not due to individual seizures nor an artifact of increased Ca(2+) release from epileptic microsomes. In addition, the decreased Ca(2+) uptake was not due to either selective isolation of damaged epileptic microsomes from the homogenate or decreased Mg(2+)/Ca(2+) ATPase protein in the epileptic microsomes. The data demonstrate that inhibition of microsomal Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in the pilocarpine model may underlie some of the long-term plasticity changes associated with epileptogenesis.  相似文献   

18.
The anti-convulsant properties of angiotensin IV (Ang IV), an inhibitor of insulin-regulated aminopeptidase (IRAP) and somatostatin-14, a substrate of IRAP, were evaluated in the acute pilocarpine rat seizure model. Simultaneously, the neurochemical changes in the hippocampus were monitored using in vivo microdialysis. Intracerebroventricularly (i.c.v.) administered Ang IV or somatostatin-14 caused a significant increase in the hippocampal extracellular dopamine and serotonin levels and protected rats against pilocarpine-induced seizures. These effects of Ang IV were both blocked by concomitant i.c.v. administration of the somatostatin receptor-2 antagonist cyanamid 154806. These results reveal a possible role for dopamine and serotonin in the anti-convulsant effect of Ang IV and somatostatin-14. Our study suggests that the ability of Ang IV to inhibit pilocarpine-induced convulsions is dependent on somatostatin receptor-2 activation, and is possibly mediated via the inhibition of IRAP resulting in an elevated concentration of somatostatin-14 in the brain.  相似文献   

19.
Targeting pro-inflammatory events to reduce seizures is gaining momentum. Experimentally, antagonism of inflammatory processes and of blood-brain barrier (BBB) damage has been demonstrated to be beneficial in reducing status epilepticus (SE). Clinically, a role of inflammation in the pathophysiology of drug resistant epilepsies is suspected. However, the use anti-inflammatory drug such as glucocorticosteroids (GCs) is limited to selected pediatric epileptic syndromes and spasms. Lack of animal data may be one of the reasons for the limited use of GCs in epilepsy. We evaluated the effect of the CG dexamethasone in reducing the onset and the severity of pilocarpine SE in rats. We assessed BBB integrity by measuring serum S100β and Evans Blue brain extravasation. Electrophysiological monitoring and hematologic measurements (WBCs and IL-1β) were performed. We reviewed the effect of add on dexamethasone treatment on a population of pediatric patients affected by drug resistant epilepsy. We excluded subjects affected by West, Landau-Kleffner or Lennox-Gastaut syndromes and Rasmussen encephalitis, known to respond to GCs or adrenocorticotropic hormone (ACTH). The effect of two additional GCs, methylprednisolone and hydrocortisone, was also reviewed in this population. When dexamethasone treatment preceded exposure to the convulsive agent pilocarpine, the number of rats developing status epilepticus (SE) was reduced. When SE developed, the time-to-onset was significantly delayed compared to pilocarpine alone and mortality associated with pilocarpine-SE was abolished. Dexamethasone significantly protected the BBB from damage. The clinical study included pediatric drug resistant epileptic subjects receiving add on GC treatments. Decreased seizure frequency (≥ 50%) or interruption of status epilepticus was observed in the majority of the subjects, regardless of the underlying pathology. Our experimental results point to a seizure-reducing effect of dexamethasone. The mechanism encompasses improvement of BBB integrity. Our results also suggest that add on GCs could be of efficacy in controlling pediatric drug resistant seizures.  相似文献   

20.
There is growing experimental evidence that tracing the elements involved in brain hyperexcitability, excitotoxicity, and/or subsequent neurodegeneration could be a valuable source of data on the molecular mechanisms triggering or promoting further development of epilepsy. The most frequently used experimental model of the temporal lobe epilepsy observed in clinical practice is the one based on pilocarpine-induced seizures. In the frame of this study, the elemental anomalies occurring for the rat hippocampal tissue in acute and silent periods after injection of pilocarpine in rats were compared. X-ray fluorescence microscopy was applied for the topographic and quantitative elemental analysis. The differences in the levels of elements such as P, S, K, Ca, Fe, Cu, and Zn between the rats 3 days (SE72) and 6 h (SE6) after pilocarpine injection as well as naive controls were examined. Comparison of SE72 and control groups showed, for specific areas of the hippocampal formation, lower levels of P, K, Cu, and Zn, and an increase in Ca accumulation. These results as well as further analysis of the differences between the SE72 and SE6 groups confirmed that seizure-induced excitotoxicity as well as mossy fiber sprouting are the mechanisms involved in the neurodegenerative processes which may finally lead to spontaneous seizures in the chronic period of the pilocarpine model. Moreover, in the light of the results obtained, Cu seems to play a very important role in the pathogenesis of epilepsy in this animal model. For all areas analyzed, the levels of this element recorded in the latent period were not only lower than those for controls but were even lower than the levels found in the acute period. The decreased hippocampal accumulation of Cu in the phase of behavior and EEG stabilization, a possible inhibitory effect of this element on excitatory amino acid receptors, and enhanced seizure susceptibility in Menkes disease (an inherited Cu transport disorder leading to Cu deficiency in the brain) suggest a neuroprotective role rather than neurodegenerative and proconvulsive roles of Cu in pilocarpine-induced epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号