首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1−/− calvarial osteoblasts display increased mineralization and accelerated differentiation. While no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1−/− mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear β-catenin staining in differentiating Limd1−/− calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.  相似文献   

2.
3.
4.
5.
We have used a retroviral vector (RCAS) to overexpress wild-type chicken c-Jun or a deletion mutant of chicken c-Jun (JunΔ7) lacking the DNA binding region to investigate the possible role of c-Jun in lens epithelial cell proliferation and differentiation. Both constructs were efficiently expressed in primary cultures of embryonic chicken lens epithelial cells. Overexpression of c-Jun increased the rate of cell proliferation and greatly delayed the appearance of “lentoid bodies,” structures which contain differentiated cells expressing fiber cell markers. Excess c-Jun expression also significantly decreased the level of βA3/A1-crystallin mRNA, without affecting αA-crystallin mRNA. In contrast, the mutated protein, JunΔ7, had no effect no proliferation or differentiation but markedly increased the level of αA-crystallin mRNA in proliferating cell cultures. These results suggest that c-Jun or Jun-related proteins may be negative regulators of αA- and βA3/A1-crystallin genes in proliferating lens cells.  相似文献   

6.
Glutamatergic intercellular communication is involved in many aspects of metabolic homeostasis in normal bone. In bone metastasis, the balance between bone formation and degradation is disrupted. Although the responsible mechanisms are not clear, we have previously identified that cancer cell lines used in bone tumour models secrete glutamate, suggesting that tumour-derived glutamate may disrupt sensitive signalling systems in bone. This study examines the role of glutamate in mature osteoclastic bone resorption, osteoblast differentiation, and bone nodule formation. Glutamate was found to have no effect on the survival or activity of mature osteoclasts, although glutamate transporter inhibition and receptor blockade increased the number of bone resorption pits. Furthermore, transporter inhibition increased the area of resorbed bone while significantly decreasing the number of osteoclasts. Alkaline phosphatase activity and extracellular matrix mineralization were used as measurements of osteoblast differentiation. Glutamate significantly increased osteoblast differentiation and mineralization, but transport inhibitors had no effect. These studies support earlier findings suggesting that glutamate may be more important for osteoclastogenesis than for osteoclast proliferation or functions. Since glutamate is capable of changing the differentiation and activities of both osteoclast and osteoblast cell types in bone, it is reasonable to postulate that tumour-derived glutamate may impact bone homeostasis in bone metastasis.  相似文献   

7.
Studies of the effects of interleukin-6 on osteoblasts have yielded conflicting results. In several earlier in vitro studies it has been stated that IL-6 has no effects on osteoblasts unless soluble IL-6 receptor is added. These results are contradictory to the fact that IL-6 receptors are expressed in osteoblasts in vivo. In this study, MC3T3 preosteoblast cells and rat bone marrow stromal cells were cultured in bone inducing medium containing ascorbic acid, β-glycerophosphate or dexamethasone. We found that IL-6 receptor expression increased in both types of cells during in vitro differentiation. Furthermore in MC3T3 cells IL-6 decreased proliferation and enhanced expression of two osteoblast-specific differentiation markers, Runx2 and osteocalcin, in proper sequential order. Interestingly, in both cell types IL-6-induced apoptosis only in later culture stages. We also found in MC3T3 cells that IL-6 induced STAT3 activation was significantly higher in later culture stages, i.e. when IL-6 receptor expression was high. The present study shows that IL-6 receptor expression increases during in vitro osteoblast differentiation and that IL-6 functions as a differentiation regulator of preosteoblast cells and an apoptosis initiator in more mature cells.  相似文献   

8.
Ca(2+)/calmodulin-dependent protein kinase IIalpha (alpha-CaMKII) was once thought to be exclusively expressed in neuronal tissue, but it is becoming increasingly evident that CaMKII is also expressed in various extraneural cells. CaMKII plays a critical role in regulating various signaling pathways leading to modulation of several aspects of cellular functions, including proliferation, differentiation, cytoskeletal structure, and gene expression. The purpose of this study was to examine the expression of CaMKII in osteoblast-like cells (MC4) and to elucidate its role in osteoblast differentiation. We demonstrated that CaMKII, specifically the alpha isoform, is expressed in osteoblasts both in vitro and in vivo. Inhibition of CaMKII by the calmodulin antagonist trifluoperazine or the CaMKII antagonist KN93 reduces alkaline phosphatase activity and mineralization, as well as causes 85 and 56% decreases in alkaline phosphatase and osteocalcin gene expression, respectively. CaM and CaMKII antagonists, using the newborn mouse calvaria in vivo model, cause a 50% decrease in osteoblast number (N.Ob-BS) and a 32% decrease in mineralization (BV/TV). Pharmacologic and genetic inhibition of alpha-CaMKII by using trifluoperazine, KN93, and alpha-CaMKII small interfering RNA decreases the phosphorylation of ERK and of cAMP-response element-binding protein, leading to a significant decrease in the transactivation of serum response element and cAMP-response element. Inhibition of alpha-CaMKII decreases the expression of c-fos, AP-1 transactivation, and AP-1 DNA binding activity. Our findings demonstrated that alpha-CaMKII is expressed in osteoblasts and is involved in c-fos expression via regulation of serum response element and cAMP-response element. Inhibition of alpha-CaMKII results in a decrease in c-fos expression and AP-1 activation, leading to inhibition of osteoblast differentiation.  相似文献   

9.
10.
11.
目的 探讨骨形态发生蛋白2(BMP2)在甲状旁腺素(PTH)促进成骨细胞分化过程中的重要介导作用.方法培养MC3T3-E1细胞,分为4组:1)盐水对照组;2)PTH组;3)6-[4-[2-(1-哌啶基)乙氧基]苯基]-3-(4-吡啶基)吡唑并[1,5-a]嘧啶 (Dorsomorphin) 组;4) PTH+Dorsomorphin组.Real-time PCR法和Westernblot方法检测细胞BMP2、BMP2下游基因和成骨因子的表达,碱性磷酸酶(ALP)染色方法检测细胞ALP的活性;双荧光素酶报告基因检测方法检测12xSBE-OC荧光素酶的活性.结果:PTH组BMP-2、成骨因子的表达及其12xSBE-OC荧光素酶的活性,明显高于盐水对照组.Dorsomorphin组和PTH+Dorsomorphin组BMP-2、BMP-2下游基因和成骨因子的表达,均明显低于盐水对照组;但其表达于两组间无明显差别.结论 BMP2介导PTH促进成骨细胞的分化,PTH可通过上调BMP2的表达,提高其功能,促进成骨细胞的成熟分化.  相似文献   

12.
13.
We previously reported that DAN, a founding member of the DAN family of secreted proteins, acts as an inhibitor of cell cycle progression and is closely involved in retinoic acid-induced neuroblastoma differentiation. In this study, we found that DAN as well as p73, the recently identified p53 family member, was up-regulated during osteoblast differentiation. Additionally, the expression of DAN was increased in response to cisplatin-induced cell death of neuroblastoma SH-SY5Y cells. Consistent with the previous reports, p73 was accumulated after the treatment with cisplatin. Intriguingly, we found a putative p53/p73-binding site in the 5'-upstream region of the human DAN gene. A luciferase reporter assay and an in vitro DNA-binding experiment revealed that this canonical p53/p73-binding site was a functional responsive element and was specific for p73. Our results suggest that there exists a functional association between DAN and p73 during osteoblast differentiation as well as cisplatin-induced cell death.  相似文献   

14.
15.
The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.  相似文献   

16.
Strontium ranelate, a new agent for the treatment of osteoporosis, has been shown stimulate bone formation in various experimental models. This study examines the effect of strontium ranelate on gene expression in osteoblasts, as well as the formation of mineralized (von Kossa-positive) colony-forming unit-osteoblasts (CFU-obs). Bone marrow-derived stromal cells cultured for 21 days under differentiating conditions, when exposed to strontium ranelate, displayed a significant time- and concentration-dependent increase in the expression of the master gene, Runx2, as well as bone sialoprotein (BSP), but interestingly without effects on osteocalcin. This was associated with a significant increase in the formation of CFU-obs at day 21 of culture. In U-33 pre-osteoblastic cells, strontium ranelate significantly enhanced the expression of Runx2 and osteocalcin, but not BSP. Late, more mature osteoblastic OB-6 cells showed significant elevations in BSP and osteocalcin, but with only minimal effects on Runx2. In conclusion, strontium ranelate stimulates osteoblast differentiation, but the induction of the program of gene expression appears to be cell type-specific. The increased osteoblastic differentiation is the likely basis underlying the therapeutic bone-forming actions of strontium ranelate.  相似文献   

17.
Lu W  Kim KA  Liu J  Abo A  Feng X  Cao X  Li Y 《FEBS letters》2008,582(5):643-650
R-spondins are a new group of Wnt/beta-catenin signaling agonists, however, the role of these proteins in bone remains unclear. We reported herein that R-sponin1 (Rspo1) acted synergistically with Wnt3A to activate Wnt/beta-catenin signaling in the uncommitted mesenchymal C2C12 cells. Furthermore, we found that Rspo1 at concentrations as low as 10 ng/ml synergized strongly with Wnt3A to induce C2C12 osteoblastic differentiation and osteoprotegerin expression. These events were blocked by Wnt/beta-catenin signaling antagonist Dickkopf-1. Finally, we demonstrated that Rspo1 synergized with Wnt3A to induce primary mouse osteoblast differentiation. Together, these findings suggest that Rpos1 may play an important role in bone remodeling.  相似文献   

18.
19.
20.
Zinc is an essential trace element that increases osteoblast numbers and bone formation. However, the mechanisms involved in the Zn-induced differentiation of osteoblasts are poorly understood. We examined the roles of L-ascorbic acid (AA) and its transporter, sodium-dependent vitamin C transporter (SVCT) 2, in the Zn-induced expression of osteoblastic differentiation markers. Zinc time- and dose-dependently induced SVCT2 mRNA expression in the absence or presence of AA. Western blotting and kinetic assays showed that Zn increased functional SVCT2 protein levels and AA transport. In the presence of AA, 50 microM Zn enhanced mRNA expression of the osteoblastic differentiation markers alkaline phosphatase, alpha(1)(I) procollagen, osteopontin (OPN), and osteocalcin (OCN) by 3.9-, 3.8-, 3.3-, and 3.5-fold, respectively; in the absence of AA, the Zn-induced increase was 2.8-, 2.5-, 1.3-, and 1.1-fold, respectively. These findings suggest that AA and SVCT2 mediate Zn-induced OPN and OCN expression and partly regulate Zn-induced osteoblastic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号