首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant genome projects have revealed that both the cell-cycle components and the overall cell-cycle architecture are highly evolutionarily conserved. In addition to the temporal and spatial regulation of cell-cycle progression in individual cells, multicellularity has imposed extra layers of complexity that impinge on the balance of cell proliferation and growth, differentiation and organogenesis. In contrast to animals, organogenesis in plants is a postembryonic and continuous process. Differentiated plant cells can revert to a pluripotent state, proliferate and transdifferentiate. This unique potential is strikingly illustrated by the ability of certain cells to produce a mass of undifferentiated cells or a fully totipotent embryo, which can regenerate mature plants. Conversely, plant cells are highly resistant to oncogenic transformation. This review discusses the role that cell-cycle regulators may have at the interface between cell division and differentiation, and in the context of the high plasticity of plant cells.  相似文献   

2.
We identified 191 plant homologues of human protein kinases involved in the phosphorylation of microtubular proteins and cell-cycle regulation. Using neighbor-joining, the similarity of plant protein kinases was analyzed.  相似文献   

3.
The SUC1/CKS1 proteins associate with cyclin-dependent kinases (CDKs) and play an essential role in the regulation of the cell cycle. Recently, an Arabidopsis thaliana SUC1/CKS1 homologous gene, designated CKS1At, has been cloned. Here, overexpression of CKS1At in Arabidopsis is shown to reduce leaf size and root growth rates. Reduced root growth resulted primarily from an increase of the cell-cycle duration and a shortening of the meristem. Endoreduplication was unaffected. The increased cell-cycle duration was associated with an equal extension of both the G1 and G2 phases. This inhibition was due to the binding of CDK subunits with CDKs. The reduced growth rates in response to altered cell-cycle gene expression demonstrates a direct dependence of plant growth rates on cell-cycle regulation.  相似文献   

4.
5.
Three recent studies have uncovered effector mechanisms and novel pathways in the regulation of the dynamic changes to cell behaviour that occur in plant meristems. The results show how exquisite regulation of cell-cycle mechanisms is central to root stem cell homeostasis.  相似文献   

6.
7.
8.
Multicellular organisms need to modulate proliferation and differentiation in response to external conditions. An important role in these processes plays the mitogen-stimulated induction of cyclin D (cycD) gene expression. D-type cyclins have been identified as the crucial intracellular sensors for cell-cycle regulation in all eukaryotes. However, cycD deletions have been found to cause specific phenotypic alterations in animals but not yet in plants. An insertional mutation of a so far uncharacterized Arabidopsis cycD gene did not alter the plant phenotype. To gain new insights into CycD function of land plants, we generated targeted cycD gene knockouts in the moss Physcomitrella patens and observed a surprisingly limited disruption phenotype. While wild-type plants reacted to exogenous glucose sources with prolonged growth of juvenile stages and retarded differentiation, cycD knockouts exhibited developmental progression independent of sugar supply. On the other hand, growth rate, cell sizes or plant size were not affected. Thus, we conclude that Physcomitrella CycD might not be essential for cell-cycle regulation but is important for coupling the developmental progression to nutrient availability.  相似文献   

9.
10.
Progression through the cell cycle is central to cell proliferation and fundamental to the growth and development of all multicellular organisms, including higher plants. The periodic activation of complexes containing cyclins and cyclin-dependent kinases mediates the temporal regulation of the cell-cycle transitions. Here, we highlight recent advances in the molecular controls of the cell cycle in plant cells, with special emphasis on how hormonal signals can modulate the regulation of cyclin-dependent kinases.  相似文献   

11.
12.
13.
Regulated protein degradation has emerged as a key recurring theme in multiple aspects of cell-cycle regulation. Importantly, the irreversible nature of proteolysis makes it an invaluable complement to the intrinsically reversible regulation through phosphorylation and other post-translational modifications. Consequently, ubiquitin-protein ligases, the protagonists of regulated protein destruction, have gained prominence that compares to that of the cyclin-dependent kinases (Cdks) in driving the eukaryotic cell-cycle clock. This review will focus on the two main players, the related ubiquitin-protein ligases APC/C and SCF, and how they control cell-cycle progression. I will also try to delineate the regulation and interplay of these destruction mechanisms, which are intricately connected to the kinase network as well as to extrinsic signals. Moreover, cell-cycle ubiquitin-protein ligases are themselves subject to proteolytic control in cis as well as in trans. Finally, a careful comparison of the functions and regulation of APC/C and SCF shows that, in certain aspects, their logic of action is fundamentally different.  相似文献   

14.
The plant embryo is a relatively simple structure consisting of a primordial shoot and root, whose development is frozen in the form of a seed. Most development of the mature plant takes place post-embryonically, and is the consequence of cell division and organogenesis in small regions known as meristems, which originate in the embryonic shoot and root apices. Significant recent progress has been made in understanding the mechanisms that control the plant cell cycle at a molecular level, and the first attempts have been made to control plant growth through modulation of cell-cycle genes. These results suggest that there is significant potential to control plant growth and architecture through manipulation of cell division rates. However, a full realisation of the promise of such strategies will probably require a much greater understanding of cell division control and how its upstream regulation is co-ordinated by spatial relationships between cells and by environmental signals.  相似文献   

15.
Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation. Cytological analysis showed that AELs deficiency results in suppressed cell-cycle progression mainly due to the decreased DNA replication rate at S phase and increased period of G2 phase. AELs interact with and phosphorylate KRP6 at serines 75 and 109 to stimulate KRP6’s interaction with E3 ligases, thus facilitating the KRP6 degradation through the proteasome. These results demonstrate the crucial roles of CK1s/AELs in regulating cell division through modulating cell-cycle rates and elucidate how CK1s/AELs regulate cell division by destabilizing the stability of cyclin-dependent kinase inhibitor KRP6 through phosphorylation, providing insights into the plant cell-cycle regulation through CK1s-mediated posttranslational modification.

Plant casein kinases coordinate cell cycle by regulating the stability of a cyclin-dependent kinase inhibitor through promoting interaction with E3 ubiquitin ligases and proteasomal degradation by phosphorylation.  相似文献   

16.
Human hepatoma up-regulated protein (HURP), a cell-cycle regulator, is found consistently overexpressed in human hepatocellular carcinoma. At present, the function of HURP in cell-cycle regulation and carcinogenesis remains unclear. In database mining, we have identified a mars gene in Drosophila, which encodes a protein with a high similarity to HURP in its guanylate kinase-associated protein (GKAP) motif. Overexpression but not down-regulation of mars in eye discs resulted in a higher mitotic index along with a high frequency of mitotic defects, including misalignment of chromosomes and mispositioned centrosomes, at the second mitotic wave (SMW). The consequence of mitotic defects impairs cell-cycle progression, and causes cell death posterior to the furrow. Immunocytochemical studies also have indicated that the expression of Mars is cell cycle regulated, and that its subcellular localization is dynamically changed during cell-cycle progression. Furthermore, we also demonstrated that the first 198 amino acids at the N-terminus of Mars are responsible for the degradation of Mars in non-mitotic cells. Together, we report the use Drosophila eye as a model system to characterize the function of the mars gene in cell-cycle regulation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号