首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been pointed out that tea (Camellia sinensis (L.) O. Kuntze) prefers ammonium (NH 4 + ) over nitrate (NO 3 ? ) as an inorganic nitrogen (N) source. 15N studies were conducted using hydroponically grown tea plants to clarify the characteristics of uptake and assimilation of NH 4 + and NO 3 ? by tea roots. The total 15N was detected, and kinetic parameters were calculated after feeding 15NH 4 + or 15NO 3 ? to tea plants. The process of N assimilation was studied by monitoring the dynamic 15N abundance in the free amino acids of tea plant roots by GC-MS. Tea plants supplied with 15NH 4 + absorbed significantly more 15N than those supplied with 15NO 3 ? . The kinetics of 15NH 4 + and 15NO 3 ? influx into tea plants followed a classic biphasic pattern, demonstrating the action of a high affinity transport system (HATS) and a low affinity transport system (LATS). The V max value for NH 4 + uptake was 54.5 nmol/(g dry wt min), which was higher than that observed for NO 3 ? (39.3 nmol/(g dry wt min)). KM estimates were approximately 0.06 mM for NH 4 + and 0.16 mM for NO 3 ? , indicating a higher rate of NH 4 + absorption by tea plant roots. Tea plants fed with 15NH 4 + accumulated larger amounts of assimilated N, especially glutamine (Gln), compared with those fed with 15NO 3 ? . Gln, Glu, theanine (Thea), Ser, and Asp were the main free amino acids that were labeled with 15N under both conditions. The rate of N assimilation into Thea in the roots of NO 3 ? -supplied tea plants was quicker than in NH 4 + -supplied tea plants. NO 3 ? uptake by roots, rather than reduction or transport within the plant, seems to be the main factor limiting the growth of tea plants supplied with NO 3 ? as the sole N source. The NH 4 + absorbed by tea plants directly, as well as that produced by NO 3 ? reduction, was assimilated through the glutamine synthetase-glutamine oxoglutarate aminotransferase pathway in tea plant roots. The 15N labeling experiments showed that there was no direct relationship between the Thea synthesis and the preference of tea plants for NH 4 + .  相似文献   

2.
Nitrate reductase and its role in nitrate assimilation in plants   总被引:16,自引:0,他引:16  
Nitrate reductase (EC 1.6.6.1) is an enzyme found in most higher plants and appears to be a key regulator of nitrate assimilation as a result of enzyme induction by nitrate. The biochemistry of nitrate reductase has been elucidated to a great extent and the role that nitrate reductase plays in regulation of nitrate assimilation is becoming understood.  相似文献   

3.
The characteristics of nitrate uptake and induction of nitrate reductase were studied in excised roots of corn (Zea mays L.). Upon initial exposure to nitrate, the low initial rate of nitrate uptake gradually increased until a steady uptake rate was achieved in 1 to 2 hours depending on the NO(3) (-) concentration. The pattern was observed over a wide range (0.2-5 mm) of nitrate concentrations and was independent of the accompanying cation.The nitrate uptake pattern as a function of increasing external nitrate concentrations (0.2-50 mm) followed saturation type kinetics. The reciprocal plot of the data was not linear but hyperbolic, indicating that more than one Km for nitrate uptake can be resolved from the data. This suggests the existence of either one carrier system with changing kinetic constants or the existence of dual uptake systems. The pattern of induction of nitrate reductase was coincident with the pattern of nitrate uptake as a function of time and increasing nitrate concentrations. The rate of induction of nitrate reductase was regulated by the rate of nitrate flux.Washing the roots for 2 hours enhances nitrate uptake by 2.5-fold over the nonwashed tissue. The presence of nitrate in the washing solution leads to further (3.5-fold over control) increases in the rate of nitrate uptake supporting the contention that nitrate plays a specific role in the induction of the inducible nitrate carrier independent of the washing effect.  相似文献   

4.
Abstract The partitioning of nitrate assimilation between root and shoot of higher plant species is indicated by the relative proportions of total plant nitrate reductase activity (NRA) in the two plant parts and the relative concentrations of nitrate and reduced N in the xylem sap. These have been collated here from the literature and temperate and tropical species compared. Both the distribution of NRA and xylem sap nitrate: reduced N indicate that the following four generalizations can be made.
  • 1 Temperate, perennial species growing in low external nitrate concentrations (about 1 mol m?3) carry out most of their nitrate assimilation in the root. As external nitrate concentration increases (in the range found in agricultural soils, 1–20 mol m?3), shoot nitrate assimilation becomes increasingly important.
  • 2 Temperate, annual legume species growing in low external nitrate concentrations carry out most of their nitrate assimilation in the root. Shoot nitrate assimilation increases in importance as external nitrate concentration is increased.
  • 3 Temperate, annual non-legume species vary greatly in their partitioning of nitrate assimilation between root and shoot when growing in low external nitrate concentrations. Regardless of the proportion carried out in the root at low external nitrate concentrations, nitrate assimilation in the shoot becomes increasingly important as external nitrate concentration is increased.
  • 4 Tropical and subtropical species, annual and perennial, carry out a substantial proportion of their nitrate assimilation in the shoot when growing in low external nitrate concentrations. The partitioning of nitrate assimilation between root and shoot remains constant as external nitrate concentration increases.
It is proposed that a greater proportion of nitrate assimilation occurs in the shoot when an increase in the rate of nitrate uptake does not induce an increase in NR level in the root. Thus, a greater proportion of the nitrate taken up remains unassimilated and is passed into the xylem. A constant partitioning of nitrate assimilation between root and shoot is achieved by balancing NR levels in the root with rates of nitrate uptake. The advantages and disadvantages of assimilating nitrate in either the root or shoot are discussed in relation to temperate and tropical habitats.  相似文献   

5.
Some sugars supplied directly to roots can stimulate nitrate uptake by wheat (Triticum aestivum L.) roots. To identify a signaling molecule, we compared the response of net nitrate influx to sugar supply. A method with a high time resolution (minutes) enabled to make a comparison. A signaling sugar should cause a faster and greater response than other compounds. Among nine sugars and mannitol tested, sucrose alone caused an immediate active stimulation of net nitrate influx. Glucose, fructose, and raffinose caused weak responses with a lag. Other carbohydrates had no effect. Sucrose behaves as a specific signal for nitrate uptake, which has long been supposed but not supported experimentally.  相似文献   

6.
Summary A study has been made on the influx and outflux of nitrogen compounds by the excised roots of barley, wheat and peas. A two way movement of nitrogen compounds was found to occur between root and external medium. Factors such as initial N content in the roots, species of plant and external concentration of N highly affect the extent to which this two-way movement proceeds. Further investigations are needed for more understanding of the nitrogen balance between plant roots and external medium.  相似文献   

7.
8.
Light and dark assimilation of nitrate in plants   总被引:3,自引:3,他引:3  
Abstract. Heterotrophic assimilation of nitrate in roots and leaves in darkness is closely linked with the oxidative pentose phosphate pathway. The supply of glucose-6-phosphate to roots and chloroplasts in leaves in darkness is essential for assimilation of nitrite into amino acids. When green leaves are exposed to light, the key enzyme, glucoses-phosphate dehydrogenase, is inhibited by reduction with thioredoxin. Hence the dark nitrate assimilatory pathway is inhibited under photoautotrophic conditions and replaced by regulatory reactions functioning in light. On account of direct photo-synthetic reduction of nitrite in chloroplasts and availability of excess NADH for nitrate reduclase, the rate of nitrate assimilation is extremely rapid in light. Under dark anaerobic conditions also nitrate is equally rapidly reduced to nitrite on account of abolition of competition for NADH between nitrate reductase and mitochondrial oxidation.  相似文献   

9.
10.
Supply of 1, 2, 5, 10 or 20 mM nitrate to detached roots, scutella or shoots from 5- to 6-d-old Zea mays L. seedlings increased in vitro nitrate reductase (NR) activity in all the organs and NADPH specific NR (NADPH:NR) activity in roots and scutella but not in the shoots. Usually 2 to 5 mM nitrate supported maximum enzyme activity, the higher concentration did not increase it further. The protein content in the roots, scutella and shoots increased up to 5, 2 and 20 mM medium nitrate, respectively. Nitrate uptake also increased with increasing nitrate concentration in roots and shoots, but it increased only slightly in the scutella. In both roots and scutella, methionine sulfoximine had no effect, while cycloheximide and tungstate abolished nitrate induced NADH:NR activity completely and NADPH:NR partially. Methionine sulfoximine increased nitrate uptake by roots and scutella slightly, but other inhibitors had no effect. The depletion of dissolved oxygen from the medium was lower in the presence of nitrate than in its absence or in the presence of ammonium, especially in the scutella. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We investigated the influence of an increased inorganic carbon supply in the root medium on NO?3 uptake and assimilation in seedlings of Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were pre-grown for 4 to 7 days with 0 or 100 mM NaCl in hydroponic culture using 0.2 mM NO?3 (group A) or 0.2 mM NH+4 (group B) as nitrogen source. The nutrient solution for group A plants was aerated with air or with air containing 4 800 μumol mol?1 CO2. Nitrate uptake rate and root and leaf malate contents in these plants were determined. The plants of group B were subdivided into two sets. Plants of one set were transferred either to N-free solution containing 0 or 5 mM NaHCO3, or to a medium containing 2 mM NO?3 and 5 mM NaHCO3. Both sets of group B plants were grown for 12 h in darkness prior to 2 h of illumination, and were assayed for malate content and NO?3 uptake rate (only for plants grown in N-free solution). The second set of group B plants was labeled with 14C by a 1-h pulse of H14CO?3 which was added to a 5 mM NaHCO3 solution containing 0 or 100 mM NaCl and 0 or 2 mM NO?3, and 14C-assimilates were extracted and fractionated. The roots of group B plants growing in carbonated medium accumulated twice as much malate as did control plants. This malate was accumulated only when NO?3 was absent from the root medium. Both a high level of root malate and aeration with CO2-enriched air stimulated NO?3 uptake. Analysis of 14C-assimilates indicated that with no NO?3 in the medium, the 14C was present mainly in organic acids, whereas with NO?3, a large proportion of 14C was incorporated into amino acids. Transport of root-incorporated 14C to the shoot was enhanced by NO?3, while the amino acid fraction was the major 14C-assimilates in the shoot. It is concluded that inorganic carbon fixed through phosphoenolpyruvate carboxylase (EC 4.1.1.31) in roots of tomato plants may have two fates: (a) as a carbon skeleton for amino acid synthesis; and (b) to accumulate, mainly as malate, in the roots, in the absence of a demand for the carbon skeleton. Inorganic carbon fixation in the root provides carbon skeletons for the assimilation of the NH+4 resulting from NO3 reduction, and the subsequent removal of amino acids through the xylem. This ‘removal’ of NO?3 from the cytoplasm of the root cells may in turn increase NO?3 uptake.  相似文献   

12.
Effects of aluminium on nitrate uptake and assimilation   总被引:2,自引:0,他引:2  
A study was conducted to examine the hypothesis that the effects of external Al on NO3? uptake and assimilation depend upon the concentration of Al present. Young soybean seedlings [Glycine max (L.) Merrill, cv. Essex], growing under moderate acidity stress at pH 4-2, were exposed to a range of {A13+} in solution for 3d, and to labelled 99 atom %15NO3? during the final hour of Al exposure. Uptake of 15NO3?g?1 root dry weight was increased by about 28% in the presence of Al at {A13+} below 10 mmolm?3, and NO3? uptake was decreased by about 12% when the {A13+} increased to 44mmoln?3. The stimulation phase closely paralleled stimulation of root elongation. At higher {A13+}, the inhibition of root elongation was much more severe than that of NO3? uptake. There was no indication of a separate effect of Al on root 15NO3? reduction in situ, as the accumulation of reduced 15N in the root remained a similar percentage of 15NO3? uptake at all {A13+}. At higher {A13+}, the atom %15N enrichment of the insoluble reduced-N (protein) fraction of root tips increased. This suggests that the Al inhibition of root elongation did not result from disruption of the N supply to the root apex.  相似文献   

13.
14.
Summary Nitrate assimilation in the first trifoliate leaf of vegetative soybean plants (Glycine max L. Merr, cv Hodgson) was studied in relation to nodulation. Nodulated and non-nodulated plants were grown in a nitrate medium (4 mM). As a control nodulated plants were grown in a nutrient medium without combined nitrogen. This study included measurements of the acetylene reduction activity of the whole plant and of thein vitro nitrate reductase, glutamine synthetase and glutamate dehydrogenase activities in the first leaf and of the nitrate concentration. Nitrate accumulation and nitrate reductase activity were depressed in nodulated plants; root growth was decreased in the presence of nitrate. The relationships between nitrate assimilation and nodulation are discussed.  相似文献   

15.
The interaction of sulfate assimilation with nitrate assimilation inBrassica juncea roots was analyzed by monitoring the regulation of ATP sulfurylase (AS), adenosine-5’-phosphosulfate reductase (AR), sulfite reductase (SiR), and nitrite reductase (NiR). Depending on the status of sulfur and nitrogen nutrition, AS and AR activities and mRNA levels were increased by sulfate starvation but decreased by nitrate starvation. The activation of AS and AR by sulfate starvation was inhibited by sulfate/nitrate starvation. However, the rise in steady-state mRNA levels for AS and AR by sulfate starvation was not affected by sulfate/nitrate starvation. SiR gene expression was slightly activated by both sulfate starvation and sulfate/nitrate starvation, but was decreased by nitrate starvation. Although NiR gene expression was little affected by sulfate starvation, it was diminished significantly by either nitrate or nitrate/sulfate starvation. Cysteine (Cys) also decreased AS and AR activities and mRNA levels even when plants were simultaneously starved for sulfate; in contrast, both SiR and NiR gene expressions were only slightly, if at all, affected under the same conditions. This supports our conclusion that Cys, the end-product of sulfate assimilation, is the key regulatory signal. Moreover, SiR and NiR apparently are not the linking step in the co-regulation of sulfate and nitrate assimilation in plants.  相似文献   

16.
17.
Mechanisms of sodium uptake by roots of higher plants   总被引:3,自引:0,他引:3  
The negative impact of soil salinity on agricultural yields is significant. For agricultural plants, sensitivity to salinity is commonly (but not exclusively) due to the abundance of Na+ in the soil as excess Na+ is toxic to plants. We consider reducing Na+ uptake to be the key, as well as the most efficient approach, to control Na+ accumulation in crop plants and hence to improve their salt resistance. Understanding the mechanism of Na+ uptake by the roots of higher plants is crucial for manipulating salt resistance. Hence, the aim of this review is to highlight and discuss recent advances in our understanding of the mechanisms of Na+ uptake by plant roots at both physiological and molecular levels. We conclude that continued efforts to investigate the mechanisms of root Na+ uptake in higher plants are necessary, especially that of low-affinity Na+ uptake, as it is the means by which sodium enters into plants growing in saline soils.  相似文献   

18.
Deficiencies of each macronutrient (N, P, K, Ca, Mg and Fe)in the culture solution depressed the specific activities ofnitrate reductase (NR) and nitrite reductase (NiR) from riceseedlings. Nitrate and potassium deficiencies especially loweredNR induction, whereas phosphorus deficiency caused the leastdecrease in enzyme induction. On the other hand the activityof NiR was decreased most by deficiencies of nitrate and phosphorus.Potassium deficiency was not as effective in suppressing theinduction of NiR. Sulfur deficiency slightly promoted the inductionof both NR and NiR. Generally, micronutrient deficiencies didnot affect either enzyme. NR induction was slightly decreasedby B, Zn, Cu and Mo deficiencies, and increased by Mn deficiency;whereas NiR activity was slightly increased by B and Cu deficiencies,and was not affected by other micronutrients. Nitrate contentwas decreased by deficiencies of N, P, K, Ca, and micronutrients,and unaffected by Mg, Fe and S deficiencies. Glutamic acid dehydrogenase(GDH) activity was increased by N, Fe and P deficiencies, anddecreased by Mo and Zn deficiencies, and unaffected by othernutrient treatments. (Received August 25, 1976; )  相似文献   

19.
20.
We have proposed that rising atmospheric CO2 concentrations inhibit malate production in chloroplasts and thus impede assimilation of nitrate into protein in shoots of C3 plants, a phenomenon that will strongly influence primary productivity and food security under the environmental conditions anticipated during the next few decades. Although hundreds of studies support this proposal, several publications in 2018 and 2019 purport to present counterevidence. The following study evaluates these publications as well as presents new data that elevated CO2 enhances root nitrate assimilation in wheat and Arabidopsis while it inhibits shoot nitrate assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号