首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surveys of the antigenic properties of a wide range of variants of the H3N2 (Hong Kong) influenza virus subtype have revealed complex patterns of variants cocirculating during each of the main epidemic eras of the subtype. We determined hemagglutinin (HA) gene sequences for 14 isolates chosen to give the wildest possible spread of variant types. The addition of these data to existing HA gene sequence information for other variants provides a comprehensive picture of HA gene evolution during antigenic drift among H3N2 subtype viruses. The data reveal the existence of multiple evolutionary pathways during at least one period of development of the subtype and strikingly demonstrate that amino acid changes are limited to a small number of locations on the HA molecule during antigenic drift. The occurrence of sequential amino acid changes at key positions within these variable regions suggests that the HA structure has remained constant during subtype evolution so that only limited possibilities remain for further antigenic drift among H3N2 viruses.  相似文献   

2.
Influenza viruses are highly genetically variable and escape from immunogenic pressure by antigenic changes in their surface proteins, referred to as “antigenic drift” and “antigenic shift.” To assess the potential genetic plasticity under strong selection pressure, highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 was passaged 50 times in embryonated chicken eggs in the presence of a neutralizing, polyclonal chicken serum. The resulting mutant acquired major alterations in the neuraminidase (NA)-encoding segment. Extensive deletions and rearrangements were detected, in contrast to only 12 amino acid substitutions within all other segments. Interestingly, this new neuraminidase segment resulted from complex sequence shuffling and insertion of a short fragment originating from the PA segment. Characterization of that novel variant revealed a loss of the neuraminidase protein and enzymatic activity, but its replication efficiency remained comparable to that of the wild type. Using reverse genetics, a recombinant virus consisting of the wild-type backbone and the shortened NA segment could be generated; however, generation of this recombinant virus required the polybasic hemagglutinin cleavage site. Two independent repetitions starting with egg passage 30 in the presence of alternative chicken-derived immune sera selected mutants with similar but different large deletions within the NA segment without any neuraminidase activity, indicating a general mechanism. In chicken, these virus variants were avirulent, even though the HPAIV polybasic hemagglutinin cleavage site was still present. Overall, the variants reported here are the first HPAIV H5N1 strains without a functional neuraminidase shown to grow efficiently without any helper factor. These novel HPAIV variants may facilitate future studies shedding light on the role of neuraminidase in virus replication and pathogenicity.  相似文献   

3.
The antigenic variability of influenza viruses has always made influenza vaccine development challenging. The punctuated nature of antigenic drift of influenza virus suggests that a relatively small number of genetic changes or combinations of genetic changes may drive changes in antigenic phenotype. The present study aimed to identify antigenicity-associated sites in the hemagglutinin protein of A/H1N1 seasonal influenza virus using computational approaches. Random Forest Regression (RFR) and Support Vector Regression based on Recursive Feature Elimination (SVR-RFE) were applied to H1N1 seasonal influenza viruses and used to analyze the associations between amino acid changes in the HA1 polypeptide and antigenic variation based on hemagglutination-inhibition (HI) assay data. Twenty-three and twenty antigenicity-associated sites were identified by RFR and SVR-RFE, respectively, by considering the joint effects of amino acid residues on antigenic drift. Our proposed approaches were further validated with the H3N2 dataset. The prediction models developed in this study can quantitatively predict antigenic differences with high prediction accuracy based only on HA1 sequences. Application of the study results can increase understanding of H1N1 seasonal influenza virus antigenic evolution and accelerate the selection of vaccine strains.  相似文献   

4.
Neuraminidases from different subtypes of influenza virus are characterized by the absence of serological cross-reactivity and an amino acid sequence homology of approximately 50%. The three-dimensional structure of the neuraminidase antigen of subtype N9 from an avian influenza virus (A/tern/Australia/G70c/75) has been determined by X-ray crystallography and shown to be folded similarly to neuraminidase of subtype N2 isolated from a human influenza virus. This result demonstrates that absence of immunological cross-reactivity is no measure of dissimilarity of polypeptide chain folding. Small differences in the way in which the subunits are organized around the molecular fourfold axis are observed. Insertions and deletions with respect to subtype N2 neuraminidase occur in four regions, only one of which is located within the major antigenic determinants around the enzyme active site.  相似文献   

5.
Antigenic drift forces us to frequently update influenza vaccines; however, the genetic basis for antigenic variation remains largely unknown. In this study, we used clade 7.2 H5 viruses as models to explore the molecular determinants of influenza virus antigenic variation. We generated eight monoclonal antibodies(MAbs) targeted to the hemagglutinin(HA) protein of the index virus A/chicken/Shanxi/2/2006 and found that two representative antigenically drifted clade 7.2 viruses did not react with six of the eight MAbs. The E131 N mutation and insertion of leucine at position 134 in the HA protein of the antigenically drifted strains eliminated the reactivity of the virus with the MAbs. We also found that the amino acid N131 in the H5 HA protein is glycosylated. Our results provide experimental evidence that glycosylation and an amino acid insertion or deletion in HA influence antigenic variation.  相似文献   

6.
Sequence of the N2 neuraminidase from influenza virus A/NT/60/68.   总被引:5,自引:3,他引:2       下载免费PDF全文
The complete sequence of the neuraminidase gene of influenza virus A/NT/60/68 (N2 subtype) was determined following cloning of full length complementary DNA into pBR322. Comparison of the predicted amino acid sequence with a closely related neuraminidase from A/Udorn/72 suggests that point mutations over an extensive region of the primary sequence can contribute to antigenic drift, although the region between amino acid residues 308 and 371 may be particularly significant.  相似文献   

7.
ABSTRACT: BACKGROUND: Influenza virus undergoes rapid evolution by both antigenic shift and antigenic drift. Antibodies, particularly those binding near the receptor-binding site of hemagglutinin (HA) or the neuraminidase (NA) active site, are thought to be the primary defense against influenza infection, and mutations in antibody binding sites can reduce or eliminate antibody binding. The binding of antibodies to their cognate antigens is governed by such biophysical properties of the interacting surfaces as shape, non-polar and polar surface area, and charge. Methods: To understand forces shaping evolution of influenza virus, we have examined HA sequences of human influenza A and B viruses, assigning each amino acid values reflecting total accessible surface area, non-polar and polar surface area, and net charge due to the side chain. Changes in each of these values between neighboring sequences were calculated for each residue and mapped onto the crystal structures. Results: Areas of HA showing the highest frequency of changes agreed well with previously identified antigenic sites in H3 and H1 HAs, and allowed us to propose more detailed antigenic maps and novel antigenic sites for H1 and influenza B HA. Changes in biophysical properties differed between HAs of different subtypes, and between different antigenic sites of the same HA. For H1, statistically significant differences in several biophysical quantities compared to residues lying outside antigenic sites were seen for some antigenic sites but not others. Influenza B antigenic sites all show statistically significant differences in biophysical quantities for all antigenic sites, whereas no statistically significant differences in biophysical quantities were seen for any antigenic site is seen for H3. In many cases, residues previously shown to be under positive selection at the genetic level also undergo rapid change in biophysical properties. Conclusions: The biophysical consequences of amino acid changes introduced by antigenic drift vary from subtype to subtype, and between different antigenic sites. This suggests that the significance of antibody binding in selecting new variants may also be variable for different antigenic sites and influenza subtypes.  相似文献   

8.
Three epidemics of influenza A (H1N1) occurring in 1977, 1979 and 1981 were studied. These epidemics were found to be gradually dying down, which was manifested by progressively decreasing morbidity rate, the frequency and intensity of seroconversions, as well as by a decrease in the duration of the epidemic period. Changes in the biological properties of influenza A (H1N1) virus were accompanied by changes in its antigenic properties. The drift of neuraminidase in the influenza A (H1N1) virus of 1981 towards increased relationship with neuraminidase in the virus of 1952 was observed, while hemagglutinin in the strains of each of these two groups retained its individual character.  相似文献   

9.
The change in the phenotypic properties resulting from amino acid substitutions in the hemagglutinin (HA) molecule is an important link in the evolutionary process of influenza viruses. It is believed to be one of the mechanisms of the emergence of highly pathogenic strains of influenza A viruses, including subtype H5N1. Using the site-directed mutagenesis, we introduced mutations in the HA gene of the H5N1 subtype of influenza A virus. The obtained virus variants were analyzed and compared using the following parameters: optimal pH of conformational transition (according to the results of the hemolysis test), specificity of receptor binding (using a set of synthetic analogues of cell surface sialooligosaccharides), thermoresistance (heat-dependent reduction of hemagglutinin activity), virulence in mice, and the kinetics of replication in chicken embryos, and reproductive activity at different temperatures (RCT-based). N186I and N186T mutations in the HA protein increased the virulence of the original virus in mice. These mutations accelerated virus replication in the early stages of infection in chicken embryos and increased the level of replication at late stages. In addition, compared to the original virus, the mutant variants replicated more efficiently at lower temperatures. The obtained data clearly prove the effect of amino acid substitutions at the 186 position of HA on phenotypic properties of the H5N1 subtype of influenza A.  相似文献   

10.
MOTIVATION: Continual and accumulated mutations in hemagglutinin (HA) protein of influenza A virus generate novel antigenic strains that cause annual epidemics. RESULTS: We propose a model by incorporating scoring and regression methods to predict antigenic variants. Based on collected sequences of influenza A/H3N2 viruses isolated between 1971 and 2002, our model can be used to accurately predict the antigenic variants in 1999-2004 (agreement rate = 91.67%). Twenty amino acid positions identified in our model contribute significantly to antigenic difference and are potential immunodominant positions.  相似文献   

11.
In the early 1970s, a human influenza A/Port Chalmers/1/73 (H3N2)-like virus colonized the European swine population. Analyses of swine influenza A (H3N2) viruses isolated in The Netherlands and Belgium revealed that in the early 1990s, antigenic drift had occurred, away from A/Port Chalmers/1/73, the strain commonly used in influenza vaccines for pigs. Here we show that Italian swine influenza A (H3N2) viruses displayed antigenic and genetic changes similar to those observed in Northern European viruses in the same period. We used antigenic cartography methods for quantitative analyses of the antigenic evolution of European swine H3N2 viruses and observed a clustered virus evolution as seen for human viruses. Although the antigenic drift of swine and human H3N2 viruses has followed distinct evolutionary paths, potential cluster-differentiating amino acid substitutions in the influenza virus surface protein hemagglutinin (HA) were in part the same. The antigenic evolution of swine viruses occurred at a rate approximately six times slower than the rate in human viruses, even though the rates of genetic evolution of the HA at the nucleotide and amino acid level were similar for human and swine H3N2 viruses. Continuous monitoring of antigenic changes is recommended to give a first indication as to whether vaccine strains may need updating. Our data suggest that humoral immunity in the population plays a smaller role in the evolutionary selection processes of swine H3N2 viruses than in human H3N2 viruses.  相似文献   

12.
The nucleotide sequence was determined for the hemagglutinin gene of the Hong Kong subtype influenza strain A/Bangkok/1/79. The amino acid sequence predicted from these data shows a total of 36 amino acid changes as compared with hemagglutinin for a 1968 Hong Kong strain, 11 more than had occurred in a 1975 strain. The distribution of these changes confirmed that there are conserved and highly variable regions in hemagglutinin as the viral gene evolves during antigenic drift in the Hong Kong subtype. Of the four variable regions found in this study, only two have been seen previously. Correlation of highly variable areas in the hemagglutinins of Hong Kong subtype field strains with sites of amino acid changes in antigenically distinct influenza variants enabled us to predict likely antigenic regions of the protein. The results support and extend similar predictions made recently, based on the three-dimensional arrangement of hemagglutinin from a 1968 influenza strain.  相似文献   

13.
Homan EJ  Bremel RD 《PloS one》2011,6(10):e26711
Antigenic drift allowing escape from neutralizing antibodies is an important feature of transmission and survival of influenza viruses in host populations. Antigenic drift has been studied in particular detail for influenza A H3N2 and well defined antigenic clusters of this virus documented. We examine how host immunogenetics contributes to determination of the antibody spectrum, and hence the immune pressure bringing about antigenic drift. Using uTOPE™ bioinformatics analysis of predicted MHC binding, based on amino acid physical property principal components, we examined the binding affinity of all 9-mer and 15-mer peptides within the hemagglutinin 1 (HA1) of 447 H3N2 virus isolates to 35 MHC-I and 14 MHC-II alleles. We provide a comprehensive map of predicted MHC-I and MHC-II binding affinity for a broad array of HLA alleles for the H3N2 influenza HA1 protein. Each HLA allele exhibited a characteristic predicted binding pattern. Cluster analysis for each HLA allele shows that patterns based on predicted MHC binding mirror those described based on antibody binding. A single amino acid mutation or position displacement can result in a marked difference in MHC binding and hence potential T-helper function. We assessed the impact of individual amino acid changes in HA1 sequences between 10 virus isolates from 1968–2002, representative of antigenic clusters, to understand the changes in MHC binding over time. Gain and loss of predicted high affinity MHC-II binding sites with cluster transitions were documented. Predicted high affinity MHC-II binding sites were adjacent to antibody binding sites. We conclude that host MHC diversity may have a major determinant role in the antigenic drift of influenza A H3N2.  相似文献   

14.
During antigenic drift in influenza viruses, changes in antigenicity are associated with changes in amino acid sequence of the large hemagglutinin polypeptide, HA1. In ten variants of Hong Kong (H3N2) influenza virus selected with monoclonal antibodies, the proline residue at position 143 in HA1 changed to serine, threonine, leucine or histidine. In other variants, asparagine 133 changed to lysine, glycine 144 to aspartic acid and serine 145 to lysine. All these changes are possible by single base changes in the RNA except the last, which requires a double base change. Residues 142 to 146 also changed in field strains of Hong Kong influenza isolated between 1968 and 1977 (Laver et al., 1980). The single amino acid sequence changes in HA1 of the monoclonal variants were detected by comparing the compositions of the soluble tryptic peptides from the variants with the known sequences of these peptides from wild-type virus. Two insoluble tryptic peptides, comprising residues 110 to 140 and 230 to 255 in the HA1 molecule, were not examined and we do not know if additional changes occurred in these regions.In order to determine whether sequential changes at the same position occurred during antigenic drift, antibody prepared against the new antigenic site on the variants in which proline 143 changed to histidine or threonine was used to select second generation variants of these variants. In the first case, the glycine residue (144) next to the histidine changed to aspartic acid, and in the second, the threonine residue at position 143 reverted to proline and the virus regained the antigenicity of wild-type.Although monoclonal antibodies revealed dramatic antigenic differences between the variants and wild-type virus, only those variants with changes at position 144 of glycine to aspartic acid or at position 145 of serine to lysine could be distinguished from wild-type virus using heterogeneous rabbit or ferret antisera. The other variants, including those which showed sequence changes in widely separated positions of HA1, could not be distinguished from wild-type with heterogeneous antisera.These findings suggest that sequence changes in the region comprising residues 142 to 146 of HA1 affect an important antigenic site on the hemagglutinin molecule, but how these changes affect the antigenic properties, or whether this region actually forms part of the antigenic site is not known.  相似文献   

15.
Monoclonal antibodies were used to study antigenic variation in the nucleoprotein of influenza A viruses. We found that the nucleoprotein molecule of the WSN/33 strain possesses at least five different determinants. Viruses of other influenza A virus subtypes showed antigenic variation in these nucleoprotein determinants, although changes in only one determinant were detected in H0N1 and animal strains. The nucleoprotein of human strains isolated from 1933 through 1979 could be divided into six groups, based on their reactivities with monoclonal antibodies; these groups did not correlate with any particular hemagglutinin or neuraminidase subtype. Our results indicate that antigenic variation in the nucleoproteins of influenza A viruses proceeds independently of changes in the viral surface antigens and suggest that point mutations and genetic reassortment may account for nucleoprotein variability.  相似文献   

16.
A universal microchip was developed for genotyping Influenza A viruses. It contains two sets of oligonucleotide probes allowing viruses to be classified by the subtypes of hemagglutinin (H1-H13, H15, H16) and neuraminidase (N1-N9). Additional sets of probes are used to detect H1N1 swine influenza viruses. Selection of probes was done in two steps. Initially, amino acid sequences specific to each subtype were identified, and then the most specific and representative oligonucleotide probes were selected. Overall, between 19 and 24 probes were used to identify each subtype of hemagglutinin (HA) and neuraminidase (NA). Genotyping included preparation of fluorescently labeled PCR amplicons of influenza virus cDNA and their hybridization to microarrays of specific oligonucleotide probes. Out of 40 samples tested, 36 unambiguously identified HA and NA subtypes of Influenza A virus.  相似文献   

17.

Background

The influenza A(H1N1)2009 virus has been the dominant type of influenza A virus in Finland during the 2009–2010 and 2010–2011 epidemic seasons. We analyzed the antigenic characteristics of several influenza A(H1N1)2009 viruses isolated during the two influenza seasons by analyzing the amino acid sequences of the hemagglutinin (HA), modeling the amino acid changes in the HA structure and measuring antibody responses induced by natural infection or influenza vaccination.

Methods/Results

Based on the HA sequences of influenza A(H1N1)2009 viruses we selected 13 different strains for antigenic characterization. The analysis included the vaccine virus, A/California/07/2009 and multiple California-like isolates from 2009–2010 and 2010–2011 epidemic seasons. These viruses had two to five amino acid changes in their HA1 molecule. The mutation(s) were located in antigenic sites Sa, Ca1, Ca2 and Cb region. Analysis of the antibody levels by hemagglutination inhibition test (HI) indicated that vaccinated individuals and people who had experienced a natural influenza A(H1N1)2009 virus infection showed good immune responses against the vaccine virus and most of the wild-type viruses. However, one to two amino acid changes in the antigenic site Sa dramatically affected the ability of antibodies to recognize these viruses. In contrast, the tested viruses were indistinguishable in regard to antibody recognition by the sera from elderly individuals who had been exposed to the Spanish influenza or its descendant viruses during the early 20th century.

Conclusions

According to our results, one to two amino acid changes (N125D and/or N156K) in the major antigenic sites of the hemagglutinin of influenza A(H1N1)2009 virus may lead to significant reduction in the ability of patient and vaccine sera to recognize A(H1N1)2009 viruses.  相似文献   

18.
The number of N-linked glycosylation sites in the globular head of hemagglutinin (HA) has increased during evolution of H3N2 human influenza A virus. Here natural selection operating on the gains of N-linked glycosylation sites was examined by using the single-site analysis and the single-substitution analysis. In the single-site analysis, positive selection was not inferred at the amino acid sites where the substitutions generating N-linked glycosylation sites were observed, but was detected at antigenic sites. In contrast, in the single-substitution analysis, positive selection was detected for the amino acid substitutions generating N-linked glycosylation sites. The single-site analysis and the single-substitution analysis appeared to be suitable for detecting recurrent and episodic natural selection, respectively. The gains of N-linked glycosylation sites were likely to be positively selected for the function of shielding antigenic sites from immune responses. At the antigenic sites, positive selection appeared to have operated not only on the radical substitution but also on the conservative substitution in terms of the charge of amino acids, suggesting that the antigenic drift is not a by-product of the evolution of receptor binding avidity in HA of human H3N2 virus.  相似文献   

19.
We report here the complete nucleotide sequence of the hemagglutinin (HA) gene of influenza B virus B/Oregon/5/80 and, through comparative sequence analysis, identify amino acid substitutions in the HA1 polypeptide responsible for the antigenic alterations in laboratory-selected antigenic variants of this virus. The complete nucleotide sequence of the B/Oregon/5/80 HA gene was established by a combination of chemical sequencing of a full-length cDNA clone and dideoxy sequencing of the virion RNA. The nucleotide sequence is very similar to previously reported influenza B virus HA gene sequences and differs at only nine nucleotide positions from the B/Singapore/222/79 HA gene (Verhoeyen et al., Nucleic Acids Res. 11:4703-4712, 1983). The nucleotide sequences of the HA1 portions of the HA genes of 18 laboratory-selected antigenic variants were determined by the dideoxy method. Comparison of the deduced amino acid sequences of the parental and variant HA1 polypeptides revealed 16 different amino acid substitutions at nine positions. All amino acid substitutions resulted from single-point mutations, and no double mutants were detected, demonstrating that as in the influenza A viruses, single amino acid substitutions are sufficient to alter the antigenicity of the HA molecule. Many of the amino acid substitutions in the variants occurred at positions also observed to change in natural drift strains. The substitutions appear to identify at least two immunodominant regions which correspond to proposed antigenic sites A and B on the influenza A virus H3 HA.  相似文献   

20.
Pandemic influenza A H1N1 (pH1N1) virus emerged in 2009. In the subsequent 4 years, it acquired several genetic changes in its hemagglutinin (HA). Mutations may be expected while virus is adapting to the human host or upon evasion from adaptive immune responses. However, pH1N1 has not displayed any major antigenic changes so far. We examined the effect of the amino acid substitutions found to be most frequently occurring in the pH1N1 HA protein before 1 April 2012 on the receptor-binding properties of the virus by using recombinant soluble HA trimers. Two changes (S186P and S188T) were shown to increase the receptor-binding avidity of HA, whereas two others (A137T and A200T) decreased binding avidity. Construction of an HA protein tree revealed the worldwide emergence of several HA variants during the past few influenza seasons. Strikingly, two major variants harbor combinations of substitutions (S186P/A137T and S188T/A200T, respectively) with opposite individual effects on binding. Stepwise reconstruction of the HA proteins of these variants demonstrated that the mutations that increase receptor-binding avidity are compensated for by the acquisition of subsequent mutations. The combination of these substitutions restored the receptor-binding properties (avidity and specificity) of these HA variants to those of the parental virus. The results strongly suggest that the HA of pH1N1 was already optimally adapted to the human host upon its emergence in April 2009. Moreover, these results are in agreement with a recent model for antigenic drift, in which influenza A virus mutants with high and low receptor-binding avidity alternate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号