首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SV40-transformed simian cells support the replication of early SV40 mutants   总被引:650,自引:0,他引:650  
Y Gluzman 《Cell》1981,23(1):175-182
CV-1, an established line of simian cells permissive for lytic growth of SV40, were transformed by an origin-defective mutant of SV40 which codes for wild-type T antigen. Three transformed lines (COS-1, -3, -7) were established and found to contain T antigen; retain complete permissiveness for lytic growth of SV40; support the replication of tsA209 virus at 40 degrees C; and support the replication of pure populations of SV40 mutants with deletions in the early region. One of the lines (COS-1) contains a single integrated copy of the complete early region of SV40 DNA. These cells are possible hosts for the propagation of pure populations of recombinant SV40 viruses.  相似文献   

2.
Normal human lung fibroblast diploid cells, WI-38, become senescent after a definite number of divisions. VA-13 is a line of immortalized cells established by transformation of WI-38 cells by SV40 virus. To determine whether SV40 large T (SV40-T) antigen is essential for this immortalization of WI-38 cells we introduced an antisense gene for T antigen into VA-13. Two morphologically different types of antisense transformant (VA-AS5-8 and VA-AS37-8) were obtained. In both antisense transformants the expression of T antigen was reduced by more than 70% as compared to that in the parent cells. The morphology of the antisense transformants indicated a partial conversion to the senescent phenotype of WI-38. The relative number of cells in the S phase of the antisense transformants was decreased as compared to that in cultures of VA-13 and about 50% of cells were at G1/0. The doubling time of the transformants was prolonged to close to the doubling time of WI-38. The level of expression of retinoblastoma protein (pRB) complexed with SV40-T antigen of the antisense transformants was significantly decreased although the level of total pRB was much higher than that in VA-13. The pRB was present exclusively in the underphosphorylated form. Thus, the decreased level of formation of the complex between SV40-T and pRB or the underphosphorylation of pRB may explain the suppression of growth of antisense transformants. Together, these results show that an antisense gene for SV40-T antigen can efficiently block the cell proliferation and the cell immortalization of VA-13 cells.  相似文献   

3.
We have studied the effect of the SV40 T antigen on expression from human globin promoters fused to the bacterial chloramphenicol acetyltransferase (CAT) gene and compared its effect with the SV40 enhancer and the adenovirus E1A protein. We have observed that expression of p epsilon GLCAT and p beta GLCAT (the epsilon-globin or beta-globin promoter linked to the CAT gene) was significantly stimulated when cotransfected with a cloned T antigen plasmid into CV-1 cells, indicating that trans-activation of the globin promoters was mediated by SV40 T antigen. Transfection of the p beta GLCAT-SV (p beta GLCAT containing the SV40 enhancer element) into CV-1 cells resulted in a 50-60-fold increase in CAT activity as compared to p beta GLCAT (no enhancer). However, cotransfection of the p beta GLCAT-SV with the cloned T antigen resulted in an additional increase of CAT expression, which suggests that T antigen and the SV40 enhancer activate globin gene expression independently. We found that T antigen but not E1A could further stimulate the expression of an enhancer-containing plasmid in CV-1 cells; whereas E1A but not T antigen could further stimulate p epsilon GLCAT expression in COS-1 cells which constitutively express the SV40 T antigen. These results suggest that T antigen and E1A also act independently. Deletion analysis showed that the minimum sequence required for a detectable level of stimulation of the epsilon-globin promoter by T antigen is 177 bp 5' to the cap site, suggesting that the target sequences for response to T antigen do not reside in the canonical 100 bp promoter region, but rather reside in sequences further upstream, and therefore the cellular factors interacting with T antigen are not the TATA or CAT box binding proteins, but the proteins interacting with upstream regulatory sequences.  相似文献   

4.
Rescue of simian virus 40 (SV40) from hamster and murine cell lines transformed by nonirradiated or by ultraviolet (UV)-irradiated SV40 (10(-3) to 10(-5) survival) was studied. A combination of tests was employed to detect induction of SV40 synthesis: (i) co-cultivation with susceptible monkey kidney (CV-1) cells; (ii) treating mixtures of transformed and CV-1 cells with UV-irradiated Sendai virus (UV-Sendai) prior to co-cultivation; and (iii) plating untreated or UV-Sendai-treated mixtures of transformed and CV-1 cells with freshly trypsinized CV-1 cells. The first and second tests provided a measure of the total infectious SV40 yield per culture, and the third test provided a measure of the frequency of induction (fraction of transformed cells giving rise to infectious centers). With the combination of tests, SV40 was rescued in all trials from TSV-5 hamster cells, mKS-BU100 mouse cells, and from several lines of mouse kidney cells transformed by UV-irradiated SV40 (mKS-U lines). The frequency of induction was about 7 x 10(-2) for TSV-5 cells, about 3 x 10(-3) for mKS-BU100 cells, greater than 10(-4) for the mKS-U lines which were "good" yielders, and about 10(-5) to 10(-4) for the mKS-U lines which were "average" yielders. SV40 of a plaque type different from parental virus was rescued from four of the mKS-U cell lines. Virus was also easily rescued from: (i) tumor cells produced from the mKS-A line of transformed mouse kidney cells; (ii) mouse kidney cells transformed by SV40 which had been rescued from mKS-BU100 cells; and (iii) tumor cells (HATS) which had been produced by inoculating newborn hamsters with SV40 rescued from mKS-BU100 cells. The frequency of induction of HATS cells was of the same order of magnitude as the frequency of induction of TSV-5 cells. In a study of the kinetics of virus induction, it was shown that SV40 could be detected 28, 40, and 48.5 hr after UV-Sendai treatment of mixtures of CV-1 and TSV-5, HATS, or mKS-BU100 cells, respectively. Although all of the mKS-U lines contained the SV40-specific tumor antigen, some were poor virus yielders (SV40 was recovered in less than 50% of the trials) and five lines were rare virus yielders (SV40 recovered only once in four or more trials). Forty-eight mKS-U lines were nonyielders; SV40 was never recovered by any test used thus far. UV-Sendai-treated mixtures of pairs of nonyielder mKS-U lines with CV-1 cells also did not yield infectious virus. Various factors affecting rescue have been discussed. The mKS-U lines which were poor virus yielders, rare yielders, or which never yielded virus have been classified tentatively as "defective lysogens" which contain mutational lesions at loci essential for detachment of SV40 from integration sites or for SV40 replication, or for both.  相似文献   

5.
Simian virus 40 (SV40) was rescued from heterokaryons of transformed mouse and transformed human cells. To determine whether the rescued SV40 was progeny of the SV40 genome resident in the transformed mouse cells, the transformed human cells, or both, rescue experiments were performed with mouse lines transformed by plaque morphology mutants of SV40. The transformed mouse lines that were used yielded fuzzy, small-clear, or large-clear plaques after fusion with CV-1 (African green monkey kidney) cells. The transformed human lines that were used did not release SV40 spontaneously or after fusion with CV-1 cells. From each mouse-human fusion mixture, only the SV40 resident in the transformed mouse cells was recovered. Fusion mixtures of CV-1 and transformed mouse cells yielded much more SV40 than those from transformed human and transformed mouse cells. The rate of SV40 formation was also greater from monkey-mouse than from human-mouse heterokaryons. Deoxyribonucleic acid (DNA) from SV40 strains which form fuzzy, largeclear, or small-clear plaques on CV-1 cells was also used to infect monkey (CV-1 and Vero), normal human, and transformed human cell lines. The rate of virion formation and the final SV40 yields were much higher from monkey than from normal or transformed human cells. Only virus with the plaque type of the infecting DNA was found in extracts from the infected cells. Two uncloned sublines of transformed human cells [W18 Va2(P363) and WI38 Va13A] released SV40 spontaneously. Virus yields were not appreciably enhanced by fusion with CV-1 cells. However, clonal lines of W18 Va2(P363) did not release SV40 spontaneously or after fusion with CV-1 cells. In contrast, several clonal lines of WI38 Va13A cells did continue to shed SV40 spontaneously.  相似文献   

6.
Simian virus 40 (SV40) strains have been rescued from various clonal lines of mouse kidney cells that had been transformed by ultraviolet (UV)-irradiated SV40. To learn whether some of the rescued SV40 strains were mutants, monkey kidney (CV-1) cells were infected with the rescued virus strains at 37 C and at 41 C. The SV40 strains studied included strains rescued from transformed cell lines classified as "good," "average," "poor," and "rare" yielders on the basis of total virus yield, frequency of induction, and incidence of successful rescue trials. Four small plaque mutants isolated from "poor" yielder lines and fuzzy and small plaque strains isolated from an "average" and a "good" yielder line, respectively, were among the SV40 strains tested. Virus strains rescued from all classes of transformed cells were capable of inducing the transplantation antigen, and they induced the intranuclear SV40-T-antigen, thymidine kinase, deoxyribonucleic acid (DNA) polymerase, and cellular DNA synthesis at 37 C and at 41 C. With the exception of four small plaque strains rescued from "poor" yielders, the rescued SV40 strains replicated their DNA and formed infectious virus with kinetics similar to parental SV40 at either 37 or 41 C. The four exceptional strains did replicate at 37 C, but replication was very poor at 41 C. Thus, only a few of the rescued virus strains exhibited defective SV40 functions in CV-1 cells. All of the virus strains rescued from the "rare" yielder lines were similar to parental SV40. Several hypotheses consistent with the properties of the rescued virus strains are discussed, which may account for the significant variations in virus yield and frequency of induction of the transformed cell lines.  相似文献   

7.
"Spontaneously" or SV40 virus transformed AL/N mouse cell lines were passed repeatedly through syngeneic mice. Cell lines were re-established in culture from minced pieces of tumors in the presence of concentrated fetal calf serum or from tumor cells dispersed by trypsin. The aim of this study was to compare the two cell lines in regard to the selection processes which operate during such procedures by characterization of the resulting cell lines. Measurements of growth in tissue culture on substratum showed no significant difference between any of the transformed cell lines. The SV40 transformed cells and its derivative cells had a low anchorage requirement for growth. The greatest anchorage requirement for growth was in the normal untransformed cells and in the derivative cells from the "spontaneously" transformed cells which were established from minced tumors. The spontaneously transformed cells and all derivative cells had high tumorigenicity (TD50 is less than 10-2). The SV40 transformed cells had no observable tumorigenicity (TD50 is greater than 10-8), except when injected into irradiated mice (TD50 = 1-5 X 10-5 in the immunocompetent mice, 5 X 10-4 in the irradiated mice). The SV40 transformed derivative cells maintained their SV40 specific T antigen and their susceptibility to lysis by specific antiserum.  相似文献   

8.
When simian virus 40 (SV40)-transformed mouse kidney cells (mKS) were grown in the presence of susceptible indicator cells, SV40 was readily recovered from: (i) 15 transformed cell lines, (ii) transformed cells subcultured 45 times over a 7-month period in medium containing antiviral serum and bromodeoxyuridine (dBU), (iii) 45 of 46 clonal lines isolated in the presence of antiviral serum, (iv) 19 of 19 secondary clones isolated from two clonal lines, and (v) dBU-resistant transformed cell lines. dBU-resistant SV40-transformed mouse kidney cell lines were selected and shown to contain the T antigen and to have normal levels of thymidylate kinase and deoxyribonucleic acid (DNA) polymerase, but to be deficient in thymidine (dT) kinase. Radioautographic and biochemical experiments demonstrated that very little (3)H-dT was incorporated into DNA of dBU-resistant cells during a 6-hr labeling period. After infection of dT kinase-deficient mKS cells with vaccinia virus, high levels of dT kinase were induced. The properties of SV40 recovered from dBU-sensitive and dBU-resistant cells were studied. SV40 recovered from transformed cells was shown to express in CV-1 cells at least six functions characteristic of parental virus: synthesis of capsid antigen, synthesis of T antigen, synthesis of viral DNA, induction of dT kinase, induction of DNA polymerase, and induction of host cell DNA synthesis. In addition, SV40 recovered from the transformed cells induced T antigen, dT kinase, deoxycytidylate deaminase, thymidylate kinase, and DNA polymerase in abortively infected mouse kidney cultures, and the virus was also capable of transforming primary cultures of mouse kidney cells.  相似文献   

9.
A clonal line of highly oncogenic spontaneously transformed mouse cells (104C) was transformed in tissue culture by simian virus 40 (SV40) and subsequently recloned (106CSC). This 106CSC cell line expressed T antigen and transplantation antigen but was about 100 times less tumorigenic than the 104C parent. When 10(5) 106CSC cells were injected into immunocompetent syngeneic mice, tumors were produced. From such tumors, cell lines were established in culture, all of which were consistently negative for T antigen. We found previously by solution DNA hybridization methods that the tumor cells were depleted in the early region of SV40 DNA which codes for the T antigen. We postulated that this loss occurs through a DNA rearrangement of unknown mechanism in one or a few 106CSC cells and that the tumors are then produced from such a cell or cells, whereas all the T-antigen-positive 106CSC cells are rejected by immunologic means. In this investigation we showed by the DNA transfer method using appropriately selected SV40 DNA probes that indeed the tumor cell clone (130CSCT) we selected to investigate came from one 106CSC cell in which the T-antigen-coding SV40 DNA sequences (but not all the early SV40 DNA sequences) were lost by an excision and recombination mechanism. We also showed that the 130CSCT cells, which are highly tumorigenic, could again be transformed by SV40 and that the resulting T-antigen-positive cloned derivative cells became much less tumorigenic (approximately 10(5)-fold), apparently again because of immunologic recognition and rejection. Indeed, when 10(7) T-antigen-positive cloned cells were injected, all the T-antigen-positive cells were rejected and the tumor was produced again from one or more T-antigen-negative cells. Thus, a one-step in vivo transplantation experiment allowed a selection (for tumorigenicity and against the SV40 T antigen) of a mutant mammalian cell with a DNA deletion at a definable site.  相似文献   

10.
Small amounts of infectious simian virus 40 (SV40) were recovered from parental cultures of SV40-transformed human embryonic lung (WI38 Va13A) cells, from 12 primary clones, from 17 secondary clones, and from 18 tertiary clones. The cloning experiments demonstrated that the capacity for spontaneous virus production is a hereditary property of WI38 Va13A cells. Infectious virus was not recovered from every clone at every passage. Repeated trials at different passage levels were necessary to detect virus production. Approximately one in 10(5) to 10(6) of the cells of the clonal lines initiated plaque formation when plated on the CV-1 line of African green monkey kidney cells. No increase in infectious center formation was observed after the clonal lines were treated with bromodeoxyuridine, iododeoxyuridine, or mitomycin C or after heterokaryon formation of treated cells with CV-1 cells. The clonal lines of WI38 Va13A cells were susceptible to superinfection by SV40 deoxyribonucleic acid (DNA). To determine whether only those cells which spontaneously produced virus supported the replication of superinfecting SV40 DNA, cultures were infected with DNA from a plaque morphology mutant and a temperature-sensitive mutant of SV40. After infection by SV40 DNA, approximately 100 to 4,400 times more transformed cells formed infectious centers than were spontaneously producing virus. To determine whether the resident SV40 genome or the superinfecting SV40 genome was replicating, infectious centers produced by SV40 DNA-infected WI38 Va13A cells on CV-1 monolayers were picked and the progeny virus was analyzed. Only the superinfecting SV40 was recovered from the infectious centers, indicating that in the majority of superinfected cells the resident SV40 was not induced to replicate.  相似文献   

11.
The existence of two distinct antigenic sites at the surface of simian virus 40 (SV40)-transformed H-2b cells has been previously demonstrated (A. E. Campbell, L. F. Foley, and S. S. Tevethia, J. Immunol. 130:490-492, 1983) by using two independently isolated SV40-specific cytotoxic T-lymphocyte (CTL) clones, K11 and K19. We identified amino acids in the amino-terminal half of SV40 T antigen that are essential for the recognition of antigenic sites by these CTL clones by using H-2b cells transformed by mutants that produce T antigen truncated from the amino-terminal or carboxy-terminal end or carrying overlapping internal deletions in the amino-terminal regions of SV40 T antigen. The results show that CTL clone K11 failed to recognize and lyse target cells missing SV40 T-antigen amino acids 189 to 211, whereas CTL clone K19 lysed these cells. The cell lines missing SV40 T-antigen amino acids 220 to 223 and 220 to 228 were not lysed by CTL clone K19 but were susceptible to lysis by CTL clone K11. Two other cell lines missing amino acids 189 to 223 and 189 to 228 of SV40 T antigen were not lysed by either of the CTL clones but were lysed by SV40-specific bulk-culture CTL if sufficient amounts of relevant restriction elements were expressed at the cell surface. The SV40 T-antigen amino acids critical for the recognition of an antigenic site by CTL clone K11 were identified to be 193 to 211; 220 to 223 were identified as critical for recognition by CTL clone K19. The deletion of these amino acids from the T antigen resulted in the loss of antigenic sites specific for CTL clones K11 and K19.  相似文献   

12.
D I Linzer  A J Levine 《Cell》1979,17(1):43-52
SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.  相似文献   

13.
Transformation by the oncogenic virus SV40 has been shown to alter the expression of cellular genes at the level of RNA abundance. Many of these genes have yet to be identified. We have determined, by Northern blot analysis, the abundance levels of several growth-regulated genes in SV40-transformed cell lines to determine if their expression is altered and correlates with the ability of SV40 transformed cells to grow in low serum containing media. The mRNA abundance levels of the G1-specific genes 2A9/calcyclin, 2F1/translocase, and 4F1/vimentin were determined in the parental hamster fibroblast cell line, tk-ts13, and in two SV40 transformants, HR5 and HR8 cells, grown in medium containing 10% calf serum (normal medium) and in HR5 and HR8 cells adapted to passage in medium containing low serum. A spontaneous transformant of the parental line capable of growth in low serum in the absence of SV40 transformation (tk-ts13/1%), was also included in these studies. The low serum adapted SV40-transformed cells and the spontaneous tk-ts13 transformed cells grew more vigorously than their nonadapted counterparts in medium containing low serum. The low serum adapted cells also grew to higher saturation densities in low serum and to densities comparable to those in high serum, whereas the nonadapted cells grew to low saturation densities in low serum, but not as low as the untransformed parental.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Human skin fibroblast cells derived from a juvenile patient with nephropathic cystinosis were transformed by simian virus 40. Transformed cell clones were isolated and established in tissue culture. In comparison to the parental cystinotic cells, the newly isolated, transformed cell clones had a higher plating efficiency, a modal chromosome number of 68, grew in soft agar, and showed a nuclear immunofluorescence typical for SV 40-specific tumor (T) antigen. The content of intracellular, unbound cystine in the transformed cell clone was of the same level (6.1 nmol 1/2 cystine/mg protein) as in the parental cystinotic cells (7.4 nmol). Control cells (SV 80 and WI-38) contained normal levels of cystine (0.31 and 0.47 nmol 1/2 cystine/mg protein). The growth characteristics make the transformed cystinotic cell clone suitable for large scale preparation of cellular constituents, i.e. lysosomes which seem to be affected in cystinotic patients.  相似文献   

15.
16.
Mahon MJ 《BioTechniques》2011,51(2):119-128
The simian virus 40 large T antigen (SVLT) induces replication of plasmids bearing the SV40 origin of replication (SV40 ori) within mammalian cells. The internal ribosomal entry site (IRES) is an element that allows for the cotranslation of proteins from one polycistronic mRNA. Through the combination of these elements, IRES-dependent coexpression of a protein of interest and the SVLT, either constitutive or regulated, on plasmids bearing the SV40 ori generates a positive feedback loop, resulting in enhanced expression. A vector linking red fluorescent protein (RFP) to the IRES-SVLT element enhances fluorescence ~10-fold over that demonstrated from a vector lacking this element. In transfection-resistant CV-1 cells, the RFP-IRES-SVLT vector substantially increases the number of cells expressing detectable levels of RFP. Furthermore, inclusion of the IRES-SVLT/SV40 ori elements in standard luciferase-based reporter gene constructs and associated effectors results in marked increases in luminescent output and sensitivity, using the β-catenin/TCF pathway and the mammalian two-hybrid assay as models. Ultimately, vector systems combining these well-established elements (IRES-SVLT/SV40 ori) will increase the utility of transient transfection for the production of recombinant proteins, the use of transfection-resistant cell lines, and the effectiveness of luciferase-based high-throughput screening assays.  相似文献   

17.
18.
JC polyomavirus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), is ubiquitous in humans, infecting children asymptomatically and then persisting in the kidney. Renal JCV is not latent but replicates to excrete progeny in the urine. The renal-urinary JCV DNAs carry the archetype regulatory region that generates various rearranged regulatory regions occurring in JCVs derived from the brains of PML patients. Tissue cultures that support the efficient growth of archetype JCV have not been reported. We studied whether archetype JCV could replicate in COS-7 cells, simian cells transformed with an origin-defective mutant of simian virus 40 (SV40). Efficient JCV replication, as detected by a hemagglutination assay, was observed in cultures transfected with five of the six archetype DNAs. The progeny JCVs could be passaged to fresh COS-7 cells. However, when the parental cells of COS-7 not expressing T antigen were transfected with archetype JCV DNAs, no viral replication was detected, indicating that SV40 T antigen is essential for the growth of JCV in COS-7 cells. The archetype regulatory region was conserved during viral growth in COS-7 cells, although a small proportion of JCV DNAs underwent rearrangements outside the regulatory region. We then attempted to recover archetype JCV from urine by viral culture in COS-7 cells. Efficient JCV production was observed in COS-7 cells infected with five of the six JCV-positive urine samples examined. Thus, COS-7 cells should be of use not only for the production of archetype JCV on a large scale but also for the isolation of archetype JCV from urine.  相似文献   

19.
Lymphocytes have a finite and predictable proliferative life span in culture similar to that observed in fibroblasts. In general, the senescence of human fibroblasts is inevitable and irreversible, but their proliferative life span can be extended by certain DNA tumor virus oncogenes, such as the large T antigen of the SV40 virus. Here, we show that human T lymphocytes (HTL) can be stably transfected with SV40 large T and that expression of T antigen extended the life span of T cell cultures. PHA-stimulated HTL were transfected with pSV3neo, an expression vector containing the SV40 early region and the neomycin resistance gene. Transfectants were selected for neomycin (G418) resistance. Control HTL, either mock transfected or transfected with pSV2neo (containing the neomycin resistance gene only), ceased proliferation after about 17 population doublings. In contrast, HTL transfected with pSV3neo underwent more than 170 doublings. pSV3neo-transfected cells expressed SV40 large T RNA, detectable by in situ hybridization, and SV40 T antigen, detectable by immunofluorescence. Greater than 95% of the transfected cells were CD4 positive. These results clearly show that SV40 large T enables HTL to escape senescence. Transfection with SV40 large T may be a valuable method for obtaining long term human T cell lines for studies of both aging and immunology.  相似文献   

20.
A temperature-sensitive simian virus 40 (SV40) mutant, tsTNG-1, has been isolated from nitrosoguanidine-treated and SV40-infected African green monkey kidney (CV-1) cultures. Replication of virus at the nonpermissive temperature (38.7 C) was 3,000-fold less than at the permissive temperature (33.5 C). Plaque formation by SV40tsTNG-1 deoxyribonucleic acid (DNA) on CV-1 monolayers occurred normally at 33.5 C but was grossly inhibited at 38.7 C. The time at which virus replication was blocked at 38.7 C was determined by temperature-shift experiments. In shift-up experiments, cultures infected for various times at 33.5 C were shifted to 38.7 C. In shift-down experiments, cultures infected for various times at 38.7 C were shifted to 33.5 C. All cultures were harvested at 96 hr postinfection (PI). No virus growth occurred when the shift-up occurred before 40 hr PI. Maximum virus yields were obtained at 96 hr PI when the shift-down occurred at 66 hr, but only about 15% of the maximum yield was obtained when the shift-down occurred at 76 hr PI. These results indicate that SV40tsTNG-1 contains a conditional lethal mutation in a late viral gene function. Mutant SV40tsTNG-1 synthesized T antigen, viral capsid antigens, and viral DNA, and induced thymidine kinase activity at either 33.5 or 38.7 C. The properties of the SV40 DNA synthesized in mutant-infected CV-1 cells at 33.5 or 38.7 C were very similar to those of SV40 DNA made in parental virus-infected cells, as determined by nitrocellulose column chromatography, cesium-chloride-ethidium bromide equilibrium centrifugation, and by velocity centrifugation in neutral sucrose gradients. Mutant SV40tsTNG-1 enhanced cellular DNA synthesis in primary cultures of mouse kidney cells at 33.5 and 38.7 C and also transformed mouse kidney cultures at 36.5 C. SV40tsTNG-1 was recovered from clonal lines of transformed cells after fusion with susceptible CV-1 cells and incubation of heterokaryons at 33.5 C, but not at 38.7 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号