首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our purpose was to measure blood flow and muscle fatigue in chronic, complete, spinal cord-injured (SCI) and able-bodied (AB) individuals during electrical stimulation. Electrical stimulation of the quadriceps muscles was used to elicit similar activated muscle mass. Blood flow was measured in the femoral artery by Doppler ultrasound. Muscle fatigue was significantly greater (three- to eightfold, P < or = 0.001) in the SCI vs. the AB individuals. The magnitude of blood flow was not significantly different between groups. A prolonged half-time to peak blood flow at the beginning of exercise (fivefold, P = 0.001) and recovery of blood flow at the end of exercise (threefold, P = 0.009) was found in the SCI vs. the AB group. In conclusion, the magnitude of the muscle blood flow to electrical stimulation was not associated with increased muscle fatigue in SCI individuals. However, the prolonged time to peak blood flow may be an explanation for increased fatigue in SCI individuals.  相似文献   

2.
The measurement of peripheral blood flow by plethysmography assumes that the cuff pressure required for venous occlusion does not decrease arterial inflow. However, studies in five normal subjects suggested that calf blood flow measured with a plethysmograph was less than arterial inflow calculated from Doppler velocity measurements. We hypothesized that the pressure required for venous occlusion may have decreased arterial velocity. Further studies revealed that systolic diameter of the superficial femoral artery under a thigh cuff decreased from 7.7 +/- 0.4 to 5.6 +/- 0.7 mm (P less than 0.05) when the inflation pressure was increased from 0 to 40 mmHg. Cuff inflation to 40 mmHg also reduced mean velocity 38% in the common femoral artery and 47% in the popliteal artery. Inflation of a cuff on the arm reduced mean velocity in the radial artery 22% at 20 mmHg, 26% at 40 mmHg, and 33% at 60 mmHg. We conclude that inflation of a cuff on an extremity to low pressures for venous occlusion also caused a reduction in arterial diameter and flow velocity.  相似文献   

3.
We investigated the role of central activation in muscle length-dependent endurance. Central activation ratio (CAR) and rectified surface electromyogram (EMG) were studied during fatigue of isometric contractions of the knee extensors at 30 and 90 degrees knee angles (full extension = 0 degree). Subjects (n = 8) were tested on a custom-built ergometer. Maximal voluntary isometric knee extension with supramaximal superimposed burst stimulation (three 100-mus pulses; 300 Hz) was performed to assess CAR and maximal torque capacity (MTC). Surface EMG signals were obtained from vastus lateralis and rectus femoris muscles. At each angle, intermittent (15 s on 6 s off) isometric exercise at 50% MTC with superimposed stimulation was performed to exhaustion. During the fatigue task, a sphygmomanometer cuff around the upper thigh ensured full occlusion (400 mmHg) of the blood supply to the knee extensors. At least 2 days separated fatigue tests. MTC was not different between knee angles (30 degrees : 229.6 +/- 39.3 N.m vs. 90 degrees: 215.7 +/- 13.2 N.m). Endurance times, however, were significantly longer (P < 0.05) at 30 vs. 90 degrees (87.8 +/- 18.7 vs. 54.9 +/- 12.1 s, respectively) despite the CAR not differing between angles at torque failure (30 degrees: 0.95 +/- 0.05 vs. 90 degrees: 0.96 +/- 0.03) and full occlusion of blood supply to the knee extensors. Furthermore, rectified surface EMG values of the vastus lateralis (normalized to prefatigue maximum) were also similar at torque failure (30 degrees : 56.5 +/- 12.5% vs. 90 degrees : 58.3 +/- 15.2%), whereas rectus femoris EMG activity was lower at 30 degrees (44.3 +/- 12.4%) vs. 90 degrees (69.5 +/- 25.3%). We conclude that differences in endurance at different knee angles do not find their origin in differences in central activation and blood flow but may be a consequence of muscle length-related differences in metabolic cost.  相似文献   

4.
Local vasoconstriction plays an important role in maintaining blood pressure in spinal cord-injured individuals (SCI). We aimed to unravel the mechanisms of local vasoconstriction [venoarteriolar reflex (VAR) and myogenic response] using both limb dependency and cuff inflation in SCI and compare these with control subjects. Limb blood flow was measured in 11 male SCI (age: 24-55 yr old) and 9 male controls (age: 23-56 yr old) using venous occlusion plethysmography in forearm and calf during three levels of 1) limb dependency, and 2) cuff inflation. During limb dependency, vasoconstriction relies on both the VAR and the myogenic response. During cuff inflation, the decrease in blood flow is caused by the VAR and by a decrease in arteriovenous pressure difference, whereas the myogenic response does not play a role. At the highest level of leg dependency, the percent increase in calf vascular resistance (mean arterial pressure/calf blood flow) was more pronounced in SCI than in controls (SCI 186 +/- 53%; controls 51 +/- 17%; P = 0.032). In contrast, during cuff inflation, no differences were found between SCI and controls (SCI 17 +/- 17%; controls 14 +/- 10%). Percent changes in forearm vascular resistance in response to either forearm dependency or forearm cuff inflation were equal in both groups. Thus local vasoconstriction during dependency of the paralyzed leg in SCI is enhanced. The contribution of the VAR to local vasoconstriction does not differ between the groups, since no differences between groups existed for cuff inflation. Therefore, the augmented local vasoconstriction in SCI during leg dependency relies, most likely, on the myogenic response.  相似文献   

5.
The purpose of this study was to test the hypothesis that hindlimb suspension increases the fatigability of the soleus during intense contractile activity and determine whether the increased fatigue is associated with a reduced muscle blood flow. Cage-control (C) and 15-day hindlimb-suspended (HS) rats were anesthetized, and either the gastrocnemius-plantaris-soleus (G-P-S) muscle group or the soleus was stimulated (100 Hz, 100-ms trains at 120/min) for 10 min in situ. In the G-P-S preparation, blood flow was measured with radiolabeled microspheres before and at 2 and 10 min of contractile activity. The G-P-S fatigued markedly at this stimulation frequency, and the differences between C and HS animals were not significant until the 9th min of contractile activity. In contrast, the stimulation resulted in faster rates and significantly larger amounts of fatigue in the soleus from HS than from C animals. The atrophied soleus showed significant differences by 1 min of stimulation (C = 70 +/- 1% vs. HS = 57 +/- 2% of peak train force) and remained different at 10 min (C = 64 +/- 4% vs. HS = 45 +/- 2% peak train force). Relative blood flow to the soleus was similar between groups before and during contractile activity (rest: C = 20 +/- 3 vs. HS = 12 +/- 3; 2 min: C = 128 +/- 6 vs. HS = 118 +/- 4; 10 min: C = 123 +/- 11 vs. HS = 105 +/- 11 ml.min-1.100 g-1). In conclusion, these results established that 15 days of HS increased the fatigability of the soleus, but the effect was not caused by a reduced muscle blood flow.  相似文献   

6.
The purpose of this study was to determine whether chronic fatigue syndrome (CFS) is associated with reduced blood flow and muscle oxidative metabolism. Patients with CFS according to Centers for Disease Control criteria (n = 19) were compared with normal sedentary subjects (n = 11). Muscle blood flow was measured in the femoral artery with Doppler ultrasound after exercise. Muscle metabolism was measured in the medial gastrocnemius muscle with (31)P-magnetic resonance spectroscopy. Muscle oxygen saturation and blood volume were measured using near-infrared spectroscopy. CFS and controls were not different in hyperemic blood flow or phosphocreatine recovery rate. Cuff pressures of 50, 60, 70, 80, and 90 mmHg were used to partially restrict blood flow during recovery. All pressures reduced blood flow and oxidative metabolism, with 90 mmHg reducing blood flow by 46% and oxidative metabolism by 30.7% in CFS patients. Hyperemic blood flow during partial cuff occlusion was significantly reduced in CFS patients (P < 0.01), and recovery of oxygen saturation was slower (P < 0.05). No differences were seen in the amount of reduction in metabolism with partially reduced blood flow. In conclusion, CFS patients showed evidence of reduced hyperemic flow and reduced oxygen delivery but no evidence that this impaired muscle metabolism. Thus CFS patients might have altered control of blood flow, but this is unlikely to influence muscle metabolism. Furthermore, abnormalities in muscle metabolism do not appear to be responsible for the CFS symptoms.  相似文献   

7.
This investigation was designed to determine the role of intramuscular pressure-sensitive mechanoreceptors and chemically sensitive metaboreceptors in affecting the blood pressure response to dynamic exercise in humans. Sixteen subjects performed incremental (20 W/min) cycle exercise to fatigue under four conditions: control, exercise with thigh cuff occlusion of 90 Torr (Cuff occlusion), exercise with lower body positive pressure (LBPP) of 45 Torr, and a combination of thigh cuff occlusion and LBPP (combination). Indexes of central command (heart rate, oxygen uptake, ratings of perceived exertion, and electromyographic activity), cardiac output, stroke volume, and total peripheral resistance were not significantly different between the four conditions. Mechanical stimulation during LBPP and combination conditions resulted in significant elevations in intramuscular pressure and mean arterial pressure from control at rest and throughout the incremental exercise protocol (P < 0.05). Conversely, there existed no significant changes in mean arterial pressure when the metaboreflex was stimulated by cuff occlusion. These findings suggest that under normal conditions the mechanoreflex is tonically active and is the primary mediator of exercise pressor reflex-induced alterations in arterial blood pressure during submaximal dynamic exercise in humans.  相似文献   

8.
After a single bout of aerobic exercise, oxygen consumption remains elevated above preexercise levels [excess postexercise oxygen consumption (EPOC)]. Similarly, skeletal muscle blood flow remains elevated for an extended period of time. This results in a postexercise hypotension. The purpose of this study was to explore the possibility of a causal link between EPOC, postexercise hypotension, and postexercise elevations in skeletal muscle blood flow by comparing the magnitude and duration of these postexercise phenomena. Sixteen healthy, normotensive, moderately active subjects (7 men and 9 woman, age 20-31 yr) were studied before and through 135 min after a 60-min bout of upright cycling at 60% of peak oxygen consumption. Resting and recovery VO2 were measured with a custom-built dilution hood and mass spectrometer-based metabolic system. Mean arterial pressure was measured via an automated blood pressure cuff, and femoral blood flow was measured using ultrasound. During the first hour postexercise, VO2 was increased by 11 +/- 2%, leg blood flow was increased by 51 +/- 18%, leg vascular conductance was increased by 56 +/- 19%, and mean arterial pressure was decreased by 2.2 +/- 1.0 mmHg (all P <0.05 vs. preexercise). At the end of the protocol, VO2 remained elevated by 4 +/- 2% (P <0.05), whereas leg blood flow, leg vascular conductance, and mean arterial pressure returned to preexercise levels (all P >0.7 vs. preexercise). Taken together, these data demonstrate that EPOC and the elevations in skeletal muscle blood flow underlying postexercise hypotension do not share a common time course. This suggests that there is no causal link between these two postexercise phenomena.  相似文献   

9.
Motor center activity and reflexes from contracting muscle have been shown to be important for mobilization of free fatty acids (FFA) during exercise. We studied FFA metabolism in the absence of these mechanisms: during involuntary, electrically induced leg cycling in individuals with complete spinal cord injury (SCI). Healthy subjects performing voluntary cycling served as controls (C). Ten SCI (level of injury: C5-T7) and six C exercised for 30 min at comparable oxygen uptake rates (approximately 1 l/min), and [1-14C]palmitate was infused continuously to estimate FFA turnover. From femoral arteriovenous differences, blood flow, muscle biopsies, and indirect calorimetry, leg substrate balances as well as concentrations of intramuscular substrates were determined. Leg oxygen uptake was similar in the two groups during exercise. In SCI, but not in C, plasma FFA and FFA appearance rate fell during exercise, and plasma glycerol increased less than in C (P < 0.05). Fractional uptake of FFA across the working legs decreased from rest to exercise in all individuals (P < 0.05) but was always lower in SCI than in C (P < 0.05). From rest to exercise, leg FFA uptake increased less in SCI than in C subjects (14 +/- 3 to 57 +/- 20 vs. 41 +/- 13 to 170 +/- 57 micromol x min(-1) x leg(-1); P < 0.05). Muscle glycogen breakdown, leg glucose uptake, carbohydrate oxidation, and lactate release were higher (P < 0.05) in SCI than in C during exercise. Counterregulatory hormonal changes were more pronounced in SCI vs. C, whereas insulin decreased only in C. In conclusion, FFA mobilization, delivery, and fractional uptake are lower and muscle glycogen breakdown and glucose uptake are higher in SCI patients during electrically induced leg exercise compared with healthy subjects performing voluntary exercise. Apparently, blood-borne mechanisms are not sufficient to elicit a normal increase in fatty acid mobilization during exercise. Furthermore, in exercising muscle, FFA delivery enhances FFA uptake and inhibits carbohydrate metabolism, while carbohydrate metabolism inhibits FFA uptake.  相似文献   

10.
Moderate exercise elicits a relative postexercise hypotension that is caused by an increase in systemic vascular conductance. Previous studies have shown that skeletal muscle vascular conductance is increased postexercise. It is unclear whether these hemodynamic changes are limited to skeletal muscle vascular beds. The aim of this study was to determine whether the splanchnic and/or renal vascular beds also contribute to the rise in systemic vascular conductance during postexercise hypotension. A companion study aims to determine whether the cutaneous vascular bed is involved in postexercise hypotension (Wilkins BW, Minson CT, and Halliwill JR. J Appl Physiol 97: 2071-2076, 2004). Heart rate, arterial pressure, cardiac output, leg blood flow, splanchnic blood flow, and renal blood flow were measured in 13 men and 3 women before and through 120 min after a 60-min bout of exercise at 60% of peak oxygen uptake. Vascular conductances of leg, splanchnic, and renal vascular beds were calculated. One hour postexercise, mean arterial pressure was reduced (79.1 +/- 1.7 vs. 83.4 +/- 1.8 mmHg; P < 0.05), systemic vascular conductance was increased by approximately 10%, leg vascular conductance was increased by approximately 65%, whereas splanchnic (16.0 +/- 1.8 vs. 18.5 +/- 2.4 ml.min(-1).mmHg(-1); P = 0.13) and renal (20.4 +/- 3.3 vs. 17.6 +/- 2.6 ml.min(-1).mmHg(-1); P = 0.14) vascular conductances were unchanged compared with preexercise. This suggests there is neither vasoconstriction nor vasodilation in the splanchnic and renal vasculature during postexercise hypotension. Thus the splanchnic and renal vascular beds neither directly contribute to nor attenuate postexercise hypotension.  相似文献   

11.
Previous studies of contracting muscle with low loading and partial vascular occlusion demonstrated hypertrophy and strength adaptations similar to and exceeding those observed with traditional moderate to high resistance (Shinohara M, Kouzaki M, Yoshihisa T, and Fukunaga T. Eur J Physiol 77: 189-191, 1998; Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, and Ishii N. J Appl Physiol 88: 2097-2106, 2000; Takarada Y, Sato Y, and Ishii N. Eur J Physiol 86: 308-314, 2002). The purpose of the study was to determine the anabolic and catabolic hormone responses to light resistance exercise combined with partial vascular occlusion. Three experimental conditions of light resistance with partial occlusion (LRO), moderate resistance with no occlusion (MR), and partial occlusion without exercise (OO) were performed by eight healthy subjects [mean 21 yr (SD 1.8)]. Three sets of single-arm biceps curls and single-leg calf presses were completed to failure with 1-min interset rest periods. Workloads of 30 and 70% one repetition maximum for each exercise were lifted for the LRO and MR trials, respectively. Blood samples were taken preexercise, postexercise, and 15 min postexercise for each experimental condition. Lactate increased significantly in the LRO and MR trials and was not significantly different from each other at any time point. Growth hormone (GH) increased significantly by fourfold from pre- to postexercise in the LRO session but did not change significantly during this time period in the MR and OO trials (8.3 +/- 2.3 vs. 2.1 +/- 1.2 and 2.6 +/- 0.94 microg/l; respectively, P < 0.05). There were no changes in resting total testosterone [T; mean 15.7 +/- 1.6 (SE) nmol/l], free testosterone (FT; 54.1 +/- 4.5 pmol/l), or cortisol (267.6 +/- 22 nmol/l) across all trials and times. In conclusion, with similar lactate responses, light exercise combined with partial vascular occlusion elicits a greater GH response than moderate exercise without occlusion but does not affect T, FT, or cortisol.  相似文献   

12.
Sickle cell disease is characterized by microvascular occlusion and hemolytic anemia, factors that impair tissue oxygen delivery. We use visible reflectance hyperspectral imaging to quantitate skin tissue hemoglobin oxygen saturation (HbO2) and to determine whether changes in blood flow during nitric oxide (NO) stimulation or gas administration (therapies proposed for this disease) improve skin tissue oxygen saturation in five patients with sickle cell disease. Compared with six healthy African-American subjects, sickle cell patients exhibited higher forearm blood flows (7.4 +/- 1.8 vs. 3.2 +/- 0.4 ml.min-1.100 ml tissue-1, P = 0.037) but significantly reduced percentages of skin HbO2 (61.0 +/- 0.2 vs. 77.5 +/- 0.2%, P < 0.001). Administration of acetylcholine to patients increased blood flow by 15.1 +/- 3.8 ml.min-1.100 ml tissue-1 and the percentage of skin HbO2 by 4.1 +/- 0.3% (P = 0.02, P < 0.001, respectively, from baseline values). Sodium nitroprusside, a direct NO donor, increased blood flow by 3.9 +/- 1.1 ml/min and the percentage of skin HbO2 by 2.9 +/- 0.3% (P = 0.02, P < 0.001, respectively). NO inhalation had no effect on forearm blood flow, yet increased the percentage of skin HbO2 by 2.3 +/- 0.3% (P < 0.001). Percentages of skin HbO2 were exponentially related to blood flow (R = 0.97, P < 0.001), indicating a limit to skin tissue oxygen saturation at high blood flows. Thus, for acetylcholine infusion leading to blood flows sevenfold greater than those of healthy resting African-American subjects, patients still exhibited lower percentages of skin HbO2 (65.2 +/- 0.2 vs. 77.5 +/- 0.2%, P < 0.001). Visible reflectance hyperspectral imaging demonstrates that either the stimulation or the administration of NO pharmacologically or by gas inhalation improves, but does not normalize, skin tissue oxygen saturation in patients with sickle cell disease.  相似文献   

13.
Chemoreflex control of sympathetic nerve activity is exaggerated in heart failure (HF) patients. However, the vascular implications of the augmented sympathetic activity during chemoreceptor activation in patients with HF are unknown. We tested the hypothesis that the muscle blood flow responses during peripheral and central chemoreflex stimulation would be blunted in patients with HF. Sixteen patients with HF (49 +/- 3 years old, Functional Class II-III, New York Heart Association) and 11 age-paired normal controls were studied. The peripheral chemoreflex control was evaluated by inhalation of 10% O(2) and 90% N(2) for 3 min. The central chemoreflex control was evaluated by inhalation of 7% CO(2) and 93% O(2) for 3 min. Muscle sympathetic nerve activity (MSNA) was directly evaluated by microneurography. Forearm blood flow was evaluated by venous occlusion plethysmography. Baseline MSNA were significantly greater in HF patients (33 +/- 3 vs. 20 +/- 2 bursts/min, P = 0.001). Forearm vascular conductance (FVC) was not different between the groups. During hypoxia, the increase in MSNA was significantly greater in HF patients than in normal controls (9.0 +/- 1.6 vs. 0.8 +/- 2.0 bursts/min, P = 0.001). The increase in FVC was significantly lower in HF patients (0.00 +/- 0.10 vs. 0.76 +/- 0.25 units, P = 0.001). During hypercapnia, MSNA responses were significantly greater in HF patients than in normal controls (13.9 +/- 3.2 vs. 2.1 +/- 1.9 bursts/min, P = 0.001). FVC responses were significantly lower in HF patients (-0.29 +/- 0.10 vs. 0.37 +/- 0.18 units, P = 0.001). In conclusion, muscle vasodilatation during peripheral and central chemoreceptor stimulation is blunted in HF patients. This vascular response seems to be explained, at least in part, by the exaggerated MSNA responses during hypoxia and hypercapnia.  相似文献   

14.
Potentiation of the exercise pressor reflex by muscle ischemia   总被引:3,自引:0,他引:3  
The reflex responses to static contraction are augmented by ischemia. The metabolic "error signals" that are responsible for these observed responses are unknown. Therefore this study was designed to test the hypothesis that static contraction-induced pressor responses, which are enhanced during muscle ischemia, are the result of alterations in muscle oxygenation, acid-base balance, and K+. Thus, in 36 cats, the pressor response, active muscle blood flow, and muscle venous pH, PCO2, PO2, lactate, and K+ were compared during light and intense static contractions with and without arterial occlusion. During light contraction (15-16% of maximal), active muscle blood flow increased without and decreased with arterial occlusion (+35 +/- 12 vs. -60 +/- 11%). Arterial occlusion augmented these pressor responses by 132 +/- 25%. Without arterial occlusion, changes (P less than 0.05) were seen in PO2, O2 content, PCO2, and K+. Lactate and pH were unchanged. With arterial occlusion, changes in muscle PCO2 were augmented and significant changes were seen in pH and lactate. During intense static contraction (67-69% of maximal), muscle blood flow decreased without arterial occlusion (-39 +/- 9%) and decreased further during occlusion (-81 +/- 6%). Arterial occlusion augmented the pressor responses by 39 +/- 12%. All metabolic variables increased during contraction without arterial occlusion, but occlusion failed to augment any of these changes. These data suggest that light static ischemic contractions cause increases in muscle PCO2 and lactate and decreases in pH that may signal compensatory reflex-induced changes in arterial blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We tested the hypothesis that a reduction in sympathetic tone to exercising forearm muscle would increase blood flow, reduce muscle acidosis, and attenuate reflex responses. Subjects performed a progressive, four-stage rhythmic handgrip protocol before and after forearm bier block with bretylium as forearm blood flow (Doppler) and metabolic (venous effluent metabolite concentration and (31)P-NMR indexes) and autonomic reflex responses (heart rate, blood pressure, and sympathetic nerve traffic) were measured. Bretylium inhibits the release of norepinephrine at the neurovascular junction. Bier block increased blood flow as well as oxygen consumption in the exercising forearm (P < 0.03 and P < 0.02, respectively). However, despite this increase in flow, venous K(+) release and H(+) release were both increased during exercise (P < 0.002 for both indexes). Additionally, minimal muscle pH measured during the first minute of recovery with NMR was lower after bier block (6.41 +/- 0.08 vs. 6.20 +/- 0.06; P < 0.036, simple effects). Meanwhile, reflex effects were unaffected by the bretylium bier block. The results support the conclusion that sympathetic stimulation to muscle during exercise not only limits muscle blood flow but also appears to limit anaerobiosis and H(+) release, presumably through a preferential recruitment of oxidative fibers.  相似文献   

16.
Congestive heart failure (CHF) induces abnormal regulation of peripheral blood flow during exercise. Previous studies have suggested that a reflex from contracting muscle is disordered in this disease. However, there has been very little investigation of the muscle reflex regulating sympathetic outflows in CHF. Myocardial infarction (MI) was induced by the coronary artery ligation in rats. Echocardiography was performed to determine fractional shortening (FS), an index of the left ventricular function. We examined renal and lumbar sympathetic nerve activities (RSNA and LSNA, respectively) during 1-min repetitive (1- to 4-s stimulation to relaxation) contraction or stretch of the triceps surae muscles. During these interventions, the RSNA and LSNA responded synchronously as tension was developed. The RSNA and LSNA responses to contraction were significantly greater in MI rats (n = 13) with FS <30% than in control animals (n = 13) with FS >40% (RSNA: +49 +/- 7 vs. +19 +/- 4 a.u., P < 0.01; LSNA: +28 +/- 7 vs. +8 +/- 2 a.u., P < 0.01) at the same tension development. Stretch also increased the RSNA and LSNA to a larger degree in MI (n = 13) than in control animals (n = 13) (RSNA: +36 +/- 6 vs. +19 +/- 3 a.u., P < 0.05; LSNA: +24 +/- 3 vs. +9 +/- 2 a.u., P < 0.01). The data demonstrate that CHF exaggerates sympathetic nerve responses to muscle contraction as well as stretch. We suggest that muscle afferent-mediated sympathetic outflows contribute to the abnormal regulation of peripheral blood flow seen during exercise in CHF.  相似文献   

17.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

18.
The purpose of this study was to determine whether the proportion of skeletal muscle in the fat-free soft tissue mass (FFST) is the same in men with spinal cord injury (SCI) and able-bodied controls. Skeletal muscle mass and FFST of the midthigh were determined by using magnetic resonance imaging and dual-energy X-ray absorptiometry, respectively, in men with long-term (>2 yr) complete SCI (n = 8) and able-bodied controls of similar age, height, and weight (n = 8). Muscle mass (1.36 +/- 0.77 vs. 2.44 +/- 0.47 kg) and FFST (1.70 +/- 0.94 vs. 2.73 +/- 0.80 kg) were lower in the SCI group than in the controls (P < 0.05), but the lower ratio of muscle to FFST in the SCI group (0.80 +/- 0.09 vs. 0.91 +/- 0.10, P < 0.05) suggested that they had a lower proportion of muscle in the FFST than in controls. This notion was supported by analysis of covariance, in that the mean muscle adjusted to the mean FFST of the groups combined was lower in the SCI group. Despite the lower proportion of muscle in the FFST of the SCI group, the relation between muscle and FFST was strong in the SCI group (r = 0.99) and controls (r = 0.96). The findings suggest a disproportionate loss of muscle in the paralyzed thighs after SCI relative to other nonfat constituents, which may be accurately estimated in men with long-term SCI by dual-energy X-ray absorptiometry if the lower proportion of muscle in the FFST (approximately 15%) is taken into account.  相似文献   

19.
Respiratory muscle fatigue develops during exhaustive exercise and can limit exercise performance. Respiratory muscle training, in turn, can increase exercise performance. We investigated whether respiratory muscle endurance training (RMT) reduces exercise-induced inspiratory and expiratory muscle fatigue. Twenty-one healthy, male volunteers performed twenty 30-min sessions of either normocapnic hyperpnoea (n = 13) or sham training (CON, n = 8) over 4-5 wk. Before and after training, subjects performed a constant-load cycling test at 85% maximal power output to exhaustion (PRE(EXH), POST(EXH)). A further posttraining test was stopped at the pretraining duration (POST(ISO)) i.e., isotime. Before and after cycling, transdiaphragmatic pressure was measured during cervical magnetic stimulation to assess diaphragm contractility, and gastric pressure was measured during thoracic magnetic stimulation to assess abdominal muscle contractility. Overall, RMT did not reduce respiratory muscle fatigue. However, in subjects who developed >10% of diaphragm or abdominal muscle fatigue in PRE(EXH), fatigue was significantly reduced after RMT in POST(ISO) (inspiratory: -17 +/- 6% vs. -9 +/- 10%, P = 0.038, n = 9; abdominal: -19 +/- 10% vs. -11 +/- 11%, P = 0.038, n = 9), while sham training had no significant effect. Similarly, cycling endurance in POST(EXH) did not improve after RMT (P = 0.071), while a significant improvement was seen in the subgroup with >10% of diaphragm fatigue after PRE(EXH) (P = 0.017), but not in the sham training group (P = 0.674). However, changes in cycling endurance did not correlate with changes in respiratory muscle fatigue. In conclusion, RMT decreased the development of respiratory muscle fatigue during intensive exercise, but this change did not seem to improve cycling endurance.  相似文献   

20.
We examined the effect of an age-related leftward shift in the force-frequency relationship on the comparative quadriceps fatigability of nine young (27 +/- 1 yr old) and nine old men (78 +/- 1 yr old) during low-frequency electrical stimulation. Two different protocols of intermittent trains (6 pulses on, 650 ms off) of electrical stimulation at 25% maximum voluntary contraction were performed by both groups: 1) 180 trains at 14.3 Hz [constant frequency (CF) protocol], and 2) 180 trains at the frequency corresponding to 60% of each subject's force-frequency curve [normalized frequency (NF) protocol; young 14.9 +/- 0.4 vs. old 12.7 +/- 0.5 Hz; P < 0.05]. The quadriceps of the old men were weaker (approximately 31%) and relaxation was slower compared with the young men, as assessed by the maximal relaxation rate constant of the 50-Hz tetanus (young 12.1 +/- 0.2 vs. old 9.2 +/- 0.5 s(-1); P < 0.05) and a leftward shift in the force-frequency relationship. The NF protocol revealed a decreased fatigability in the quadriceps with old age (percentage of 1st contraction force remaining at 180th: old 63.4 +/- 1.5 vs. young 58.2 +/- 1.7%; P < 0.05) that was masked during the CF protocol (old 60.7 +/- 1.6 vs. young 58.6 +/- 2.3%; P > 0.05). Irrespective of the protocol, the maximal relaxation rate was reduced to approximately 73 and approximately 57% of the prefatigue value in the young and old men, respectively. The age-related leftward shift in the force-frequency relationship of the quadriceps contributed to an underestimation of the fatigue resistance with old age during the CF protocol. However, when the stimulation frequency used in the NF protocol was adjusted to account for the age-related shift in the force-frequency relationship, the quadriceps muscles of the old men were less fatigable than those of the young men. Thus we suggest that whole muscle fatigability is better examined by electrical stimulation protocols that are adjusted for inter- and intragroup differences in the force-frequency relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号