首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mast cells have been implicated as the central effectors in allergic responses, yet a fatal anaphylactic response can be induced in mast cell-deficient mice. In this study, we examined the immediate hypersensitivity response in wild-type (WT) and mast cell-deficient mice (W/W(v)) in two different tissues (skin and skeletal muscle). Vascular permeability and leukocyte recruitment were studied after immediate challenge or 4 h postchallenge in OVA-sensitized mice. In skin, immediate challenge induced a significant increase in vascular permeability (75%) within 30 min and was accompanied by increased leukocyte adhesion 4 h postchallenge. In the absence of mast cells, no changes in vascular permeability or leukocyte recruitment were observed in skin. In WT skeletal muscle, immediate challenge induced a rapid increase (80%) in vascular permeability within 5 min and significant leukocyte recruitment after 4 h. Surprisingly, in W/W(v), a gradual increase in vascular permeability was observed, reaching a maximum (50%) within 30 min. Despite the absence of mast cells, subsequent leukocyte emigration was similar to that observed in WT mice. Pretreatment with anti-platelet serum in W/W(v) returned Ag-induced vascular permeability and leukocyte recruitment to baseline. Platelets were shown to interact with endothelium in skeletal muscle, but not dermal microvasculature. These data illustrate that mast cells play a prominent role in vascular permeability and leukocyte recruitment in skin in response to Ag, however, in skeletal muscle; these changes can occur in the absence of mast cells, and are mediated, in part, by the presence of platelets.  相似文献   

2.
To study the mechanisms involved in leukocyte recruitment induced by local bacterial infection within the CNS, we used intravital microscopy to visualize the interaction between leukocytes and the microvasculature in the brain. First, we showed that intracerebroventricular injection of LPS could cause significant rolling and adhesion of leukocytes in the brain postcapillary venules of wild-type mice, while negligible recruitment was observed in TLR4-deficient C57BL/10ScCr mice and CD14 knockout mice, suggesting recruitment is mediated by TLR4/CD14-bearing cells. Moreover, we observed reduced but not complete inhibition of recruitment in MyD88 knockout mice, indicating both MyD88-dependent and -independent pathways are involved. The leukocyte recruitment responses in chimeric mice with TLR4-positive microglia and endothelium, but TLR4-negative leukocytes, were comparable to normal wild-type mice, suggesting either endothelium or microglia play a crucial role in the induction of leukocyte recruitment. LPS injection induced both microglial and endothelial activation in the CNS. Furthermore, minocycline, an effective inhibitor of microglial activation, completely blocked the rolling and adhesion of leukocytes in the brain and blocked TNF-alpha production in response to LPS in vivo. Minocycline did not affect activation of endothelium by LPS in vitro. TNFR p55/p75 double knockout mice also exhibited significant reductions in both rolling and adhesion in response to LPS, indicating TNF-alpha signaling is critical for the leukocyte recruitment. Our results identify a TLR4 detection system within the blood-brain barrier. The microglia play the role of sentinel cells detecting LPS thereby inducing endothelial activation and leading to efficient leukocyte recruitment to the CNS.  相似文献   

3.
During systemic inflammation, recruitment and activation of leukocytes in the pulmonary microcirculation may result in a potentially life-threatening acute lung injury. We elucidated the role of the poly(ADP-ribose) synthetase (PARS), a nucleotide-polymerizing enzyme, in the regulation of leukocyte recruitment within the lung with regard to the localization in the pulmonary microcirculation and in correlation to hemodynamics in the respective vascular segments and expression of intercellular adhesion molecule 1 during endotoxemia. Inhibition of PARS by 3-aminobenzamide reduced the endotoxin-induced leukocyte recruitment within pulmonary arterioles, capillaries, and venules in rabbits as quantified by in vivo fluorescence microscopy. Microhemodynamics and thus shear rates in all pulmonary microvascular segments remained constant. Simultaneously, inhibition of PARS with 3-aminobenzamide suppressed the endotoxin-induced adhesion molecules expression as demonstrated for intercellular adhesion molecule 1 by immunohistochemistry and Western blot analysis. We confirmed this result with the use of PARS knockout mice. The inhibitory effect of 3-aminobenzamide on leukocyte recruitment was associated with a reduction of pulmonary capillary leakage and edema formation. We first provide evidence that PARS activation mediates the leukocyte sequestration in pulmonary microvessels through upregulation of adhesion molecules. As reactive oxygen species released from leukocyte are supposed to cause an upregulation of adhesion molecules we conclude that PARS inhibition contributes to termination of this vicious cycle and inhibits the inflammatory process.  相似文献   

4.
Inflammation is characterized by the recruitment of leukocytes from the vasculature. Recent studies have implicated chemokines as an important class of mediators that function principally to stimulate leukocyte recruitment, and in some cases, leukocyte activity. There are four defined chemokine subfamilies based on their primary structure, CXC, CC, C and CX3C. Members of the CC chemokine subfamily, such as monocyte chemoattractant protein 1 (MCP-1), are chemotactic for monocytes and other leukocyte subsets. The studies described below focus on the expression of MCP-1 in vitro and in vivo in an osseous environment. These studies indicate that MCP-1 is typically not expressed in normal bone or by normal osteoblasts in vitro. Upon stimulation by inflammatory mediators, MCP-1 is up-regulated. This expression is temporally and spatially associated with the recruitment of monocytes in both osseous inflammation and during developmentally regulated bone remodelling. Furthermore, exogenous MCP-1 applied to inflamed bone enhances the recruitment of monocytes. Because monocytes produce factors that influence osseous metabolism, including but not limited to prostglandins, platelet-derived growth factor, interleukin-1 or tumor necrosis factor, chemokines that initiate their recruitment are likely to be highly important.  相似文献   

5.
Reperfusion of ischemic tissues results in development of a proinflammatory, prothrombogenic phenotype, culminating in the recruitment of leukocytes and platelets within postcapillary venules. Recent studies have indicated an interdependence of platelet and leukocyte adhesion, suggesting that heterotypic blood cell interactions may account for postischemic platelet recruitment. The objectives of this study were to 1) determine whether ischemia-reperfusion (I/R)-induced platelet recruitment is leukocyte dependent and 2) quantify the contributions of leukocytes and endothelial cells in this platelet recruitment. Intravital microscopy was used to monitor the recruitment of fluorescently labeled platelets in postcapillary venules of the small intestine after 45-min ischemia and 4-h reperfusion. To assess the leukocyte dependence of platelet adhesion, platelets from wild-type mice were infused into mice deficient in neutrophils and/or lymphocytes and mice deficient in key leukocyte adhesion molecules (CD18 and ICAM-1). These antileukocyte strategies resulted in significantly reduced platelet recruitment. Simultaneous visualization of platelets and leukocytes enabled quantification of leukocyte-dependent and endothelium-dependent platelet adhesion. It was observed that in wild-type animals 74% of I/R-induced platelet adhesion was a result of platelet-leukocyte interactions. Although the majority of adherent platelets were associated with leukocytes, <50% of adherent leukocytes were platelet bearing, suggesting that not all adherent leukocytes support platelet adhesion. These results are consistent with leukocytes playing a major role in supporting I/R-induced platelet adhesion.  相似文献   

6.
The renal glomerulus is one of the few sites within the microvasculature in which leukocyte recruitment occurs in capillaries. However, due to the difficulty of directly visualizing the glomerulus, the mechanisms of leukocyte recruitment to glomerular capillaries are poorly understood. To overcome this, we rendered murine kidneys hydronephrotic to allow the visualization of the functional glomerular microvasculature during an inflammatory response. These experiments demonstrated that following infusion of anti-glomerular basement membrane (GBM) Ab, leukocytes became adherent in glomerular capillaries via a process of immediate arrest, without undergoing prior detectable rolling. However, despite the absence of rolling, this recruitment involved nonredundant roles for the P-selectin/P-selectin glycoprotein ligand-1 and beta2 integrin/ICAM-1 pathways, suggesting that a novel form of the multistep leukocyte adhesion cascade occurs in these vessels. Anti-GBM Ab also increased glomerular P-selectin expression and induced a P-selectin-independent increase in platelet accumulation. Moreover, platelet depletion prevented both the increase in glomerular P-selectin, and the leukocyte recruitment induced by anti-GBM Ab. Furthermore, depletion of neutrophils and platelets also prevented the increase in urinary protein excretion induced by anti-GBM Ab, indicating that their accumulation in glomeruli contributed to the development of renal injury. Finally, infusion of wild-type platelets into P-selectin-deficient mice restored the ability of glomeruli in these mice to support leukocyte adhesion. Together, these data indicate that anti-GBM Ab-induced leukocyte adhesion in glomeruli occurs via a novel pathway involving a nonrolling interaction mediated by platelet-derived P-selectin.  相似文献   

7.
Rolling on the venular endothelium is a critical step in the recruitment of leukocytes during the inflammatory response. P-selectin is a key mediator of leukocyte rolling, which is an early event in the inflammatory cascade; this rolling is likely to be directly regulated by both local fluid shear forces and P-selectin site densities in the microvasculature. However, neither the spatial pattern of P-selectin expression in postcapillary venules nor the effect of local expression patterns on rolling behavior in intact functional venules is known. We investigated the influence of local shear forces and the spatial distribution of endothelial P-selectin in intact blood perfused post capillary venules in anesthetized mice using intravital confocal microscopy, high temporal resolution particle tracking, and immunofluorescent labeling. We demonstrated a shear-dependent increase in average leukocyte rolling velocity that was attributable to a shear-dependent increase in the occurrence of transient leukocyte detachments from the endothelial surface: translational velocity during leukocyte contact with the vessel wall remained constant. P-selectin expression was not different in venules with characteristically different shear rates or diameters but varied significantly within individual venules. In postcapillary venules, regions of high P-selectin expression correlated with regions of slow leukocyte rolling. Thus the characteristically variable leukocyte rolling in vivo is a function of the spatial heterogeneity in P-selectin expression. The study shows how the local hydrodynamic forces and the nonuniform pattern of P-selectin expression affect the behavior of interacting leukocytes, providing direct evidence for the local variation of adhesion molecule expression as a mechanism for the regulation of leukocyte recruitment.  相似文献   

8.
We have shown previously that excessive distention of the rat trachea during mechanical ventilation results in enhanced leukocyte recruitment to the airway (Lim LH and Wagner EM. Am J Respir Crit Care Med 168:1068-1074, 2003). The objectives of this study were to develop a mouse model of positive end-expiratory pressure (PEEP)-induced leukocyte recruitment to the airway and begin to pursue molecular mechanisms that may contribute to the in vivo observation of increased leukocyte adhesion after PEEP exposure. We studied C57BL/6 wild-type mice and mice deficient in P-selectin or intercellular adhesion molecule-1 (ICAM-1) exposed to intermittent PEEP (8 cmH(2)O) applied five times for a 1-min duration, at 10-min intervals. After the imposed ventilatory stress, during normal ventilation (0.2 ml/breath, no PEEP), leukocyte adhesion in tracheal postcapillary venules was determined using intravital microscopy. PEEP induced a time-dependent increase in leukocyte adhesion that was significantly increased between 0 and 60 min (P < 0.01). Furthermore, PEEP-induced leukocyte adhesion at 60 min was ablated in P-selectin- and ICAM-1-deficient mice. These findings demonstrate the essential nature of both P-selectin and ICAM-1 within airway postcapillary venular endothelium for leukocyte recruitment after airway distension.  相似文献   

9.
Cell adhesion mediated by integrin receptors is controlled by intracellular signal transduction cascades. Cytohesin-1 is an integrin-binding protein and guanine nucleotide exchange factor that activates binding of the leukocyte integrin leukocyte function antigen-1 to its ligand, intercellular adhesion molecule 1. Cytohesin-1 bears a carboxyl-terminal pleckstrin homology domain that aids in reversible membrane recruitment and functional regulation of the protein. Although phosphoinositide-dependent membrane attachment of cytohesin-1 is mediated primarily by the pleckstrin homology domain, this function is further strengthened by a short carboxyl-terminal polybasic amino acid sequence. We show here that a serine/threonine motif within the short polybasic stretch of cytohesin-1 is phosphorylated by purified protein kinase C delta in vitro. Furthermore, the respective residues are also found to be phosphorylated after phorbol ester stimulation in vivo. Biochemical and functional analyses show that phosphorylated cytohesin-1 is able to tightly associate with the actin cytoskeleton, and we further demonstrate that phosphorylation of the protein is required for maximal leukocyte function antigen-1-mediated adhesion of Jurkat cells to intercellular adhesion molecule 1. These data suggest that both phosphatidylinositol 3-kinase and protein kinase C-dependent intracellular pathways that stimulate beta(2)-integrin-mediated adhesion of T lymphocytes converge on cytohesin-1 as functional integrator.  相似文献   

10.
Excess leukocyte recruitment to the lung plays a central role in the development or exacerbation of several lung inflammatory diseases including chronic obstructive pulmonary disease. Epoxyeicosatrienoic acids (EETs) are cytochrome P-450 metabolites of arachidonic acid reported to have multiple biological functions, including blocking of leukocyte recruitment to inflamed endothelium in cell culture through reduction of adhesion molecule expression. Inhibition of the EET regulatory enzyme, soluble epoxide hydrolase (sEH) also has been reported to have anti-inflammatory effects in vivo including reduced leukocyte recruitment to the lung. We tested the hypothesis that the in vivo anti-inflammatory effects of sEH inhibitors act through the same mechanisms as the in vitro anti-inflammatory effects of EETs in a rat model of acute inflammation following exposure to tobacco smoke. Contrary to previously published data, we found that sEH inhibition did not reduce tobacco smoke-induced leukocyte recruitment to the lung. Furthermore, sEH inhibition did not reduce tobacco smoke-induced adhesion molecule expression in the lung vasculature. Similarly, concentrations of EETs greater than or equal to their reported effective dose did not reduce TNFα induced expression of the adhesion molecules. These results suggest that the anti-inflammatory effects of sEH inhibitors are independent of leukocyte recruitment and EETs do not reduce the adhesion molecules responsible for leukocyte recruitment in vitro. This demonstrates that the widely held belief that sEH inhibition prevents leukocyte recruitment via EET prevention of adhesion molecule expression is not consistently reproducible.  相似文献   

11.
12.
Immune system impairment and increased susceptibility to infection among alcohol abusers is a significant but not well-understood problem. We hypothesized that acute ethanol administration would inhibit leukocyte recruitment and endothelial cell activation during inflammation and infection. Using LPS and carrageenan air pouch models in mice, we found that physiological concentrations of ethanol (1-5 g/kg) significantly blocked leukocyte recruitment (50-90%). Because endothelial cell activation and immune cell-endothelial cell interactions are critical regulators of leukocyte recruitment, we analyzed the effect of acute ethanol exposure on endothelial cell activation in vivo using the localized Shwartzman reaction model. In this model, ethanol markedly suppressed leukocyte accumulation and endothelial cell adhesion molecule expression in a dose-dependent manner. Finally, we examined the direct effects of ethanol on endothelial cell activation and leukocyte-endothelial cell interactions in vitro. Ethanol, at concentrations within the range found in human blood after acute exposure and below the levels that induce cytotoxicity (0.1-0.5%), did not induce endothelial cell activation, but significantly inhibited TNF-mediated endothelial cell activation, as measured by adhesion molecule (E-selectin, ICAM-1, VCAM-1) expression and chemokine (IL-8, MCP-1, RANTES) production and leukocyte adhesion in vitro. Studies exploring the potential mechanism by which ethanol suppresses endothelial cell activation revealed that ethanol blocked NF-kappaB nuclear entry in an IkappaBalpha-dependent manner. These findings support the hypothesis that acute ethanol overexposure may increase the risk of infection and inhibit the host inflammatory response, in part, by blocking endothelial cell activation and subsequent immune cell-endothelial cell interactions required for efficient immune cell recruitment.  相似文献   

13.
Chemokine-chemokine receptor interactions mediate constitutive leukocyte trafficking and leukocyte recruitment to sites of infection and inflammation. We suggest that a multiplicity of leukocyte chemoattractants exists to increase the selectivity of leukocyte recruitment in a range of physiological and pathological settings.  相似文献   

14.
Chemokines are a class of inflammatory mediators which main function is to direct leukocyte migration through the binding to G protein-coupled receptors (GPCRs). In addition to these functional, signal-transducing chemokine receptors other types of receptors belonging to the chemokine GPCR family were identified. They are called atypical or decoy chemokine receptors because they bind and degrade chemokines but do not transduce signals or activate cell migration. Here there is the summary of two recent papers that identified other nonchemotactic chemokine receptors: the Duffy antigen receptor for chemokines (DARC) that mediates trancytosis of chemokines from tissue to vascular lumen promoting chemokine-mediated leukocyte transmigration and chemokine (CC motif) receptor-like 2 (CCRL2) that neither internalizes its ligands nor transduces signals but presents bound ligands to functional signaling receptors improving their activity. Collectively these nonchemotactic chemokine receptors do not directly induce cell migration, but appear nonetheless to play a nonredundant role in leukocyte recruitment by shaping the chemoattractant gradient, either by removing, transporting or concentrating their cognate ligands.Key words: Chemokine, chemokine receptor, leukocyte recruitment, chemotaxis, transcytosis  相似文献   

15.
There is a close relationship between inflammatory bowel disease (IBD) and various hepatobiliary disorders. The objective of this study was to determine whether hepatic leukocyte recruitment occurs in experimental colitis. We used the murine model of colitis induced by 2,4-dinitrobenezenesulfonic acid (DNBS). Male C57Bl/6 mice received an intrarectal injection of 4 mg DNBS in 100 microl 50% ethanol. Controls received 100 microl 50% ethanol. The hepatic microcirculation was examined at 3 and 14 days post-DNBS by intravital video microscopy. Three days post-DNBS, when mice had developed acute colitis, there was associated hepatic leukocyte recruitment. Within the postsinusoidal venules there was a fourfold increase in the flux of rolling leukocytes that was P-selectin dependent but not alpha(4)-integrin dependent. There was also an increase in stationary leukocytes within the sinusoids, although this was not associated with an increase in serum alanine transaminase. By 14 days post-DNBS when macroscopic evidence of colonic inflammation was resolved, rolling within the postsinusoidal venules had returned to control levels. In this murine model of colitis, we describe a link between acute colonic inflammation and remote hepatic leukocyte recruitment that is P-selectin dependent. Active IBD may lead to remote hepatic inflammation.  相似文献   

16.
Ischemia/reperfusion (I/R) occurs in a number of pathological conditions, including myocardial infarction, stroke, and organ transplantation. During the reperfusion phase, leukocytes are recruited into affected tissues, where they can cause tissue damage and organ failure. Various in vitro models have been developed to study the role of adhesion molecules in I/R-mediated leukocyte recruitment. These models traditionally use isolated leukocytes and static conditions and, therefore, may not recapitulate the in vivo situation. We developed two novel in vitro models of I/R-mediated leukocyte recruitment in which leukocyte recruitment was examined using whole blood under shear conditions. Chemical treatments were used to mimic I/R in the first model, while sequential exposure to hypoxia/reoxygenation (H/R) was used to mimic I/R in the second model. We found that leukocytes were recruited from whole blood under shear conditions to endothelial cells treated with chemically induced I/R or H/R. In both models, mRNA for intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin was upregulated. The role of adhesion molecules in leukocyte recruitment differed slightly between the two models, with E-selectin and VCAM-1 playing approximately equal roles in leukocyte recruitment in the chemically induced I/R model and VCAM-1 being a central mediator of leukocyte recruitment in the H/R model.  相似文献   

17.
P-selectin glycoprotein ligand-1 plays an important role in leukocyte recruitment. Its binding affinity to selectins is modulated by posttranslational modifications. The polypeptide N-acetylgalactosamine transferase-1 (ppGalNAcT-1) initiates core-type protein O-glycosylation. To address whether the glycosylation of P-selectin glycoprotein ligand-1 by ppGalNAcT-1 is important for leukocyte recruitment in vivo, we investigated leukocyte recruitment in untreated and TNF-α-treated cremaster muscles comparing ppGalNAcT-1-deficient mice (Galnt1(-/-)) and wild-type mice. In untreated and TNF-α-treated Galnt1(-/-) mice, leukocyte rolling, adhesion, and transmigration were significantly reduced, with markedly increased rolling velocity compared with control mice. L-selectin-dependent leukocyte rolling was completely abolished in Galnt1(-/-) mice compared with wild-type mice. Thioglycollate-induced peritonitis experiments with chimeric mice revealed that hematopoietic ppGalNAcT-1 is important for leukocyte recruitment. These data show that the loss of ppGalNAcT-1 led to reduced leukocyte rolling and recruitment and increased rolling velocity, suggesting a predominant role for ppGalNAcT-1 in attaching functionally relevant O-linked glycans to selectin ligands.  相似文献   

18.
Thrombin-stimulated endothelium synthesizes numerous adhesion molecules to recruit leukocytes; however, it is unknown which intracellular pathways are responsible for this event. A recent report from our laboratory has shown that thrombin induces E-selectin expression and that blocking nuclear factor-kappa B (NF-kappa B) activity partially blocked both E-selectin expression (60%) and leukocyte recruitment. In this study, we systematically assessed the importance of p38 MAPK in thrombin-induced NF-kappa B activation and E-selectin-dependent leukocyte recruitment. Thrombin caused phosphorylation of p38 MAPK, its substrate ATF-2, and JNK MAPK, but not ERK MAPK. The p38 MAPK inhibitors, SKF86002 and SB-203580 only reduced ATF-2 activity. We treated human umbilical vein endothelial cells with SKF86002, 1 h before thrombin stimulation, and noted inhibition of NF-kappa B mobilization and complete inhibition of leukocyte rolling and adhesion in a laminar flow chamber. Significant inhibition of leukocyte recruitment and E-selectin expression was also observed with SB-203580. SKF86002 did not affect other systems, including tumor necrosis factor-alpha-induced E-selectin-dependent leukocyte recruitment. Moreover, thrombin-induced rapid mobilization of P-selectin from Weibel Palade bodies was not p38 MAPK dependent. These data suggest that thrombin induces p38 MAPK activation, which leads to NF-kappa B mobilization to the nucleus and causes the upregulation of E-selectin and subsequent leukocyte recruitment.  相似文献   

19.
Selective recruitment of eosinophils to sites of allergic and parasitic inflammation involves specific adhesion and activation signals expressed on or presented by stimulated endothelial cells. Here we examined leukocyte recruitment on cytokine-activated HUVEC under flow conditions. We perfused whole blood through a flow chamber to examine mechanisms of selective leukocyte recruitment. Although there was substantial recruitment of leukocytes on TNF-alpha-stimulated HUVEC, we found no selective accumulation of any particular leukocyte subpopulations. In contrast, fewer leukocytes were recruited to IL-4-stimulated HUVEC, but the recruitment was selective for eosinophils. We examined the role of adhesion molecules in these interactions and found that eosinophil recruitment was completely blocked with an alpha4 integrin mAb at the shear rates examined. A significant number of neutrophils were also recruited to IL-4-stimulated HUVEC, and these interactions required P-selectin and P-selectin glycoprotein ligand-1. Thus, whole blood perfusion over cytokine-activated endothelium revealed that IL-4-stimulated HUVEC support selective recruitment of eosinophils, whereas TNF-alpha-stimulated HUVEC lack selectivity for any leukocyte subclass.  相似文献   

20.
Leukocyte infiltration in atherosclerosis has been extensively investigated by using histological techniques on fixed tissues. In this study, intravital microscopic observations of leukocyte recruitment in the aorta of atherosclerotic mice were performed. Interactions between leukocytes and atherosclerotic endothelium were highly transient, thereby limiting the ability for rolling leukocytes to firmly adhere. Leukocyte rolling was abolished by function inhibition of P-selectin (P<0.001, n=8), whereas antibody blockage of E-selectin (n=10) decreased rolling leukocyte flux to 51 +/- 9.9% (mean+/-SE, P<0.01) and increased leukocyte rolling velocity to 162 +/- 18% (P<0.01) of pretreatment values. Notably, function inhibition of the integrin alpha(4) subunit (n=5) had no effect on rolling flux (107+/-25%, P=0.782) or rolling velocity (89+/-6.1%, P=0.147), despite endothelial expression of vascular cell adhesion molecule 1 (VCAM-1). Leukocytes interacting with atherosclerotic endothelium were predominantly neutrophils, because treatment with antineutrophil serum decreased rolling and neutrophil counts in peripheral blood to the same extent. In conclusion, we present the first direct observations of atherosclerosis in vivo. We show that transient dynamics of leukocyte-endothelium interactions are important regulators of arterial leukocyte recruitment and that leukocyte rolling in atherosclerosis is critically dependent on the endothelial selectins. This experimental technique and the data presented introduce a novel perspective for the study of pathophysiological events involved in large-vessel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号