首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amyloid deposited in Alzheimer's disease (AD) is composed primarily of a 39-42 residue polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). In previous studies, we and others identified full-length, membrane-associated forms of the beta APP and showed that these forms are processed into soluble derivatives that lack the carboxyl-terminus of the full-length forms. In this report, we demonstrate that the soluble approximately 125 and approximately 105 kDa forms of the beta APP found in human cerebrospinal fluid are specifically labeled by several different antisera to the beta AP. This finding indicates that both soluble derivatives contain all or part of the beta AP sequence, and it suggests that one or both of these forms may be the immediate precursor of the amyloid deposited in AD.  相似文献   

2.
The 39-43 residue polypeptide (amyloid beta protein, beta A4) deposited as amyloid in Alzheimer's disease (AD) is derived from a set of 695-770 residue precursors referred to as the amyloid beta A4 protein precursor (beta APP). In each of the 695, 751, and 770 residue precursors, the 43 residue beta A4 is an internal peptide that begins 99 residues from the COOH-terminus of the beta APP. Each holoform is normally cleaved within the beta A4 to produce a large secreted derivative as well as a small membrane associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire beta A4 peptide. In this study, we employ cells stably transfected with full length beta APP695, beta APP751, or beta APP770 expression constructs to show that phorbol ester activation of protein kinase C substantially increases the production of secreted forms from each isoform. By increasing processing of beta APP in the secretory pathway, PKC phosphorylation may help to prevent amyloid deposition.  相似文献   

3.
The cerebral amyloid deposited in Alzheimer's disease (AD) contains a 4.2 kDa beta amyloid polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). Three beta APP mRNAs encoding proteins of 695, 751, and 770 amino acids have previously been identified. In each of these, there is a single membrane-spanning domain close to the carboxyl-terminus of the beta APP, and the 42 amino acid beta AP sequence extends from within the membrane-spanning domain into the large extracellular region of the beta APP. We raised rabbit antisera to a peptide corresponding to amino acids 45-62 near the amino-terminus of the beta APP. We show that these antisera detect the beta APP by demonstrating that they (i) label a set of approximately 120 kDa membrane-associated proteins in human brain previously detected by antisera to the carboxyl-terminus of beta APP and (ii) label a set of approximately 120 kDa membrane-associated proteins that are selectively overexpressed in cells transfected with a full length beta APP expression construct. The beta APP45-62 antisera specifically stain senile plaques in AD brains. This finding, along with the previous demonstration that antisera to the carboxyl-terminus of the beta APP label senile plaques, indicates that both near amino-terminal and carboxyl-terminal domains of the beta APP are present in senile plaques and suggests that proteolytic processing of the full length beta APP molecule into insoluble amyloid fibrils occurs in a highly localized fashion at the sites of amyloid deposition in AD brains.  相似文献   

4.
The beta A4 protein, the major component of the amyloid deposition characterizing Alzheimer's disease, derives from the amyloid protein precursor (APP), an integral membrane protein with soluble derivatives. The function of APP is unknown. Both soluble and membrane-associated human brain APP (10(-10) M) significantly increased (P less than 0.025) neurite length and branching in pheochromocytoma PC12 cells, but did not affect the number of neurites per cell. At higher concentrations, APP was cytotoxic, with a half-maximal concentration of 5 x 10(-9) M. Nerve growth factor (NGF) is known to affect APP expression in vivo and in vitro. Antibodies to APP specifically diminished the effects of NGF on neurite length and branching. Thus APP may act to mediate neurite outgrowth promotion by NGF.  相似文献   

5.
Amyloid deposits in the brains of patients with Alzheimer's disease (AD) contain a protein (beta A4) which is abnormally cleaved from a larger transmembrane precursor protein (APP). APP is believed to be normally released from membranes by the action of a protease referred to as APP secretase. Amyloid deposits have also been shown to contain the enzyme acetylcholinesterase (AChE). In this study, a protease activity associated with AChE was found to possess APP secretase activity, stimulating the release of a soluble 100K form of APP from HeLa cells transfected with an APP cDNA. The AChE-associated protease was strongly and specifically inhibited by soluble APP (10 nM) isolated from human brain. The AChE-associated protease cleaved a synthetic beta A4 peptide at the predicted cleavage site. As AChE is decreased in AD, a deficiency of its associated protease might explain why APP is abnormally processed in AD.  相似文献   

6.
Alzheimer's disease (AD) is the most frequent cause of dementia, although no genetic abnormality has been identified. Recent studies have elucidated the molecular defect in AD, including the abnormal deposition of amyloid beta peptide (beta/A4) in senile plaques of affected individuals. Normal brain contains the enzyme, APP secretase, which cleaves inside the beta/A4 portion of the precursor protein (APP); abnormal processing of APP occurs in AD brain. Until now, no evidence has been provided that APP secretase is an intracellular proteinase. We have now prepared two synthetic substrates of APP secretase, both of which contain the cleavage point and are much more sensitive than substrates previously available to identify APP secretase. Using these substrates, we found an intracellular proteinase that has APP secretase activity. This proteinase has been identified as cathepsin B.  相似文献   

7.
Mass spectrometry of purified amyloid beta protein in Alzheimer's disease.   总被引:7,自引:0,他引:7  
The amyloid beta-protein (A beta) that is progressively deposited in Alzheimer's disease (AD) arises from proteolysis of the integral membrane protein, beta-amyloid precursor protein (beta APP). Although A beta formation appears to play a seminal role in AD, only a few studies have examined the chemical structure of A beta purified from brain, and there are discrepancies among the findings. We describe a new method for the rapid extraction and purification of A beta that minimizes artifactual proteolysis. A beta purified by two-dimensional reverse-phase HPLC was analyzed by combined amino acid sequencing and mass spectrometry after digestion with a lysylendopeptidase. The major A beta peptide in the cerebral cortex of all five AD brains examined was aspartic acid 1 to valine 40. A minor species beginning at glutamic acid 3 but blocked by conversion to pyroglutamate was also found in all cases. A species ending at threonine 43 was detected, varying from approximately 5 to 25% of total A beta COOH-terminal fragments. Peptides ending with valine 39, isoleucine 41, or alanine 42 were not detected, except for one brain with a minor peptide ending at valine 39. Our findings suggest that A beta 1-40 is the major species of beta-protein in AD cerebral cortex. A beta 1-40 and A beta 1-43 peptides could arise independently from beta APP, or A beta 1-43 could be the initial excised fragment, followed by digestion to yield A beta 1-40. These analyses of native A beta in AD brain recommend the use of synthetic A beta 1-40 peptide to model amyloid fibrillogenesis and toxicity in vitro.  相似文献   

8.
The amyloid precursor protein (APP) has been associated with Alzheimer's disease (AD) because APP is processed into the beta-peptide that accumulates in amyloid plaques, and APP gene mutations can cause early onset AD. Inflammation is also associated with AD as exemplified by increased expression of interleukin-1 (IL-1) in microglia in affected areas of the AD brain. Here we demonstrate that IL-1alpha and IL-1beta increase APP synthesis by up to 6-fold in primary human astrocytes and by 15-fold in human astrocytoma cells without changing the steady-state levels of APP mRNA. A 90-nucleotide sequence in the APP gene 5'-untranslated region (5'-UTR) conferred translational regulation by IL-1alpha and IL-1beta to a chloramphenicol acetyltransferase (CAT) reporter gene. Steady-state levels of transfected APP(5'-UTR)/CAT mRNAs were unchanged, whereas both base-line and IL-1-dependent CAT protein synthesis were increased. This APP mRNA translational enhancer maps from +55 to +144 nucleotides from the 5'-cap site and is homologous to related translational control elements in the 5'-UTR of the light and and heavy ferritin genes. Enhanced translation of APP mRNA provides a mechanism by which IL-1 influences the pathogenesis of AD.  相似文献   

9.
10.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major component of the plaques, amyloid beta peptide (Abeta), is generated from amyloid precursor protein (APP) by beta- and gamma-secretase-mediated cleavage. Because beta-secretase/beta-site APP cleaving enzyme 1 (BACE1) knockout mice produce much less Abeta and grow normally, a beta-secretase inhibitor is thought to be one of the most attractive targets for the development of therapeutic interventions for AD without apparent side-effects. Here, we report the in vivo inhibitory effects of a novel beta-secretase inhibitor, KMI-429, a transition-state mimic, which effectively inhibits beta-secretase activity in cultured cells in a dose-dependent manner. We injected KMI-429 into the hippocampus of APP transgenic mice. KMI-429 significantly reduced Abeta production in vivo in the soluble fraction compared with vehicle, but the level of Abeta in the insoluble fraction was unaffected. In contrast, an intrahippocampal injection of KMI-429 in wild-type mice remarkably reduced Abeta production in both the soluble and insoluble fractions. Our results indicate that the beta-secretase inhibitor KMI-429 is a promising candidate for the treatment of AD.  相似文献   

11.
Alzheimer's disease (AD) is a devastating neurological disorder and the leading cause of dementia among aged individuals. The human amyloid beta protein, which is a cleavage product of amyloid precursor protein (APP), is a major component of the amyloid deposited in the brain of patients with AD. By using PCR direct sequencing of exon 17 (encoding part of the beta protein) of the APP gene, we have found that a Japanese AD patient harbours a C to T substitution, responsible for a valine to isoleucine change at position 717, heterogeneously. The mutation is exactly the same as that found in a Caucasian AD family by Goate et al. (1). Furthermore, the mutation was shown to co-segregate with AD in his family. These results suggest that the Val----Ile change in the APP causes AD, regardless of ethnic background.  相似文献   

12.
BACKGROUND: High levels of A beta in the cerebral cortex distinguish demented Alzheimer's disease (AD) from nondemented elderly individuals, suggesting that decreased amyloid-beta (A beta) peptide clearance from the brain is a key precipitating factor in AD. MATERIALS AND METHODS: The levels of A beta in brain and plasma as well as apolipoprotein E (ApoE) in brain were investigated by enzyme-linked immunosorbent assay (ELISA) and Western blotting at various times during the life span of the APP23 transgenic (Tg) and control mice. Histochemistry and immunocytochemistry were used to assess the morphologic characteristics of the brain parenchymal and cerebrovascular amyloid deposits and the intracellular amyloid precursor protein (APP) deposits in the APP23 Tg mice. RESULTS: No significant differences were found in the plasma levels of A beta between the APP23 Tg and control mice from 2-20 months of age. In contrast, soluble A beta levels in the brain were continually elevated, increasing 4-fold at 2 months and 33-fold in the APP23 Tg mice at 20 months of age when compared to the control mice. Soluble A beta42 was about 60% higher than A beta40. In the APP23 Tg mice, insoluble A beta40 remained at basal levels in the brain until 9 months and then rose to 680 microg/g cortex by 20 months. Insoluble A beta40 was negligible in non-Tg mice at all ages. Insoluble A beta42 in APP23 Tg mice rose to 60 microg/g cortex at 20 months, representing 24 times the control A beta42 levels. Elevated levels of ApoE in the brain were observed in the APP23 Tg mice at 2 months of age, becoming substantially higher by 20 months. ApoE colocalized with A beta in the plaques. Beta-amyloid precursor protein (betaAPP) deposits were detected within the neuronal cytoplasm from 4 months of age onward. Amyloid angiopathy in the APP23 Tg mice increased markedly with age, being by far more severe than in the Tg2576 mice. CONCLUSIONS: We suggest that the APP23 Tg mouse may develop an earlier blockage in A beta clearance than the Tg2576 mice, resulting in a more severe accumulation of A beta in the perivascular drainage pathways and in the brain. Both Tg mice reflect decreased A beta elimination and as models for the amyloid cascade they are useful to study AD pathophysiology and therapy.  相似文献   

13.
We reported previously that the carbohydrate domain of the amyloid precursor protein is involved in amyloid precursor protein (APP)-APP interactions. Functional in vitro studies suggested that this interaction occurs through the collagen binding site of APP. The physiological significance remained unknown, because it is not understood whether and how APP dimerization occurs in vivo. Here we report that cellular APP exists as homodimers matching best with a two-site model. Consistent with our published crystallographic data, we show that a deletion of the entire sequence after the kunitz protease inhibitor domain did not abolish APP homodimerization, suggesting that two domains are critically involved but that neither is essential for homodimerization. Finally, we generated stabilized dimers by expressing mutant APP with a single cysteine in the ectodomain juxtamembrane region. Mutation of Lys(624) to cysteine produced approximately 6-8-fold more A beta than cells expressing normal APP. Our results suggest that amyloid A beta production can in principle be positively regulated by dimerization in vivo. We suggest that dimerization could be a physiologically important mechanism for regulating the proposed signal activity of APP.  相似文献   

14.
Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.  相似文献   

15.
The deposition of amyloid β (Aβ) in blood vessels of the brain, known as cerebral amyloid angiopathy (CAA), is observed in most patients with Alzheimer’s disease (AD). Compared with the pathology of CAA in humans, the pathology in most mouse models of AD is not as evident, making it difficult to examine the contribution of CAA to the pathogenesis of AD. On the basis of biochemical analyses that showed blood levels of soluble amyloid precursor protein (APP) in rats and mice were markedly lower than those measured in human samples, we hypothesized that endothelial APP expression would be markedly lower in rodents and subsequently generated mice that specifically express human WT APP (APP770) in endothelial cells (ECs). The resulting EC-APP770+ mice exhibited increased levels of serum Aβ and soluble APP, indicating that endothelial APP makes a critical contribution to blood Aβ levels. Even though aged EC-APP770+ mice did not exhibit Aβ deposition in the cortical blood vessels, crossing these animals with APP knock-in mice (AppNL-F/NL-F) led to an expanded CAA pathology, as evidenced by increased amounts of amyloid accumulated in the cortical blood vessels. These results highlight an overlooked interplay between neuronal and endothelial APP in brain vascular Aβ deposition. We propose that these EC-APP770+:AppNL-F/NL-F mice may be useful to study the basic molecular mechanisms behind the possible breakdown of the blood–brain barrier upon administration of anti-Aβ antibodies.  相似文献   

16.
Bilobalide (BB) is a sesquiterpenoid extracted from Ginkgo biloba leaves. An increasing number of studies have demonstrated its neuroprotective effects. The neuroprotective mechanisms may be associated with modulation of intracellular signaling cascades such as the phosphatidyl inositol 3-kinase (PI3K) pathway. Using differentiated SH-SY5Y cells, this study investigated whether BB modulation of intracellular signaling pathways, such as the protein kinase C (PKC) and PI3K pathways, contributes to amyloid precursor protein (APP) metabolism, a key event in the pathogenesis of Alzheimer’s disease (AD). We demonstrated in this study that BB enhanced the secretion of α-secretase-cleaved soluble amyloid precursor protein (sAPPα, a by-product of non-amyloidogenic processing of APP) and decreased the β amyloid protein (Aβ, a by-product of amyloidogenic processing of APP) via PI3K-dependent pathway. The PI3K pathway mediated the rapid effect of BB on APP processing possibly via regulation of intracellular APP trafficking. After longer time BB incubation (12 h), this effect was reinforced by PI3K pathway-mediated up-regulation of disintegrin and metalloproteinase domain-containing protein 10 (ADAM10, an α-secretase candidate). Given the strong association between APP metabolism and AD pathogenesis, the ability of BB to regulate APP processing suggests its potential use in AD prevention.  相似文献   

17.
The proteolytic processing of amyloid precursor protein (APP) through the formation of membrane-bound C-terminal fragments (CTFs) and of soluble beta-amyloid peptides likely influences the development of Alzheimer's disease (AD). We show that in human brain a subset of CTFs are tyrosine-phosphorylated and form stable complexes with the adaptor protein ShcA. Grb2 is also part of these complexes, which are present in higher amounts in AD than in control brains. ShcA immunoreactivity is also greatly enhanced in patients with AD and occurs at reactive astrocytes surrounding cerebral vessels and amyloid plaques. A higher amount of phospho-ERK1,2, likely as result of the ShcA activation, is present in AD brains. In vitro experiments show that the ShcA-CTFs interaction is strictly confined to glial cells when treated with thrombin, which is a well known ShcA and ERK1,2 activator and a regulator of APP cleavage. In untreated cells ShcA does not interact with either APP or CTFs, although they are normally generated. Altogether these data suggest that CTFs are implicated in cell signaling via Shc transduction machinery, likely influencing MAPK activity and glial reaction in AD patients.  相似文献   

18.
19.
Human bleomycin hydrolase (hBH) is a neutral cysteine protease that may regulate the secretion of soluble amyloid precursor protein (APP) and amyloid beta (A(beta)), which is a major constituent of the Alzheimer's disease-associated amyloid plaques. We have now determined that APP interacts with hBH by using yeast two hybrid methods and in vitro binding studies revealed that APP interacted with a 68 amino acid region that includes the catalytic domain of hBH. Ectopic expression of hBH increased the secretion of A(beta) but not of a second secreted protein, apolipoprotein A-I. Expression of hBH in which the catalytic cysteine 73 was mutated to serine failed to increase A(beta) secretion. These results indicate a critical role for cysteine 73 of hBH in mediating APP processing.  相似文献   

20.
Amyloid Precursor Protein (APP) processing to amyloid beta (Aβ) is a major hallmark of Alzheimer's disease (AD). The amyloid cascade hypothesis postulates that Aβ accumulation and aggregation causes AD, however many therapeutics targeting Aβ have failed recently. Decades of research describe metabolic deficits in AD. Mitochondrial dysfunction is observed in AD subjects within the brain and systemically. APP and γ-secretase are localized to mitochondria. APP can be processed within mitochondria and its localization to mitochondria affects function. Here we discuss the evidence showing APP and γ-secretase localize to mitochondria. We also discuss the implications for the function of APP and its cleavage products in regulating mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号