首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution structure of the self-complementary DNA hexamer 5' d(C-G-T-A-C-G)2 is refined by restrained molecular dynamics in which 192 interproton distances, determined from pre-steady-state nuclear Overhauser enhancement measurements, are incorporated into the total energy of the system in the form of effective potentials. First the method is tested by applying an idealized set of distance restraints taken from classical B-DNA to a simulation starting off from A-DNA and vice versa. It is shown that in both cases the expected transition between A- and B-DNA occurs. Second, a set of restrained molecular dynamics calculations is carried out starting from both A- and B-DNA with the experimental interproton distances for 5' d(C-G-T-A-C-G)2 as restraints. Convergence to the same B-type structure is achieved with the interproton distances equal to the measured values within experimental error. The root-mean-square atomic difference between the two average restrained dynamics structures (less than 1 A) is approximately the same as the root-mean-square fluctuations of the atoms.  相似文献   

2.
The solution structure of the self-complementary dodecamer 5'd(CGCGPATTCGCG)2, containing a purine-thymine base pair within the hexameric canonical recognition site GAATTC for the restriction endonuclease EcoRI, is investigated by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. Nonexchangeable and exchangeable protons are assigned in a sequential manner. A set of 228 approximate interproton distance restraints are derived from two-dimensional nuclear Overhauser enhancement spectra recorded at short mixing times. These distances are used as the basis for refinement using restrained molecular dynamics in which the interproton distance restraints are incorporated into the total energy function of the system in the form of effective potentials. Eight calculations are carried out, four starting from classical A-DNA and four from classical B-DNA. In all cases convergence to very similar B-type structures is achieved with an average atomic root mean square (rms) difference between the eight converged structures of 0.7 +/- 0.2 A, compared to a value of 6.5 A for that between the two starting structures. It is shown that the introduction of the purine-thymine mismatch does not result in any significant distortion of the structure. The variations in the helical parameters display a clear sequence dependence. The variation in helix twist and propeller twist follows Calladine's rules and can be attributed to the relief of interstrand purine-purine clash at adjacent base pairs. Overall the structure is straight. Closer examination, however, reveals that the central 5 base pair steps describe a smooth bend directed toward the major groove with a radius of curvature of approximately 38 A, which is compensated by two smaller kinks in the direction of the minor groove at base pair steps 3 and 9. These features can be explained in terms of the observed variation in roll and slide.  相似文献   

3.
The solution conformation of the self-complementary RNA-DNA hybrid hexamer 5'-[r(GCA)d(TGC)]2 is investigated by NMR spectroscopy and restrained molecular dynamics. The 1H-NMR spectrum is assigned in a sequential manner using two-dimensional homonuclear Hartmann-Hahn and nuclear Overhauser enhancement spectroscopy. From the latter a set of 178 approximate interproton distance restraints are determined and used as the basis of a structure refinement by restrained molecular dynamics. Eight independent calculations are carried out, four from a classical A-type geometry and four from a classical B-type one. Convergence is achieved to very similar A-type structures with an average atomic root mean square difference between them of 1.0 +/- 0.2 A. The converged structures exhibit variations in helical parameters similar to those found previously for the analogue RNA hexamer 5'-r(GCAUGC)2 [(1988) Biochemistry 27, 1735-1743].  相似文献   

4.
An automated method, based on the principle of simulated annealing, is presented for determining the three-dimensional structures of proteins on the basis of short (less than 5 A) interproton distance data derived from nuclear Overhauser enhancement (NOE) measurements. The method makes use of Newton's equations of motion to increase temporarily the temperature of the system in order to search for the global minimum region of a target function comprising purely geometric restraints. These consist of interproton distances supplemented by bond lengths, bond angles, planes and soft van der Waals repulsion terms. The latter replace the dihedral, van der Waals, electrostatic and hydrogen-bonding potentials of the empirical energy function used in molecular dynamics simulations. The method presented involves the implementation of a number of innovations over our previous restrained molecular dynamics approach [Clore, G.M., Brünger, A.T., Karplus, M. and Gronenborn, A.M. (1986) J. Mol. Biol., 191, 523-551]. These include the development of a new effective potential for the interproton distance restraints whose functional form is dependent on the magnitude of the difference between calculated and target values, and the design and implementation of robust and fully automatic protocol. The method is tested on three systems: the model system crambin (46 residues) using X-ray structure derived interproton distance restraints, and potato carboxypeptidase inhibitor (CPI; 39 residues) and barley serine proteinase inhibitor 2 (BSPI-2; 64 residues) using experimentally derived interproton distance restraints. Calculations were carried out starting from the extended strands which had atomic r.m.s. differences of 57, 38 and 33 A with respect to the crystal structures of BSPI-2, crambin and CPI respectively. Unbiased sampling of the conformational space consistent with the restraints was achieved by varying the random number seed used to assign the initial velocities. This ensures that the different trajectories diverge during the early stages of the simulations and only converge later as more and more interproton distance restraints are satisfied. The average backbone atomic r.m.s. difference between the converged structures is 2.2 +/- 0.3 A for crambin (nine structures), 2.4 +/- 0.3 A for CPI (eight structures) and 2.5 +/- 0.2 A for BSPI-2 (five structures). The backbone atomic r.m.s. difference between the mean structures derived by averaging the coordinates of the converged structures and the corresponding X-ray structures is 1.2 A for crambin, 1.6 A for CPI and 1.7 A for BSPI-2.  相似文献   

5.
The solution conformation of potato carboxypeptidase inhibitor (CPI) has been investigated by 1H NMR spectroscopy. The spectrum is assigned in a sequential manner by using two-dimensional NMR techniques to identify through-bond and through-space (less than 5 A) connectivities. A set of 309 approximate interproton distance restraints is derived from the two-dimensional nuclear Overhauser enhancement spectra and used as the basis of a three-dimensional structure determination by a combination of metric matrix distance geometry and restrained molecular dynamics calculations. A total of 11 converged distance geometry structures were computed and refined by using restrained molecular dynamics. The average atomic root mean square (rms) difference between the final 11 structures and the mean structure obtained by averaging their coordinates is 1.4 +/- 0.3 A for residues 2-39 and 0.9 +/- 0.2 A for residues 5-37. The corresponding values for all atoms are 1.9 +/- 0.3 and 1.4 +/- 0.2 A, respectively. The larger values for residues 2-38 relative to those for residues 5-37 arise from the fact that the positions of the N- (residues 1-4) and C- (residues 38-39) terminal tails are rather poorly determined, whereas those of the core of the protein (residues 5-37) are well determined by the experimental interproton distance data. The computed structures are very close to the X-ray structure of CPI in its complex with carboxypeptidase, and the backbone atomic rms difference between the mean of the computed structures and the X-ray structure is only 1.2 A. Nevertheless, there are some real differences present which are evidenced by significant deviations between the experimental upper interproton distance limits and the corresponding interproton distances derived from the X-ray structure. These principally occur in two regions, residues 18-20 and residues 28-30, the latter comprising part of the region of secondary contacts between CPI and carboxypeptidase in the X-ray structure.  相似文献   

6.
A restrained least squares refinement of the solution structure of the double-stranded DNA undecamer 5'd(AAGTGT-GACAT).5'd(ATGTCACACTT) comprising a portion of the specific target site of the cAMP receptor protein in the gal operon is presented. The structure is refined on the basis of both distance and planarity restraints, 2331 in all. The distance restraints comprise 150 interproton distances determined from pre-steady state nuclear Overhauser enhancement measurements and 2159 other interatomic distances derived from idealized geometry (i.e., distances between covalently bonded atoms, between atoms defining fixed bond angles, and between atoms defining hydrogen bonding in AT and GC base pairs). Two refinements were carried out and in both cases the final RMS difference between the experimental and calculated interproton distances was 0.2 A. The difference between the two refined structures is small (overall RMS difference of 0.23 A) and represents the error in the refined coordinates. Although the refined structures have an overall B-type conformation there are large variations in many of the local conformational parameters including backbone and glycosidic bond torsion angles, helical twist and propellor twist, base roll and base tilt angles.  相似文献   

7.
M Katahira  H Sugeta  Y Kyogoku 《Biochemistry》1990,29(31):7214-7222
The conformation of the putative bent DNA d(GGAAATTTCC)2 in solution was studied by use of 1H NMR and restrained molecular dynamics. Most of the resonances were assigned sequentially. A total of 182 interproton distance restraints were determined from two-dimensional nuclear Overhauser effect spectra with short mixing times. Torsion angle restraints for each sugar moiety were determined by qualitative analysis of a two-dimensional correlated spectrum. Restrained molecular dynamics was carried out with the interproton distances and torsion angles incorporated into the total energy function of the system in the form of effective potential terms. As initial conformations for restrained molecular dynamics, classical A-DNA and B-DNA were adopted. The root mean square deviation (rmsd) between these two conformations is 5.5 A. The conformations obtained by use of restrained molecular dynamics are very similar to each other, the rmsd being 0.8 A. On the other hand, the conformations obtained by use of molecular dynamics without experimental restraints or restrained energy minimization depended heavily on the initial conformations, and convergence to a similar conformation was not attained. The conformation obtained by use of restrained molecular dynamics exhibits a few remarkable features. The second G residue takes on the BII conformation [Fratini, A. V., Kopka, M. L., Drew, H. R., & Dickerson, R. E. (1982) J. Biol. Chem. 257, 14686-14707] rather than the standard BI conformation. There is discontinuity of the sugar puckering between the eighth T and ninth C. The minor groove of the oligo(dA) tract is rather compressed. As a result, d(GGAAATTTCC)2 is bent.  相似文献   

8.
The solution structure of the self-complementary hexamer 5'r(GCAUGC)2 is investigated by means of nuclear magnetic resonance spectroscopy and restrained molecular dynamics. The proton resonances are assigned in a sequential manner, and a set of 110 approximate interproton distance restraints are derived from the two-dimensional nuclear Overhauser enhancement spectra. These distances are used as the basis of a structure refinement by restrained molecular dynamics in which the experimental restraints are incorporated into the total energy function of the system in the form of effective potentials. Eight restrained molecular dynamics simulations are carried out, four starting from a structure with regular A-type geometry and four from one with regular B-type geometry. The atomic root mean square (rms) difference between the initial structures is 3.2 A. In the case of all eight simulations, convergence is achieved both globally and locally to a set of very similar A-type structures with an average atomic rms difference between them of 0.8 +/- 0.2 A. Further, the atomic rms differences between the restrained dynamics structures obtained by starting out from the same initial structures but with different random number seeds for the assignment of the initial velocities are the same as those between the restrained dynamics structures starting out from the two different initial structures. These results suggest that the restrained dynamics structures represent good approximations of the solution structure. The converged structures exhibit clear sequence-dependent variation in some of the helical parameters, in particular helix twist, roll, slide, and propellor twist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The solution conformation of the cardiac stimulatory sea anemone polypeptide anthopleurin-A has been characterised using distance geometry and restrained molecular dynamics calculations. A set of 253 approximate interproton distance restraints and 14 peptide backbone torsion angle restraints derived from two-dimensional 1H-NMR spectra at 500 MHz were used as input for these calculations. 13 structures generated by either metric matrix or variable target function distance geometry calculations were refined using energy minimisation and restrained molecular dynamics. The resulting structures contain a region of twisted antiparellel beta-sheet to which two separate regions of unordered chain are linked by three disulphide bonds. Two loops, one including Pro-41 and the other encompassing residues 10-18, are poorly defined by the NOE data.  相似文献   

10.
The three-dimensional structure of the sea anemone polypeptide Stichodactyla helianthus neurotoxin I in aqueous solution has been determined using distance geometry and restrained molecular dynamics simulations based on NMR data acquired at 500 MHz. A set of 470 nuclear Overhauser enhancement values was measured, of which 216 were used as distance restraints in the structure determination along with 15 dihedral angles derived from coupling constants. After restrained molecular dynamics refinement, the eight structures that best fit the input data form a closely related family. They describe a structure that consists of a core of twisted, four-stranded, antiparallel beta-sheet encompassing residues 1-3, 19-24, 29-34, and 40-47, joined by three loops, two of which are well defined by the NMR data. The third loop, encompassing residues 7-16, is poorly defined by the data and is assumed to undergo conformational averaging in solution. Pairwise root mean square displacement values for the backbone heavy atoms of the eight best structures are 1.3 +/- 0.2A when the poorly defined loop is excluded and 3.6 +/- 1.0A for all backbone atoms. Refinement using restrained molecular dynamics improved the quality of the structures generated by distance geometry calculations with respect to the number of nuclear Overhauser enhancements violated, the size of the total distance violations and the total potential energies of the structures. The family of structures for S. heliathus neurotoxin I is compared with structures of related sea anemone proteins that also bind to the voltage-gated sodium channel.  相似文献   

11.
Summary A new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.Abbreviations MC Monte Carlo - rMC restrained Monte Carlo - MD molecular dynamics - rMD restrained molecular dynamics - DG distance geometry - EM energy minimization - 2D NOE two-dimensional nuclear Overhauser effect - DQF-COSY double-quantum-filtered correlation spectroscopy - RMSD root-mean-square deviation To whom correspondence should be addressed.  相似文献   

12.
A Heitz  L Chiche  D Le-Nguyen  B Castro 《Biochemistry》1989,28(6):2392-2398
The solution conformation of synthetic Ecballium elaterium trypsin inhibitor II, a 28-residue peptide with 3 disulfide bridges, has been studied by 1H 2D NMR measurements. Secondary structure elements were determined: a miniantiparallel beta-sheet Met 7-Cys 9 and Gly 25-Cys 27, a beta-hairpin 20-28 with beta-turn 22-25, and two tight turns Asp 12-Cys 15 and Leu 16-Cys 19. A set of interproton distance restraints deduced from two-dimensional nuclear Overhauser enhancement spectra and 13 phi backbone torsion angles restraints were used as the basis of three-dimensional structure computations including disulfide bridges arrangement by using distance geometry calculations. Computations for the 15 possible S-S linkage combinations lead to the proposal of the array 2-19, 9-21, 15-27 as the most probable structure for EETI II.  相似文献   

13.
The polypeptide fold of the 79-residue globular domain of chicken histone H5 (GH5) in solution has been determined by the combined use of distance geometry and restrained molecular dynamics calculations. The structure determination is based on 307 approximate interproton distance restraints derived from n.m.r. measurements. The structure is composed of a core made up of residues 3-18, 23-34, 37-60 and 71-79, and two loops comprising residues 19-22 and 61-70. The structure of the core is well defined with an average backbone atomic r.m.s. difference of 2.3 +/- 0.3 A between the final eight converged restrained dynamics structures and the mean structure obtained by averaging their coordinates best fitted to the core residues. The two loops are also well defined locally but their orientation with respect to the core could not be determined as no long range ([i-j[ greater than 5) proton-proton contacts could be observed between the loop and core residues in the two-dimensional nuclear Overhauser enhancement spectra. The structure of the core is dominated by three helices and has a similar fold to the C-terminal DNA binding domain of the cAMP receptor protein.  相似文献   

14.
The solution conformation of bovine anaphylatoxin C5a has been investigated by nuclear magnetic resonance (NMR) spectroscopy. The 1H-NMR spectrum is assigned in a sequential manner using a variety of two-dimensional NMR techniques. A qualitative interpretation of the short range nuclear Overhauser enhancement data involving the NH, C alpha H and C beta H protons suggests that C5a has four helices comprising residues 5-11, 15-25, 33-39 and 46-61, and is composed of a globular head (residues 5-61) and a C-terminal tail. The polypeptide fold was determined by hybrid distance geometry-dynamical simulated annealing calculations on the basis of 203 approximate interproton distance restraints, 22 distance restraints for 11 intrahelical hydrogen bonds (identified on the basis of the pattern of short range NOEs and slowly exchanging backbone amide protons) and restraints for the 3 disulfide bridges. The overall polypeptide fold is similar to that of the sequence related human recombinant anaphylatoxin C5a [(1988) Proteins 3, 139-145].  相似文献   

15.
A nuclear magnetic resonance study on a heptadecamer (17-mer) peptide comprising the DNA binding helix F of the cyclic AMP receptor protein of Escherichia coli is presented under solution conditions (viz. 40% (v/v) trifluorethanol) where it adopts an ordered helical structure as judged by circular dichroism. Using a combination of two-dimensional nuclear magnetic resonance techniques, complete resonance assignments are obtained in a sequential manner. From the two-dimensional nuclear Overhauser enhancement spectra, a set of 87 approximate distance restraints is derived and used as the basis for three-dimensional structure determination with a restrained molecular dynamics algorithm in which the interproton distances are incorporated into the total energy function of the system in the form of an additional effective potential term. The convergence properties of this approach are tested by starting from three different initial structures, namely an alpha-helix, a beta-strand and a 3-10 helix. In all three cases, convergence to an alpha-helical structure is achieved with a root mean square difference of less than 3 A for all atoms and less than 2 A for the backbone atoms.  相似文献   

16.
The solution structure of the self-complementary DNA hexamer 5'd(GCATGC)2 comprising the specific target site for the restriction endonuclease Sph 1 is investigated by using nuclear magnetic resonance spectroscopy and restrained molecular dynamics. All the nonexchangeable proton resonances are assigned sequentially, and from time-dependent nuclear Overhauser enhancement measurements a set of 158 approximate interproton distances are determined. These distances are used as the basis of a structure refinement using restrained molecular dynamics in which the interproton distances are incorporated into the total energy function of the system in the form of an effective potential term. Two restrained molecular dynamics simulations are carried out, starting from classical B- and A-DNA [atomic root mean square (rms) difference 3.3 A]. In both cases convergence is achieved to essentially identical structures satisfying the experimental restraints and having a root mean square difference of only 0.3 A between them, which is within the rms fluctuations of the atoms about their average positions. These results suggest that the restrained molecular dynamics structures represent reasonable approximations of the solution structure. The converged structures are of the B type and exhibit clear sequence-dependent variations of helical parameters, some of which follow Calladine's rules and can be attributed to the relief of interstrand purine-purine clash at adjacent base pairs. In addition, the converged restrained dynamics structures appear bent with a radius of curvature of approximately 20 A. This bending appears to be due almost entirely to the large positive base roll angles, particularly at the Pyr-Pur steps. Further, the global and local helix axes are not coincident, and the global helix axis represents a superhelical axis which the bent DNA, when extended into an "infinite" helix by repeated translation and rotation, wraps around.  相似文献   

17.
The solution conformation of the antibacterial polypeptide cecropin A from the Cecropia moth is investigated by nuclear magnetic resonance (NMR) spectroscopy under conditions where it adopts a fully ordered structure, as judged by previous circular dichroism studies [Steiner, H. (1982) FEBS Lett. 137, 283-287], namely, 15% (v/v) hexafluoroisopropyl alcohol. By use of a combination of two-dimensional NMR techniques the 1H NMR spectrum of cecropin A is completely assigned. A set of 243 approximate interproton distance restraints is derived from nuclear Overhauser enhancement (NOE) measurements. These, together with 32 distance restraints for the 16 intrahelical hydrogen bonds identified on the basis of the pattern of short-range NOEs, form the basis of a three-dimensional structure determination by dynamical simulated annealing [Nilges, M., Clore, G.M., & Gronenborn, A.M. (1988) FEBS Lett. 229, 317-324]. The calculations are carried out starting from three initial structures, an alpha-helix, an extended beta-strand, and a mixed alpha/beta structure. Seven independent structures are computed from each starting structure by using different random number seeds for the assignments of the initial velocities. All 21 calculated structures satisfy the experimental restraints, display very small deviations from idealized covalent geometry, and possess good nonbonded contacts. Analysis of the 21 converged structure indicates that there are two helical regions extending from residues 5 to 21 and from residues 24 to 37 which are very well defined in terms of both atomic root mean square differences and backbone torsion angles. For the two helical regions individually the average backbone rms difference between all pairs of structures is approximately 1 A. The long axes of the two helices lie in two planes, which are at an angle of 70-100 degrees to each other. The orientation of the helices within these planes, however, cannot be determined due to the paucity of NOEs between the two helices.  相似文献   

18.
The solution structure of the B9(Asp) mutant of human insulin has been determined by two-dimensional 1H nuclear magnetic resonance spectroscopy. Thirty structures were calculated by distance geometry from 451 interproton distance restraints based on intra-residue, sequential and long-range nuclear Overhauser enhancement data, 17 restraints on phi torsional angles obtained from 3JH alpha HN coupling constants, and the restraints from 17 hydrogen bonds, and the three disulphide bridges. The distance geometry structures were optimized using restrained molecular dynamics (RMD) and energy minimization. The average root-mean-square deviation for the best 20 RMD refined structures is 2.26 A for the backbone and 3.14 A for all atoms if the less well-defined N and C-terminal residues are excluded. The helical regions are better defined, with root-mean-square deviation values of 1.11 A for the backbone and 2.03 A for all atoms. The data analysis and the calculations show that B9(Asp) insulin, in water solution at the applied pH (1.8 to 1.9), is a well-defined dimer with no detectable difference between the two monomers. The association of the two monomers in the solution dimer is relatively loose as compared with the crystal dimer. The overall secondary and tertiary structures of the monomers in the 2Zn crystal hexamer is found to be preserved. The conformation-averaged NMR structures obtained for the monomer is close to the structure of molecule 1 in the hexamer of the 2Zn insulin crystal. However, minor, but significant deviations from this structure, as well as from the structure of monomeric insulin in solution, exist and are ascribed to the absence of the hexamer and crystal packing forces, and to the presence of monomer-monomer interactions, respectively. Thus, the monomer in the solution dimer shows a conformation similar to that of the crystal monomer in molecular regions close to the monomer-monomer interface, whereas it assumes a conformation similar to that of the solution structure of monomeric insulin in other regions, suggesting that B9(Asp) insulin adopts a monomer-like conformation when this is not inconsistent with the monomer-monomer arrangement in the dimer.  相似文献   

19.
S Ludvigsen  F M Poulsen 《Biochemistry》1992,31(37):8783-8789
The solution structure of a 125-residue basic protein, barwin, has been determined using 1H nuclear magnetic resonance spectroscopy. This protein is closely related to domains in proteins encoded by wound-induced genes in plants. Analysis of the 1H nuclear Overhauser spectrum revealed the assignment of more than 1400 nuclear Overhauser effects. Twenty structures were calculated based on 676 nontrivial distance restraints, 152 torsion angle restraints (92 phi, 56 chi 1, and 4 omega for proline), and stereospecific assignments of 38 chiral centers, using distance geometry, simulated annealing, and restrained energy minimization. None of the distance restraints was violated by more than 0.5 A in any of the 20 structures, and none of the torsion angle restraints was violated by more than 1 degree in any of the structures. The RMS difference between the calculated and target interproton distance restraints is 0.033 A, and the average atomic RMS differences between the 20 structures and their geometric average are 1.23 A for backbone atoms and 1.73 A for all heavy atoms. The dominating structural feature of the protein is a well-defined four-stranded antiparallel beta-sheet, two parallel beta-sheets packed antiparallel to each other and four short alpha-helices. The binding site of barwin to the tetramer N-acetylglucosamine has been qualitatively investigated, and the dissociation constant of the complex has been determined using one-dimensional 1H nuclear magnetic resonance spectroscopy.  相似文献   

20.
The three-dimensional solution structure of microcin J25, the single cyclic representative of the microcin antimicrobial peptide class produced by enteric bacteria, was determined using two-dimensional 1H NMR spectroscopy and molecular modeling. This hydrophobic 21-residue peptide exhibits potent activity directed to Gram-negative bacteria. Its primary structure, cyclo(-V1GIGTPISFY10GGGAGHVPEY20F-), has been determined previously [Blond, A., Péduzzi, J., Goulard, C., Chiuchiolo, M. J., Barthélémy, M., Prigent, Y., Salomón, R.A., Farías, R.N., Moreno, F. & Rebuffat, S. (1999) Eur. J. Biochem., 259, 747-755]. Conformational parameters (3JNHCalphaH coupling constants, quantitative nuclear Overhauser enhancement data, chemical shift deviations, temperature coefficients of amide protons, NH-ND exchange rates) were obtained in methanol solution. Structural restraints consisting of 190 interproton distances inferred from NOE data, 11 phi backbone dihedral angle and 9 chi1 angle restraints derived from the coupling constants and three hydrogen bonds in agreement with the amide exchange rates were used as input for simulated annealing calculations and energy minimization in the program XPLOR. Microcin J25 adopts a well-defined compact structure consisting of a distorted antiparallel beta sheet, which is twisted and folded back on itself, thus resulting in three loops. Residues 7-10 and 17-20 form the more regular part of the beta sheet. The region encompassing residues Gly11-His16 consists of a distorted beta hairpin, which divides into two small loops and is stabilized by an inverse gamma turn and a type I' beta turn. The reversal of the chain leading to the Phe21-Pro6 loop results from a mixed beta/gamma turn. A cavity, in which the hydrophilic Ser8 side-chain is confined, is delimited by two crab pincer-like regions that comprise residues 6-8 and 18-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号