首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swelling pressure measurements were performed on degrading dextran hydroxyethyl methacrylate (dex-HEMA) hydrogels. In these networks, the cross-links are hydrolyzable carbonate ester bonds formed between methacrylate groups and dextran molecules. It is demonstrated that dex-HEMA gels made in the presence of a known amount of free dextran chains exhibit osmotic properties similar to those of partially degraded dex-HEMA gels. The swelling pressure, Pi(sw), of degrading dex-HEMA gels is controlled primarily by the cross-linked dex-HEMA polymer and the free dextran molecules, while the contribution of short poly-HEMA fragments (produced in the degradation process) is negligible. It is found that Pi(sw) only slightly changes during the first 15 days of degradation. Close to the end of the degradation process, however, a much faster increase in Pi(sw) is observed. The swelling pressure profile of these gels strongly depends on the concentration of the cross-linked dex-HEMA and its chemical composition (amount of HEMA groups per 100 glucose units).  相似文献   

2.
Amphoteric, poly(N-isopropylacrylamide)-based microgels are functionalized with aminophenylboronic acid (PBA) functional groups to produce colloidally stable, glucose-responsive gel nanoparticles that exhibit glucose-dependent swelling responses at physiological temperature, pH, and ionic strength. Up to 2-fold volumetric swelling responses are observed in response to physiological glucose concentrations, the first such physiological response reported for a colloidally stable microgel. Amphoteric microgels can also be designed to both swell and deswell in response to glucose according to the pH of the medium, the concentration of PBA groups grafted to the microgel, and the relative concentrations of the cationic and anionic functional groups in the platform microgel. The increasing anionic charge density on the microgels observed at higher glucose binding fractions can be applied to switch the net charge of the microgels from cationic to anionic as the glucose concentration increases. Preliminary experiments suggest that such amphoteric PBA-microgels have a high capacity for insulin uptake and can selectively release more insulin at higher glucose concentrations under physiological conditions via glucose-induced, "on-off" switching of electrostatic attractions between insulin and the microgel.  相似文献   

3.
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic.  相似文献   

4.
Synthesis and volume phase transitions of glucose-sensitive microgels   总被引:1,自引:0,他引:1  
Zhang Y  Guan Y  Zhou S 《Biomacromolecules》2006,7(11):3196-3201
By the functionalization of poly(N-isopropylacrylamide-co-acrylic acid) microgels with 3-aminophenylboronic acid (APBA) via carbodiimide coupling, nearly monodisperse glucose-sensitive P(NIPAM-PBA) microgels with a diameter of several hundred nanometers were synthesized in aqueous media. Dynamic laser light scattering was used to study the glucose-sensitive and thermosensitive behaviors of the resultant microgels under various conditions. The introduction of the hydrophobic phenylboronic acid (PBA) group significantly decreases the volume phase transition temperature of the resultant microgels. As a result, the P(NIPAM-PBA) microgels with a 10.0 mol % PBA content are in a collapsed state at room temperature. However, the addition of glucose makes the microgels swell dramatically. The glucose-sensitivity of the PBA-containing microgels relies on the stabilization of the charged phenylborate ions by binding with glucose, which can convert more hydrophobic PBA groups to the hydrophilic phenylborate ions. The presence of glucose also induces a two-stage volume phase transition of the P(NIPAM-PBA) microgels, which is explained by the core-shell-like heterogeneous structure of the microgels induced by the formation of the unique glucose-bis(boronate) complex in the "core" area of the microgels. The effects of pH, ionic strength, and PBA content on the glucose sensitivity of the P(NIPAM-PBA) microgels were investigated.  相似文献   

5.
In this contribution, we describe the effects of amide coupling reactions on the physical properties of thermoresponsive hydrogel microparticles (microgels). These microgels, when treated via aqueous carbodiimide/sulfo-succinimide coupling protocols, displayed a dramatic modulation of the microgel phase transition thermodynamics. UV spectrophotometry was used to determine that this modulation was due to remarkably stable hydrogel conjugates of sulfo-NHS that resisted degradation under standard hydrolysis protocols. These intermediates result in a shift of the phase transition, along with a large increase in equilibrium microgel swelling degree, due to an increase in chain-chain Coulombic repulsion. Only aggressive hydrolysis protocols resulted in the recovery of the native microgel phase transition, suggesting that an unusually stable succinimidyl ester is formed in the microgel during coupling.  相似文献   

6.

Background & Aims

Ischemia–reperfusion injury (IRI) can cause hepatic failure after liver surgery or transplantation. IRI causes oxidative stress, which injures sinusoidal endothelial cells (SECs), leading to recruitment and activation of Kupffer cells, platelets and microcirculatory impairment. We investigated whether injured SECs and other cell types release microparticles during post-ischemic reperfusion, and whether such microparticles have pro-inflammatory, platelet-activating and pro-injurious effects that could contribute to IRI pathogenesis.

Methods

C57BL6 mice underwent 60 min of partial hepatic ischemia followed by 15 min–24 hrs of reperfusion. We collected blood and liver samples, isolated circulating microparticles, and determined protein and lipid content. To establish mechanism for microparticle production, we subjected murine primary hepatocytes to hypoxia-reoxygenation. Because microparticles express everted phosphatidylserine residues that are the target of annexin V, we analyzed the effects of an annexin V-homodimer (Diannexin or ASP8597) on post-ischemia microparticle production and function.

Results

Microparticles were detected in the circulation 15–30 min after post-ischemic reperfusion, and contained markers of SECs, platelets, natural killer T cells, and CD8+ cells; 4 hrs later, they contained markers of macrophages. Microparticles contained F2-isoprostanes, indicating oxidative damage to membrane lipids. Injection of mice with TNF-α increased microparticle formation, whereas Diannexin substantially reduced microparticle release and prevented IRI. Hypoxia-re-oxygenation generated microparticles from primary hepatocytes by processes that involved oxidative stress. Exposing cultured hepatocytes to preparations of microparticles isolated from the circulation during IRI caused injury involving mitochondrial membrane permeability transition. Microparticles also activated platelets and induced neutrophil migration in vitro. The inflammatory properties of microparticles involved activation of NF-κB and JNK, increased expression of E-selectin, P-selectin, ICAM-1 and VCAM-1. All these processes were blocked by coating microparticles with Diannexin.

Conclusions

Following hepatic IRI, microparticles circulate and can be taken up by hepatocytes, where they activate signaling pathways that mediate inflammation and hepatocyte injury. Diannexin prevents microparticle formation and subsequent inflammation.  相似文献   

7.
Here, the interactions of aurein 1.2, a defence peptide, with T98G glioblastoma cell membranes are studied. The peptide induced maximal surface pressure changes of circa 9 mN m(-1) in monolayers of endogenous T98G membrane lipid. Reducing monolayer anionic lipid showed a positive correlation (R(2)>0.91) with decreases in maximal surface pressure changes induced by aurein 1.2 (circa 3 mN m(-1) in the absence of this lipid). Cancer cell membrane invasion by the peptide therefore appears not to be mediated by lipid receptors or specific lipid requirements but rather a general requirement for anionic lipid and/or other negatively charged membrane components.  相似文献   

8.
Violacein is a naturally found pigment that is used by some gram negative bacteria to defend themselves from various gram positive bacteria. As a result, this molecule has caught attention for its potential biomedical applications and has already shown promising outcomes as an antiviral, an antibacterial, and an anti-tumor agent. Understanding the interaction of this molecule with a cellular membrane is an essential step to extend its use in the pharmaceutical paradigm. Here, the interaction of violacein with a lipid monolayer formed at the air–water interface is found to depend on electrostatic nature of lipids. In presence of violacein, the two dimensional (2D) pressure–area isotherms of lipids have exhibited changes in their phase transition pressure and in-plane elasticity. To gain insights into the out-of-plane structural organization of lipids in a membrane, X-ray reflectivity (XRR) study on a solid supported lipid monolayer on a hydrophilic substrate has been performed. It has revealed that the increase in membrane thickness is more pronounced in the zwitterionic and positively charged lipids compared to the negatively charged one. Further, the lipid molecules are observed to decrease their tilt angle made with the normal of lipid membrane along with an alteration in their in-plane ordering. This has been quantified by grazing incidence X-ray diffraction (GIXD) experiments on the multilayer membrane formed in an environment with controlled humidity. The structural reorganization of lipid molecules in presence of violacein can be utilized to provide a detailed mechanism of the interaction of this molecule with cellular membrane.  相似文献   

9.
B Dahlb?ck  T Wiedmer  P J Sims 《Biochemistry》1992,31(51):12769-12777
Vitamin K-dependent protein S is an anticoagulant plasma protein serving as cofactor to activated protein C in degradation of coagulation factors Va and VIIIa on membrane surfaces. In addition, it forms a noncovalent complex with complement regulatory protein C4b-binding protein (C4BP), a reaction which inhibits its anticoagulant function. Both forms of protein S have affinity for negatively charged phospholipids, and the purpose of the present study was to elucidate whether they bind to the surface of activated platelets or to platelet-derived microparticles. Binding of protein S to human platelets stimulated with various agonists was examined with FITC-labeled monoclonal antibodies and fluorescence-gated flow cytometry. Protein S was found to bind to membrane microparticles which formed during platelet activation but not to the remnant activated platelets. Binding to microparticles was saturable and maximum binding was seen at approximately 0.4 microM protein S. It was calcium-dependent and reversed after the addition of EDTA. Inhibition experiments with monoclonal antibodies suggested the gamma-carboxyglutamic acid containing module of protein S to be involved in the binding reaction. An intact thrombin-sensitive region of protein S was not required for binding. The protein S-C4BP complex did not bind to microparticles or activated platelets even though it bound to negatively charged phospholipid vesicles. Intact protein S supported binding of both protein C and activated protein C to microparticles. Protein S-dependent binding of protein C/activated protein C was blocked by those monoclonal antibodies against protein S that inhibited its cofactor function. In conclusion, we have found that free protein S binds to platelet-derived microparticles and stimulates binding of protein C/activated protein C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
This study examined some of the variables determining the efficiency of lipid peroxidation in egg yolk phosphatidylcholine liposomes and in microsomes exposed to enzymatically-generated superoxide radicals. The initiation of peroxidation required the presence of preformed lipid peroxides and a chelated metal catalyst. Comparison of the relative effectiveness of four iron chelating agents showed that the chelate must bind to the membrane by coulombic attraction between the charged membrane and a chelate carrying an opposite net charge. Of the chelates tested, only the carcinogenic ferric nitrilotriacetate [corrected] (Fe(3+)-NTA) was an effective catalyst of oxidation of all membranes, whether carrying a net charge, or not. We postulate that the unique catalytic capacity of the ferric nitrilotriacetate [corrected] (Fe(3+)-NTA) can be explained by its existence in two forms at neutral pH, each binding to oppositely charged membranes and initiating their peroxidation. This gives the complex the unique ability to bind to any membrane, which may be a factor in its carcinogenicity.  相似文献   

11.
Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment   总被引:1,自引:0,他引:1  
Jogini V  Roux B 《Biophysical journal》2007,93(9):3070-3082
All-atom molecular dynamics simulations are used to better understand the dynamic environment experienced by the Kv1.2 channel in a lipid membrane. The structure of the channel is stable during the trajectories. The pore domain keeps a well-defined conformation, whereas the voltage-sensing domains undergo important lateral fluctuations, consistent with their modular nature. A channel-like region at the center of the S1-S4 helical bundle fills rapidly with water, reminiscent of the concept of high-dielectric aqueous crevices. The first two arginines along S4 (R294 and R297) adopt an interfacial position where they interact favorably with water and the lipid headgroups. The following two arginines (R300 and R303) interact predominantly with water and E226 in S2. Despite the absence of a structurally permanent gating pore formed by protein residues and surrounding the S4 helix, as traditionally pictured, the charged residues are located in a favorable environment and are not extensively exposed to the membrane nonpolar region. Continuum electrostatic computations indicate that the transmembrane potential sensed by the charged residues in the voltage sensor varies abruptly over the outer half of the membrane in the arginine-rich region of S4; thus, the voltage gradient or membrane electric field is "focused". Interactions of basic residues with the lipid headgroups at the intracellular membrane-solution interface reduce the membrane thickness near the channel, resulting in an increased transmembrane field.  相似文献   

12.
Metabolically-induced (spontaneous) high amplitude swelling of mitochondria has been shown to be due to a serial disruption of the mitochondrial membranes [D. Sambasivarao & V. Sitaramam (1985), Biochim Biophys Acta, 806, 195-209]. Phosphate- and arsenate-induced swelling was investigated in mitochondria to evaluate the role of phosphate transport in the instability created in the mitochondrial membranes. Phosphate-induced swelling in respiring mitochondria was similar to spontaneous swelling. Both represent essentially colloidal swelling due to the variable porosity induced in the inner membrane to polyols by respiration. Swelling of non-respiring mitochondria at high ammonium phosphate concentrations was, on the other hand, primarily due to high permeability to phosphate. This membrane instability created by phosphate transport in the surrounding lipid involves neither the endogenous nor the exogenous Ca2+.  相似文献   

13.
The question of whether or not the surrounding lipid bilayer host contributes to structure and activity of included functional guests is a general topic of current scientific concern. We report that synthetic multifunctional pores are of use to address this elusive question, because the detection of their catalytic activity is membrane independent. According to their salt-rate profiles, unstable multifunctional supramolecules with permanent internal charges show highest membrane sensitivity, and the dependence of membrane sensitivity on the acidity of internal cations exceeds that on supramolecule stability. These results can, with all appropriate caution, be interpreted as indications for the existence of long-range EMP-ICR interactions (EMP: external membrane pressure, ICR: internal charge repulsion) between membrane hosts and functional guests that can, for instance, prevent the 'explosion' and promote the 'implosion' of over- and undercharged transmembrane barrel-stave supramolecules, respectively.  相似文献   

14.
The interaction between a positively charged peptide (poly-L-lysine) and model membranes containing charged lipids has been investigated. Conformational changes of the polypeptide as well as changes in the membrane lipid distribution were observed upon lipid-protein agglutination: 1. The strong binding of polylysine is shown directly by the use of spinlabelled polypeptide. Upon binding to phosphatidic acid a shift in the hyperfine coupling constant from 16.5 to 14.6 Oe is observed. The spectrum of the lipid-bound peptide is superimposed on the spectrum of polylysine in solution. Half of the lysine groups are bound to the charged membranes. A change in the conformation of polylysine from a random coil to a partially ordered configuration is suggested. 2. Spin labelling of the lipid component gives evidence concerning the molecular organization of a lipid mixture containing charged phosphatitid acid. Addition of polylysine induces the formation of crystalline patches of bound phosphatidic acid. 3. Excimer forming pyrene decanoic acid has been employed. Addition of positively charged polylysine (pH 9.0) to phosphatidic acid membranes increases the transition temperature of the lipid from Tt = 50 to Tt = 62 degrees C. Thus, a lipid segregation of lipid into regions of phosphatidic acid bound to the peptide which differ in their microviscosity from the surrounding membrane is induced. One lysine group binds one phosphatidic acid molecule, but only half of the phosphatidic acid is bound. 4. Direct evidence for charge induced domain formation in lipid mixtures containing phosphatidic acid is given by electron microscopy. Addition of polylysine leads to a change in the surface curvature of the bound charged lipid. The domain size is estimated from the electron micrographs. The number of domains present is dependent on both the ratio of charged to uncharged lipids as well as on the amount of polylysine added to the vesicles. The size of the domains is not dependent on membrane composition. However, the size seems to increase in a stepwise manner that is correlated with a multiple of the area covered by one polylysine molecule.  相似文献   

15.
The mechanical equilibrium of a membranous sac, whose wall is sandwiched by two oppositely charged fluid layers, is investigated as a mathematical model of a living cell. In so doing, it is assumed that the space charge density in the inner and the outer charged fluid layer is constant. It is also assumed that the fluid inside and outside of the charged fluid layer is a perfect conductor. By solving Maxwell's equation, the electric field and the thickness of the inner and the outer charged fluid layer is determined as a function of the geometry of the sac. Then, the fluid pressure in the charged fluid layer is derived by considering the body force created by the electrostatic field. The condition of mechanical equilibrium of the sac membrane yields an equation which reveals the inter-relation between the geometry, the sac fluid pressure and the membrane potential. According to this equation, the change of membrane potential causes a deformation of the sac. If the wall of the membranous sac is permeable, increase (decrease) of the absolute value of the membrane potential results in swelling (shrinking) of the sac. On the other hand, the mechanical change of the sac volume results in the change of the membrane potential. This analysis provides also an explanation of how the red blood cell maintains the biconcave shape, when the red blood cell is assumed to be a fluid filled membranous sac with non-zero membrane potential.  相似文献   

16.
The Na+-coupled betaine symporter BetP senses changes in the membrane state and increasing levels of cytoplasmic K+ during hyperosmotic stress latter via its C-terminal domain and regulates transport activity according to both stimuli. This intriguing sensing and regulation behavior of BetP was intensively studied in the past. It was shown by several biochemical studies that activation and regulation depends crucially on the lipid composition of the surrounding membrane. In fact, BetP is active and regulated only when negatively charged lipids are present. Recent structural studies have revealed binding of phosphatidylglycerol lipids to functional important parts of BetP, suggesting a functional role of lipid interactions. However, a regulatory role of lipid interactions could only be speculated from the snapshot provided by the crystal structure. Here, we investigate the nature of lipid-protein interactions of BetP reconstituted in closely packed two-dimensional crystals of negatively charged lipids and probed at the molecular level with Fourier transform infrared (FTIR) spectroscopy. The FTIR data indicate that K+ binding weakens the interaction of BetP especially with the anionic lipid head groups. We suggest a regulation mechanism in which lipid-protein interactions, especially with the C-terminal domain and the functional important gating helices transmembrane helice 3 (TMH3) and TMH12, confine BetP to its down-regulated transport state. As BetP is also activated by changes in the physical state of the membrane, our results point toward a more general mechanism of how active transport can be modified by dynamic lipid-protein interactions.  相似文献   

17.
Powl AM  East JM  Lee AG 《Biochemistry》2008,47(46):12175-12184
We have studied the effects of lipid structure on the function of the mechanosensitive channel of large conductance (MscL) from Escherichia coli to determine whether effects follow from direct interaction between the lipids and protein or whether they follow indirectly from changes in the curvature stress in the membrane. The G22C mutant of MscL was reconstituted into sealed vesicles containing the fluorescent molecule calcein, and the release of calcein from the vesicles was measured following opening of the channel by reaction with [2-(triethylammonium)ethyl] methanethiosulfonate (MTSET), which introduces five positive charges into the region of the pore constriction. The presence of anionic lipids in the vesicle membrane changed the rates and amplitudes of calcein release, the effects not correlating with calculated changes in lipid spontaneous curvature. Mutation of charged residues in the Arg-104, Lys-105, Lys-106 cluster removed high-affinity binding of anionic lipids to MscL, and the presence of anionic lipid no longer affected calcein flux through MscL. Changing the zwitterionic lipid from phosphatidylcholine to phosphatidylethanolamine resulted in a large decrease in the rate of calcein release, the change in rate varying linearly with lipid composition, as expected if spontaneous curvature affected the rate of release. However, rates of release of calcein measured in the presence of phosphatidylethanolamine- N-methyl and phosphatidylethanolamine- N, N-dimethyl did not fit the correlation between rate and curvature established for the phosphatidylcholine/phosphatidylethanolamine mixtures. Rather, the effects of zwitterionic lipid headgroup on calcein flux suggested that what was important was the presence of a proton in the headgroup, able to take part in hydrogen bonding to MscL. We conclude that the function of MscL is likely to be modulated by direct interaction with the surrounding, annular phospholipids that contact the protein in the membrane.  相似文献   

18.
Phospholipid vesicles fuse with a planar membrane when they are osmotically swollen. Channels in the vesicle membrane are required for swelling to occur when the vesicle-containing compartment is made hyperosmotic by adding a solute (termed an osmoticant). We have studied fusion using two different channels, porin, a highly permeable channel, and nystatin, a much less permeable channel. We report that an osmoticant's ability to support fusion (defined as the magnitude of osmotic gradient necessary to obtain sustained fusion) depends on both its permeability through lipid bilayer as well as its permeability through the channel by which it enters the vesicle interior. With porin as the channel, formamide requires an osmotic gradient about ten times that required with urea, which is approximately 1/40th as permeant as formamide through bare lipid membrane. When nystatin is the channel, however, fusion rates sustained by osmotic gradients of formamide are within a factor of two of those obtained with urea. Vesicles containing a porin-impermeant solute can be induced to swell and fuse with a planar membrane when the impermeant bathing the vesicles is replaced by an isosmotic quantity of a porin-permeant solute. With this method of swelling, formamide is as effective as urea in obtaining fusion. In addition, we report that binding of vesicles to the planar membrane does not make the contact region more permeable to the osmoticant than is bare lipid bilayer. In the companion paper, we quantitatively account for the observation that the ability of a solute to promote fusion depends on its permeability properties and the method of swelling. We show that the intravesicular pressure developed drives fusion.  相似文献   

19.
20.
Cell‐laden microscale hydrogels (microgels) can be used as tissue building blocks and assembled to create 3D tissue constructs with well‐defined microarchitecture. In this article, we present a bottom‐up approach to achieve microgel assembly on a patterned surface. Driven by surface tension, the hydrophilic microgels can be assembled into well‐defined shapes on a glass surface patterned with hydrophobic and hydrophilic regions. We found that the cuboidic microgels (~100–200 µm in width) could self‐assemble into defined shapes with high fidelity to the surface patterns. The microgel assembly process was improved by increasing the hydrophilicity of the microgels and reducing the surface tension of the surrounding solution. The assembled microgels were stabilized by a secondary crosslinking step. Assembled microgels containing cells stained with different dyes were fabricated to demonstrate the application of this approach for engineering microscale tissue constructs containing multiple cell types. This bottom‐up approach enables rapid fabrication of cell‐laden microgel assemblies with pre‐defined geometrical and biological features, which is easily scalable and can be potentially used in microscale tissue engineering applications. Biotechnol. Bioeng. 2010; 105: 655–662. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号