首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Benzotript, N-p-chlorobenzoyl-L-tryptophan, is a specific cholecystokinin receptor antagonist. In the present study we used dispersed pancreatic acini to examine tryptophan as well as several different N-acyl derivatives of tryptophan for their abilities to function as cholecystokinin receptor antagonists. L-Tryptophan, D-tryptophan as well as each acyl derivative tested inhibited cholecystokinin-stimulated amylase secretion and outflux of 45Ca and there was a good correlation between the ability of a particular agent to inhibit the action of cholecystokinin on acinar function and its ability to inhibit binding of 125I-labeled cholecystokinin to pancreatic acini. Results with butyloxycarbonyl-L-tryptophan indicated that the inhibition of the action of cholecystokinin caused by L-tryptophan and various acyl derivatives is specific, competitive and fully reversible. In functioning as a cholecystokinin receptor antagonist the relative potencies of the agents tested were: carbobenzoxyl-L-tryptophan >benzotript >benzoyl-L-tryptophan = butyloxycarbonyl-L-tryptophan >acetyl-L-tryptophan >L-tryptophan. In inhibiting the actions of cholecystokinin, native as well as N-acyl derivatives of D-tryptophan were equipotent with the corresponding compound containing L-tryptophan. Although L-tryptophan inhibited the actions of cholecystokinin, L-phenylalanine, L-methionine or L-aspartic acid, even when tested at concentrations as high as 3 mM, did not alter the action of cholecystokinin on pancreatic acini. The antagonism of the actions of cholecystokinin was not restricted to N-acyl derivatives of L-tryptophan because butyloxycarbonyl-L-methionine and butyloxycarbonyl-L-phenylalanine but not butyloxycarbonyl-L-aspartic acid also antagonized the actions of cholecystokinin. These results demonstrate that both the nature of the N-Prmacyl group and the amino acid residue are important determinants of the affinity of the antagonist for the cholecystokinin receptor. For derivatives of L-tryptophan, the more hydrophobic the N-acyl moiety, the greater the affinity of the derivative for the cholecystokinin receptor.  相似文献   

2.
In the C-terminal heptapeptide of cholecystokinin, replacement of the penultimate residue, aspartic acid, by beta-alanine caused a 300-fold decrease in the potency with which the peptide stimulated enzyme secretions, whereas replacement by glutamic acid caused a 1000-fold decrease in potency. The beta-alanine-substituted peptide was approximately ten times more potent when the n terminus was blocked with t-butyloxycarbonyl than when it was blocked with benzyloxycarbonyl, and the glutamic acid-substituted peptide was approximately twice as potent when the N terminus was blocked with t-butyloxycarbonyl than when it was blocked with benzyloxycarbonyl. Changes in the ability of the peptide to stimulate amylase secretion were accompanied by corresponding changes in the ability of the peptide to inhibit binding of 125I-labeled cholecystokinin. The magnitude of stimulation of enzyme secretion caused by a maximally effective peptide concentration was the same with each analogue as it was with the unaltered peptide. Replacing the aspartyl residue by beta-alanine or glutamic acid or replacing the N-terminal t-butyloxycarbonyl moiety by benzyloxycarbonyl caused an equivalent decrease in the ability of the peptide to stimulate enzyme secretion and its ability to cause residual stimulation of enzyme secretion. In contrast, the N-terminal desamino analogue of cholecystokinin heptapeptide was ten times less potent than the unaltered peptide in stimulating amylase secretion, but 100 times less potent than the unaltered peptide in causing residual stimulation of enzyme secretion.  相似文献   

3.
In the C-terminal heptapeptide of cholecystokinin, replacement of the penultimate residue, aspartic acid, by β-alanine caused a 300-fold decrease in potency with which the peptide stimulated enzyme secretion, whereas replacement by glutamic acid caused a 1000-fold decrease in potency. The β-alanine-substituted peptide was approximately ten times more potent when the N terminus was blocked with t-butyloxycarbonyl than when it was blocked with benzyloxycarbonyl, and the glutamic acid-substituted peptide was approximately twice as potent when the N terminus was blocked with t-butyloxycarbonyl than when it was blocked with benzyloxycarbonyl. Changes in the ability of the peptide to stimulate amylase secretion were acompanied by corresponding changes in the ability of the peptide to inhibit binding of 125I-labeled cholecystokinin. The magnitude of stimulation of enzyme secretion caused by a maximally effective peptide concentration was the same with each analogue as it was with the unaltered peptide. Rpelacing the aspartyl by β-alanine or glutamic acid or replacing of N-terminal t-butyloxycarbonyl moiety by benzyloxycarbonyl caused an equivalent decrease in the ability of the peptide to stimulate enzyme secretion and its ability to cause residual stimulation of enzyme secretion. In contrast, the N-terminal desamino analogue of cholecystokinin heptapeptide was ten times less potent than the unaltered peptide in stimulating amylase secretion, but 100 times less potent that the unaltered peptide in causing residual stimulation of enzyme secretion.  相似文献   

4.
An analogue of substance P with broad receptor antagonist activity   总被引:1,自引:0,他引:1  
[DPro4,DTrp7,9,10]Substance P-4-11 functions as a substance P receptor antagonist in several different systems. Because some analogues of substance P can function as receptor antagonists for bombesin as well as substance P, we tested [DPro4,DTrp7,9,10]substance P-4-11 for its ability to modify the interaction of various pancreatic secretagogues with their receptors in dispersed acini from guinea pig pancreas. [DPro4,DTrp7,9,19]Substance P-4-11 did not stimulate amylase secretion and did not alter the stimulation of amylase secretion caused by secretin, vasoactive intestinal peptide, calcitonin gene-related peptide or carbachol, but did inhibit the stimulation of amylase secretion caused by substance P, bombesin or cholecystokinin. With substance P, bombesin and cholecystokinin, [DPro4,DTrp7,9,10]substance P-4-11 caused a parallel rightward shift in the dose-response curve for stimulation of amylase secretion with no change in the maximal response. Schild plots of these results gave straight lines with slopes that were not significantly different from unity. [DPro4,DTrp7,9,10]Substance P-4-11 inhibited binding of 125I-labeled substance P, 125I-[Tyr4]bombesin and 125I-cholecystokinin octapeptide over the same range of concentrations as that in which it inhibited biologic activity of each of these peptides. Half-maximal inhibition of binding of 125I-substance P occurred with 4 microM, of 125I-[Tyr4]bombesin with 17 microM and of 125I-cholecystokinin octapeptide with 5 microM. With each radiolabeled peptide the value of Ki for inhibition of binding by [DPro4,DTrp7,9,10]substance P-4-11 was not significantly different from the corresponding value of Ki calculated from the appropriate Schild plot. The present results indicate that [DPro4,DTrp7,9,10]substance P-4-11 is a competitive antagonist at receptors for substance P, for bombesin and for cholecystokinin. Thus, these receptors must share a common peptide recognition mechanism even though they interact with agonists that have no obvious structural similarity.  相似文献   

5.
None of six different tryptophan-modified analogues of the C-terminal octapeptide of cholecystokinin differed from the unaltered peptide in terms of their efficacies for stimulating amylase secretion from dispersed acini prepared from guinea-pig pancreas. Replacementof hydrogen with fluorine in position 5 or 6 on the indole ring of the tryptophan residue did not alter the potency with which the peptide stimulated amylase secretion; however, replacement of hydrogen by fluorine in positions 4, 5, 6, and 7 of the indole ring, of modifying or replacing the indole nitrogen caused a 30- to 300-fold decrease in potency. Changes in the ability of the peptide to stimulate amylase secretion were accompanied by corresponding changes in the ability of the peptide to inhibit binding of 125I-labeled cholecystokinin. Our findings indicate that reducing the ability of the tryptophan residue to donate electrons produced a greater decrease in the affinity of the peptide for the cholecystokinin receptors than did abolishing the ability of tryptophan to form hydrogen bonds, and modifications that altered both abilities caused a greater decrease in affinity than did modification of only one ability. Finally, in the tryptophan residues of cholecystokinin octapeptide, tetrafluorination of the indole ring or replacing the indole nitrogen by oxygen reduced the ability of the peptide to cause residual stimulation of enzyme secretion, probably by accelerating the rate at which bound peptide dissociated from its receptors when the acini were washed and resuspended in fresh incubation solution.  相似文献   

6.
In the present study we examined the abilities of three analogs of substance P, [D-Pro2-, D-Phe7-, D-Trp9]-substance P, [D-Pro2-, D- Trp7 ,9]-substance P and [D-Arg1-, D-Pro2-, D- Trp7 ,9-, Leu11 ]-substance P to alter substance P-induced changes in pancreatic acinar cell function and to occupy substance P receptors. At 30 microM, each analog of substance P lacked agonist activity and inhibited amylase secretion stimulated by substance P receptor agonists. The inhibition was reversible and specific for peptides that interact with substance P receptors (physalaemin, substance P, eledoisin, kassinin ). The analogs of substance P did not inhibit the actions of cholecystokinin, caerulein, gastrin, carbamylcholine, secretin, vasoactive intestinal peptide, PHI, ionophore A23187 or 8Br -cAMP. At high concentrations, [D-Arg1-, D-Pro2-, D- Trp7 ,9-, Leu11 ]-substance P, but not [D-Pro2-, D- Trp7 ,9]-substance P or [D-Pro2-, D-Phe7-, D-Trp9]-substance P, caused a small but significant inhibition of bombesin-stimulated amylase release. For each analog of substance P, the inhibition was competitive in nature in that there was a rightward shift of the dose-response curve for physalaemin-stimulated amylase secretion with no change in efficacy. From Schild plots of the ability of [D-Arg1-, D-Pro2-, D- Trp7 ,9-, Leu11 ]-substance P to inhibit either substance p- or physalaemin-stimulated amylase release, the slopes were not different from unity. For each analog of substance P, there was a close correlation between its ability to inhibit substance P- or physalaemin-stimulated amylase release and its ability to inhibit binding of 125I-labeled substance P or 125I-labeled physalaemin. [D-Arg1-, D-Pro2-, D- Trp7 ,9-, Leu11 ]-substance P was 2-fold more potent than [D-Pro2-, D- Trp7 ,9]-substance P which was 4-fold more potent than [D-Pro2-, D-Phe7-, D-Trp9]-substance P, (i.e., pA2 6.1, 5.9, and 5.2, respectively). For each analog, the dose-response curve for its ability to inhibit physalaemin-stimulated amylase release was superimpossible on the dose-response curve for its ability to inhibit binding of 125I-labeled physalaemin. These results indicate that each of these analogs of substance P is a specific competitive inhibitor of the action of the substance P on dispersed acini from guinea-pig pancreas, and that their abilities to inhibit substance P-induced changes in acinar cell function can be accounted for by their abilities to occupy the substance P receptor.  相似文献   

7.
When dispersed acini from mouse pancreas are first incubated with cholecystokinin octapeptide, washed and then reincubated with no additions there is significant stimulation of amylase secretion during the second incubation (residual stimulation of enzyme secretion). Cholecystokinin-induced residual stimulation of enzyme secretion is modified, but not abolished, by reducing the temperature of the first incubation from 37 degrees C to 4 degrees C. Measurement of binding of 125I-labeled cholecystokinin octapeptide indicated that maximal cholecystokinin induced residual stimulation of enzyme secretion occurs when 12-20% of cholecystokinin receptors are occupied by cholecystokinin octapeptide. Moreover, maximal cholecystokinin-induced residual stimulation of amylase secretion is 25% greater than maximal cholecystokinin-induced direct stimulation of amylase secretion. Cholecystokinin tetrapeptide, which causes the same maximal direct stimulation of amylase secretion as does cholecystokinin octapeptide, causes a maximal residual stimulation of enzyme secretion that is only 30% of that caused by a maximally effective concentration of cholecystokinin octapeptide. Adding dibutyryl cyclic GMP to the second incubation can reverse the residual stimulation caused by adding cholecystokinin to the first incubation. The pattern and extent of the dibutyryl cyclic GMP-induced reversal of residual stimulation varies, depending on the temperature and concentration of cholecystokinin octapeptide in the first incubation. The present results are compatible with the hypothesis that mouse pancreatic acini possess two classes of cholecystokinin receptors. One class has a relatively high affinity for cholecystokinin and produces stimulation of enzyme secretion; the other class has a relatively low affinity for cholecystokinin and produces inhibition of enzyme secretion.  相似文献   

8.
When dispersed acini from mouse pancreas are first incubated with cholecystokinin octapeptide, washed and then reincubated with no additions there is significant stimulation of amylase secretion during the second incubation (residual stimulation of enzyme secretion). Cholecystokinin-induced residual stimulation of enzyme secretion is modified, but not abolished, by reducing the temperature of the first incubation from 37°C to 4°C. Measurement of binding of 125I-labeled cholecystokinin octapeptide indicated that maximal cholecystokinin induced residual stimulation of enzyme secretion occurs when 12–20% of cholecystokinin receptors are occupied by cholecystokinin octapeptide. Moreover, maximal cholecystokinin-induced residual stimulation of amylase secretion is 25% greater than maximal cholecystokinin-induced direct stimulation of amylase secretion. Cholecystokinin tetrapeptide, which causes the same maximal direct stimulation of amylase secretion as does cholecystokinin octapeptide, causes a maximal residual stimulation of enzyme secretion that is only 30% of that caused by a maximally effective concentration of cholecystokinin octapeptide. Adding dibutyryl cyclic GMP to the second incubation can reverse the residual stimulation caused by adding cholecystokinin to the first incubation. The pattern and extent of the dibutyryl cyclic GMP-induced reversal of residual stimulation varies, depending on the temperature and concentration of cholecystokinin octapeptide in the first incubation. The present results are compatible with the hypothesis that mouse pancreatic acini possess two classes of cholecystokinin receptors. One class has a relatively high affinity for cholecystokinin and produces stimulation of enzyme secretion; the other class has a relatively low affinity for cholecystokinin and produces inhibition of enzyme secretion.  相似文献   

9.
In dispersed acini from guinea pig pancreas cholera toxin bound reversibly to specific membrane binding sites to increase cellular cyclic AMP and amylase secretion. Cholera toxin did not alter outflux of 45Ca or cellular cyclic AMP. Binding of 125I-labeled cholera toxin could be detected within 5 min; however, cholera toxin did not increase cyclic AMP or amylase release until after 40 min of incubation. There was a close correlation between the dose vs. response curve for inhibition of binding of 125I-labeled cholera toxin by native toxin and the action of native toxin on cellular cyclic AMP. With different concentrations of cholera toxin, maximal stimulation of amylase release occurred when the increase in cellular cyclic AMP was approximately 35% of maximal. Cholera toxin did not alter the increase in 45Ca outflux or cellular cyclic GMP caused by cholecystokinin or carbachol but significantly augmented the increase in cellular cyclic AMP caused by secretin or vasoactive intestinal peptide. The increase in amylase secretion caused by cholera toxin plus secretin or vasoactive intestinal peptide was the same as that with cholera toxin alone. On the other hand, the increase in amylase secretion caused by cholera toxin plus cholecystokinin or carbachol was significantly greater than the sum of the increases caused by each agent alone.  相似文献   

10.
Action of cholera toxin on dispersed acini from guinea pig pancreas   总被引:1,自引:0,他引:1  
In dispersed acini from guinea pig pancreas cholera toxin bound reversibly to specific membrane binding sites to increase cellular cyclic AMP and amylase secretion. Cholera toxin did not alter outflux of 45Ca or cellular cyclic AMP. Binding of 125I-labeled cholera toxin could be detected within 5 min; however, cholera toxin did not increase cyclic AMP or amylase release until after 40 min of incubation. There was a close correlation between the dose vs. response curve for inhibition of bindind of 125I-labeled cholera toxin by native toxin and the action of native toxin on cellular cyclic AMP. With different concentrations of cholera toxin, maximal stimulation of amylase release occurred when the increase in cellular cyclic AMP was approximately 35% of maximal. Cholera toxin did not alter the increase in 45Ca outflux or cellular cyclic GMP caused by cholecystokinin or carbachol but significantly augmented the increase in cellular cyclic AMP caused by secretion or vasoactive intestinal peptide. The increase in amylase secretion caused by cholera toxin plus secretin or vasoactive intestinal peptide was the same as that with cholera toxin alone. On the other hand, the increase in amylase secretion caused by cholera toxin plus cholecystokinin or carbachol was significantly greater than the sum of the increases caused by each agent alone.  相似文献   

11.
So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.  相似文献   

12.
A modified method is described for the preparation of stable, high specific activity radioiodinated cholecystokinin (CCK) by its conjugation to 125I-Bolton Hunter reagent (125I-BH). Purified radioiodinated CCK (125I-BH-CCK) stimulated amylase release from isolate rat pancreatic acini with a potency identical to that of native CCK. Further, 125I-BH-CCK was highly immunoreactive and reacted with antisera directed toward both the NH2- and COOH-terminal portions of the CCK molecule. Finally, 125I-BH-CCK bound to specific receptor sites on isolated pancreatic acini.  相似文献   

13.
The binding of cholecystokinin (CCK) to its receptors on isolated rat pancreatic acini was investigated employing high specific activity, radioiodinated CCK (125I-BH-CCK), prepared by the conjugation of 125I-Bolton-Hunter reagent (125I-BH) to CCK. Binding was specific, time-dependent, reversible, and linearly related to the acinar protein concentration. After incubation for 30 min at 37 degrees C, the 125I-BH-CCK both in the incubation medium and bound to acini remained intact, as judged by gel filtration and trichloroacetic acid precipitation studies. Scatchard analysis was compatible with two classes of binding sites on acini: a very high affinity site (Kd, 64 pM) and a lower affinity site (Kd, 21 nM). 125I-BH-CCK binding to acini was competitively inhibited by CCK and four of its analogues in proportion to their biological potencies but not by unrelated hormones. Stimulation of amylase secretion by CCK and inhibition of 125I-BH-CCK binding by the same analogues carried out under identical conditions revealed a correlation (r = 0.99) between binding potency and amylase secretion. Stimulation of amylase secretion by CCK closely paralleled the occupancy of the high affinity CCK binding sites. It is concluded that the high affinity CCK binding sites most likely are the receptors mediating the stimulation of amylase secretion by CCK.  相似文献   

14.
In pancreatic acini, cGMP can be increased by secretagogues such as cholecystokinin (CCK), cholinergic agents, and bombesin, whose actions on enzyme secretion are believed to be mediated by protein kinase C. However, the role of cGMP in acinar cell function has been unclear. A recent paper by Rogers et al. (Rogers, J., Hughes, R.G., and Matthews, E. K. (1988) J. Biol. Chem. 263, 3713-3719) reported that two analogues of cGMP, N2,O2-dibutyl guanosine 3':5'-monophosphate (Bt2cGMP) and 8-bromoguanosine 3':5'-monophosphate (8Br-cGMP), at concentrations in the nanomolar range, inhibited the stimulation of amylase secretion caused by CCK-8, bethanechol, bombesin, and 12-O-tetradecanoylphorbol-13-acetate (TPA). Rogers et al. also reported that sodium nitroprusside inhibited the stimulation of enzyme secretion caused by CCK-8 or TPA. These authors concluded that cGMP inhibits protein kinase C-mediated secretion in pancreatic acini. In the present study we attempted to confirm the findings of Rogers et al., We found, however, that Bt2cGMP inhibited CCK-8-stimulated amylase release only at concentrations of the nucleotide above 10 microM. Moreover, there was a close correlation between the ability of Bt2cGMP to inhibit CCK-8-stimulated amylase release and its ability to inhibit binding of 125I-CCK-8. Bt2cGMP, at concentrations as high as 3 mM, did not alter the stimulation of amylase release caused by carbachol, bombesin, TPA, or A23187. 8Br-cGMP, at concentrations up to 1 mM, did not inhibit the stimulation of amylase release caused by CCK-8 or TPA. At concentrations above 0.1 mM, 8Br-cGMP augmented the stimulation of amylase release caused by CCK-8, carbachol, bombesin, or TPA. Sodium nitroprusside, at a concentration that causes a 60-fold increase in cGMP, did not inhibit the stimulation of amylase release caused by CCK-8, carbachol, bombesin, or TPA. Our results do not confirm the findings of Rogers et al. and indicate that cGMP does not inhibit protein kinase C-mediated secretion in pancreatic acini.  相似文献   

15.
We investigated cholecystokinin (CCK) receptors on isolated gastric chief cells from guinea pig. CCK stimulated pepsinogen secretion from chief cells at the same efficacy as that induced by carbamylcholine. Binding of 125I-labeled CCK-33 (125I-CCK) to chief cells was temperature-dependent, and was saturable and reversible at 37 degrees C. Hofstee plots of the ability of CCK-8 to inhibit binding of 125I-CCK showed a linear regression line, suggesting that CCK receptors possessed one binding site. The dissociation constant of the binding site was calculated to be 3.8 x 10(-10) M. The dose-response curve of CCK for pepsinogen secretion was superimposed on that for the binding to its receptors. These results indicated that gastric chief cells from the guinea pig possess CCK receptors that relate closely to the action of CCK involved in pepsinogen secretion.  相似文献   

16.
Syntheses of analogues of the C-terminal octa- and heptapeptide of cholecystokinin are described. These analogues were obtained by replacing the C-terminal phenylalanine residue by 2-phenylethyl alcohol or by 2-phenylethylamine derivatives and by replacing the tryptophan residue by a D-tryptophan. The CCK-derivatives were tested for their ability to inhibit binding of labeled CCK-8 to rat pancreatic acini and to guinea pig brain membranes, and for their action on stimulation of amylase release from rat pancreatic acini. Some of these derivatives appeared to exhibit only part of the CCK-activity on amylase release, the D-Trp analogues behaving as CCK-antagonists.  相似文献   

17.
In dispersed acini from guinea pig pancreas, replacing extracellular sodium by tetraethylammonium (1) abolished carbamylcholine-stimulated amylase secretion but did not alter the increase in amylase secretion caused by the C-terminal octapeptide of cholecystokinin, bombesin, ionophore A23187, vasoactive intestinal peptide or 8-bromoadenosine 3':5' monophosphate, (2) caused a parallel rightward shift in the dose-response curve for carbamylcholine-stimulated amylase secretion and (3) inhibited binding of N-[3H]methyl scopolamine to muscarinic cholinergic receptors. Detectable inhibition of carbamylcholine-stimulated amylase secretion and binding of N-[3H]methyl scopolamine occurred with 300 microM tetraethylammonium, and half-maximal inhibition of these functions occurred with 1-2 mM tetraethylammonium. Replacing extracellular sodium by Tris did not alter the stimulation of enzyme secretion caused by any secretagogue tested. These results indicate that the tetraethylammonium is a muscarinic cholinergic receptor antagonist and that enzyme secretion from pancreatic acini does not depend on extracellular sodium.  相似文献   

18.
The effects of intraperitoneally (ip.) and intracerebroventricularly (icv.) administered sulfated and nonsulfated cholecystokinin octapeptide (CCK-8-SE and CCK-8-NS) and their N- and C-terminal fragments on the tail-pinch-induced feeding behavior of rats were investigated. After ip. administration, only CCK-8-SE inhibited tail-pinch-induced food intake. After icv. administration, both CCK-8-SE and CCK-8-NS, in doses of 800 pmole/rat, reduced the amount of food eaten. Of the CCK fragments tested icv., the sulfated N-terminal fragments, the middle portion of the CCK-8-sequence (the CCK-3-6 fragment), and the C-terminal tetrapeptide depressed the food intake of rats during tail-pinch, whereas the C-terminal tripeptide significantly increased it. The results suggest that CCK peptides inhibit tail-pinch-induced feeding by separate mechanisms, depending on the route of administration.  相似文献   

19.
Considerable controversy has surrounded the question of whether the exocrine pancreas discharges digestive enzymes in a parallel or nonparallel fashion. A recent report (Rothman, S.S., and Wilking, H. (1978) J. Biol. Chem. 253, 3543-3549) claimed that the in vitro rabbit pancreas demonstrated nonparallel enzyme discharge after stimulation with cholecystokinin/pancreozymin, but that parallel discharge followed stimulation with the COOH-terminal octapeptide of cholecystokinin/pancreozymin. It was suggested that the full hormone acted to inhibit chymotrypsinogen secretion while stimulating trypsinogen secretion. Because of the fundamental importance of this question to our understanding of the exocrine secretion of exportable proteins, we have repeated these experiments using the same preparation and stimulant but have observed only parallel enzyme discharge. We conclude that it is unlikely that cholecystokinin/pancreozymin causes the selective inhibition of chymotrypsinogen secretion.  相似文献   

20.
To investigate the role of phospholipids in exocytotic secretory events, we utilized rat pancreatic acinar AR42J cells that secreted amylase in response to cholecystokinin octapeptide (CCK-8). Wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K), was found to inhibit the secretion in a dose-dependent manner. When changes in cell membrane phospholipids were investigated before and after CCK-8 stimulation using [32P]orthophosphoric acid-labeled AR42J cells, we observed a rapid increase in phosphatidic acid (PtdOH) levels right after stimulation, which was not observed in non-stimulated cells. The increase, however, was suppressed by wortmannin pre-treatment, which also inhibited amylase secretion. Changes in other major phospholipids were not significant. These results indicate that CCK-8 induces amylase secretion through PI3K-regulated production of PtdOH in cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号