首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The role of vaccinia virus-reactive helper T cells (Th) in augmenting in vivo generation of antitumor protective immunity and the Ly phenotype mediating the enhanced in vivo tumor immunity were investigated. C3H/HeN mice were inoculated i.p. with viable vaccinia virus to generate vaccinia virus-reactive Th activity. The mice were subsequently immunized i.p. with virus-infected syngeneic X5563 and MH134 tumor cells, and spleen cells from these mice were tested for in vivo tumor neutralizing activity. Immunization of virus-primed mice with virus-uninfected tumor cells and of virus-unprimed mice with virus-infected tumor cells failed to result in in vivo protective immunity. In contrast, spleen cells from mice immunized with virus-infected tumor cells subsequent to virus-priming exhibited potent tumor-specific neutralizing activities. Such an augmented generation of in vivo protective immunity was accompanied by enhanced induction of tumor-specific cytotoxic T lymphocyte (CTL) and antibody activities in X5563 and MH134 tumor systems, respectively. However, analysis of the effector cell type responsible for in vivo tumor neutralization revealed that enhanced in vivo immunity was mediated by Lyt-1+2 T cells in both tumor systems. Moreover, the Lyt-1+2 T cells exerted their function in vivo under conditions in which anti-X5563 tumor-specific CTL or anti-MH134 tumor-specific antibody activity was not detected in recipient mice. These results indicate that augmenting the generation of a tumor-specific Lyt-1+2 T cell population is essential for enhanced tumor-specific immunity in vivo.This work was supported by Special Project Research-Cancer Bioscience from the Ministry of Education, Science and Culture  相似文献   

2.
In the present study we investigated some of the cellular mechanisms for the generation of macrophage-activating factor(s) (MAF) in immune responses to tumor antigens. C3H/HeN mice were immunized to syngeneic MH134 hepatoma or MCH-1-A1 fibrosarcoma by intradermal inoculation of viable tumor cells, followed by the surgical resection of the tumor. Spleen and lymph node cells from these tumor-immune mice were stimulated in vitro with the corresponding tumor cells, and supernatant from such a culture was tested for an ability to activate macrophages to exert their cytostatic and cytolytic activities as detected on tumor cells unrelated to immunizing tumors. Peritoneal adherent cells as a macrophage source, which were preincubated with supernatant from co-culture of tumor-unimmunized normal spleen and lymph node cells plus tumor cells, failed to exhibit any significant antitumor effect on unrelated X5563 tumor cells, whereas the addition of supernatant from cultures containing immune lymphocytes to adherent cells resulted in appreciably potent cytostatic and cytolytic effects on X5563 tumor cells, indicating the generation of MAF in culture supernatant. The activation of tumor-immune spleen and lymph node cells for MAF generation was tumor-specific, because anti-MH134- and anti-MCH-1-A1-immune lymphocytes produced MAF by the stimulation with the respective but not with the other alternative tumor cells. Such MAF production was abolished by treatment of tumor-immune spleen and lymph node cells with anti-Thy-1.2 or anti-Lyt-1.1 but not with anti-Lyt-2.1 antibody plus complement before culturing. These results indicate that the tumor-specific Lyt-1+2- T cell subset has a crucial role in generating MAF by which an adherent cell population as a source of macrophages acquires the potential for inducing a cytolytic as well as a cytostatic effect on tumor cells.  相似文献   

3.
This study establishes assay systems for helper T cell activities assisting cytotoxic T lymphocyte (CTL) and antibody responses to tumor-associated antigens (TAA) and demonstrates the existence of TAA that induce preferentially anti-TAA CTL helper and B cell helper T cell activities in two syngeneic tumor models. C3H/HeN mice were immunized to the syngeneic X5563 plasmacytoma or MH134 hepatoma. Spleen cells from these mice were tested for anti-TAA helper T cell activity capable of augmenting anti-trinitrophenyl(TNP) CTL and anti-TNP antibody responses from anti-TNP CTL and B cell precursors (responding cells) by stimulation with TNP-modified X5563 or MH134 tumor cells. The results demonstrate that cultures of responding cells plus 85OR X-irradiated tumor-immunized spleen cells (helper cells) failed to enhance anti-TNP CTL or antibody responses when in vitro stimulation was provided by either unmodified tumor cells or TNP-modified syngeneic spleen cells (TNP-self). In contrast, these cultures resulted in appreciable augmentation of anti-TNP CTL or antibody response when stimulated by TNP-modified tumor cells. Such anti-TAA helper activities were revealed to be Lyt-1+2- T cell mediated and TAA specific. Most interestingly, immunization with X5563 tumor cells resulted in anti-TAA helper T cell activity involved in CTL, but not in antibody responses. Conversely, TAA of MH134 tumor cells induced selective generation of anti-TAA helper T cell activity responsible for antibody response. These results indicate that there exists the qualitative TAA-heterogeneity as evidenced by the preferential induction of anti-TAA CTL- and B cell-helper T cell activities. The results are discussed in the light of cellular mechanisms underlying the preferential anti-TAA immune responses, and the interrelationship between various types of cell functions including CTL- and B cell-help.  相似文献   

4.
Summary The present study investigates some of mechanisms for tumor-specific Lyt-1+2 T cell-mediated tumor cell eradication in vivo through analyses of tumor specificity in the afferent tumor recognition and efferent rejection phases. When C3H/He mice which had acquired immunity against syngeneic MH134 hepatoma were challenged with other syngeneic X5563 plasmacytoma cells, these mice failed to exhibit any inhibitory effect on the growth of X5563 tumor cells. However, the inoculation of X5563 tumor cells into the MH134-immune C3H/He mice together with the MH134 tumor cells resulted in appreciable growth inhibition of antigenically distinct (bystander) X5563 tumor cells. Although the growth of X5563 cells was inhibited in an antigen-nonspecific way in mice immunized to antigenically unrelated tumor cells (bystander effect), the activation of Lyt-1+2 T cells leading to this effect was strictly antigen-specific. Such a bystander growth inhibition also required the admixed inoculation of the bystander (X5563) and specific target (MH134) tumor cells into a single site in mice immunized against the relevant MH134 tumor cells. Furthermore, the results demonstrated that Lyt-1+2 T cells specific to MH134 tumor cells were responsible for mediating the growth inhibition of antigenically irrelevant (bystander) and relevant tumor cells. These results are discussed in the context of cellular and molecular mechanisms involved in the Lyt-1+2 T cell-initiated bystander phenomenon.This work was supported by Special Project Research-Cancer Bioscience from the Ministry of Education, Science and Culture  相似文献   

5.
The augmenting effect of vaccinia virus infection of tumor cells on induction of tumor-specific resistance was examined in mice. C3H/HeN mice were primed intraperitoneally (ip) with live vaccinia virus after whole-body irradiation with 250 rad of X-rays. Three weeks later the mice were immunized ip 3 times at weekly intervals with syngeneic murine hepatoma MH134 or spontaneous myeloma X5563 which had been infected in vitro with vaccinia virus and subsequently irradiated with 7000 rad of X-rays. One week after the third immunization, the mice were challenged with 1 X 10(5) viable cells of MH134 or X5563 ip or 1 X 10(6) tumor cells intradermally (id). On ip challenge with viable MH134 cells all mice that had not been pretreated died within 3 weeks due to ascites tumor out-growth, whereas all mice that had been vaccinia virus-primed and immunized with vaccinia virus-infected MH134 cells survived. On ip challenge with X5563 cells, the percentage survival of vaccinia virus-primed and vaccinia virus-modified tumor-immunized mice was 80%. On id challenge with MH134 and X5563 tumor cells, in un-treated mice tumors grew to more than 5 mm in diameter within 3 weeks, whereas 90% and 60%, respectively, of the mice that had been vaccinia virus-primed and immunized with vaccinia virus-infected tumor cells showed no tumor out-growth. Pretreatment by only immunization with vaccinia virus-infected cells or vaccinia virus-priming and immunization with virus non-infected tumor cells were not effective for preventing induction of tumor-resistance to either ip or id challenge with MH134 or X5563 tumor cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Summary Utilizing vaccinia virus (VV), a tumor-specific immunotherapy model was established in which a growing tumor regressed. C3H/HeN mice were primed with VV after low dose irradiation to generate amplified VV-reactive T cell activities. Then 4 weeks later, the mice were inoculated i. d. with syngeneic MH134 hepatoma cells, and 6 days after the tumor cell inoculation, live VV was injected into the tumor mass 3 times at 2-day intervals. Of 10 mice which had received VV priming and subsequent VV injection into the tumor mass, 8 exhibited complete tumor regression. On the contrary, mice which had received only intratumoral VV injection without VV priming failed to exhibit appreciable tumor regression. Mice whose tumor had completely regressed following the VV immunotherapy were shown to have acquired systemic antitumor immunity, which was confirmed by a challenge with syngeneic tumor cells after immunotherapy. In vitro analysis of these immune mice revealed that potent tumor-specific antibody responses were preferentially induced, but with no detectable antitumor cytotoxic T lymphocyte (CTL) responses. Such a potent tumor-specific immunity was not observed in mice which had received intratumoral VV injection in the absence of VV priming. Thus, the results clearly indicate that tumor regression was accompanied by the concurrent generation of a potent tumor-specific immunity, suggesting that cellular cooperation between VV-reactive T cells and tumor-specific effector cells might be functioning in this VV immunotherapy protocol. Therefore, the present model provides an effective maneuver for tumor-specific immunotherapy. This system is, in principle, applicable to the human situation.  相似文献   

7.
The biological effect of transforming growth factor-beta (TGF-beta) is cell type-specific and complex. The precise role of TGF-beta is not clear in vivo. To elucidate the regulation mechanism of endogenous TGF-beta on hepatoma progression, we modified the MH129F mouse hepatoma cell with a retroviral vector encoding the extracellular region of type II TGF-beta receptor (TRII). Soluble TRII (TRIIs) blocked TGF-beta binding to TRII on the membrane of hepatoma cells. Growth of MH129F cells was inhibited by TGF-beta1 treatment; however, soluble TRII-overexpressing cells (MH129F/TRIIs) did not show any change in proliferation after TGF-beta1 treatment. MH129F/TRIIs cells also increased vascular endothelial growth factor (VEGF) expression, endothelial cell migration, and tube formation. Implantation of MH129F/TRIIs cells into C3H/He mice showed the significantly enhanced tumor formation. According to Western blot and protein kinase C assay, the expression of VEGF, KDR/flk-1 receptor, and endothelial nitric-oxide synthase was enhanced, and the phosphorylation activity of protein kinase C was increased up to 3.7-fold in MH129F/TRIIs tumors. Finally, a PECAM-1-stained intratumoral vessel was shown to be 4.2-fold higher in the MH129F/TRIIs tumor. These results indicate that VEGF expression is up-regulated by a blockade of endogenous TGF-beta signaling in TGF-beta-sensitive hepatoma cells and then stimulates angiogenesis and tumorigenicity. Therefore, we suggest that endogenous TGF-beta is a major regulator of the VEGF/flk-1-mediated angiogenesis pathway in hepatoma progression.  相似文献   

8.
Summary We compared the immunity induced by tumor cells modified with UV-inactivated purified vaccinia virus (UV-VV) and with live purified vaccinia virus (L-VV). C3H/HeN mice were inoculated i.p. with UV-VV or L-VV after whole-body irradiation with 150 rads of X-rays (priming). After 3 weeks the mice were immunized i.p. 3 times at weekly intervals with syngeneic X5563 or MH134 cells that had been adsorbed in vitro with UV-VV or infected with L-VV and subsequently irradiated with 104 rads of X-rays. Then 1 week after the last immunization, the mice were challenged s.c. with X5563 viable tumor cells or challenged i.p. with MH134 viable tumor cells. The 50% lethal dose (TLD50) of X5563 in mice primed and immunized with UV-VV (UV-VV group) on s.c. challenge (106.06) was the same as for mice treated with L-VV (L-VV group), whereas the TLD50 of unprimed or nonimmunized mice (control group) was 102.61. The TLD50 of MH134 in the UV-VV treated group on i.p. challenge (106.48) was similar to that of the L-VV treated group (106.54), while the TLD50 of the control group was 101.00. The difference between the TLD50 values of X5563 on s.c. challenge of mice primed and immunized with UV-VV or L-VV and control mice was 103.4. The difference between the TLD50 values of MH134 on i.p. challenge of primed and immunized mice and control mice was 105.5. These results indicate that the in vivo helper function of UV-VV is similar to that of L-VV and that the augmenting effect of this protocol depends on the kind of tumor.  相似文献   

9.
Tumor antigen presentation by murine epidermal cells   总被引:10,自引:0,他引:10  
The ability of epidermal Langerhans cells to present Ag for CD4-dependent immunity is well documented, and it has been hypothesized that Langerhans cells participate in the generation of immunity against incipient epidermal neoplasms by presentation of tumor-associated Ag in situ. This study examined the ability of murine epidermal cells (EC) to present tumor-associated Ag for the induction of in vivo antitumor immunity. Murine epidermal cells were deleted of Thy-1-bearing cells, cultured in 50 U/ml granulocyte-macrophage-CSF for 14 to 18 h, and pulsed with tumor fragments (TF) derived from S1509a-fibrosarcoma cells. These TF-pulsed EC were injected s.c. into syngeneic recipients at weekly intervals for a total of three immunizations and challenged with viable S1509a tumor cells 1 wk after the last immunization. Control animals received TF-pulsed allogeneic EC or EC treated identically but not pulsed with TF. EC that were pulsed with tumor cell fragments were able to induce protective immunity to tumor growth in vivo and to immunize for a significant delayed-type hypersensitivity response to injected tumor cells. The induction of antitumor immunity with TF-pulsed EC was genetically restricted, and culture of EC in granulocyte-macrophage-CSF was required for development of significant immunity. Furthermore, deletion of I-A+ cells by antibody and complement-mediated lysis eliminated the generation of immunity. Thus, I-A+ epidermal cells are capable of presenting S1509a tumor Ag for the generation of protective antitumor immunity in vivo.  相似文献   

10.
The endogenous production of tumor necrosis factor (TNF) by tumor tissues was examined. MH134 tumor cells as well as monocytes in MH134 tumor tissues produced TNF after systemic administration of a polyalcoholized mannoglucan (MGA) from Microellobrosporia grisea as shown by the indirect immunofluorescence technique. MH134 tumor cells also produced TNF when stimulated with lipopolysaccharide in vitro. These results suggest that regression of MH134 hepatoma can be ascribed to TNF produced not only by monocytes but also by tumor cells themselves in the tumor tissue.  相似文献   

11.
We examined the antitumor effects of eosinophils to explore the potential of eosinophils as effector cells in tumor cytotoxicity. We expressed eotaxin in hepatocellular carcinoma cells, MH134, and injected them into either normal or IL-5 TG mice intradermally and monitored cell growth. In normal mice, growth of MH134 cells containing the expression plasmid pCXN2-eotaxin was similar to that of vector-transfected MH134 cells for a period of 2 weeks, suggesting that expression of eotaxin does not change the growth rate of tumor cells. In IL-5 TG mice, however, the growth of eotaxin expressing MH134 cells was significantly suppressed. LPS induced eosinophils to produce TNF-alpha to kill MH134 cells in vitro. Intratumor injection of LPS is effective to kill MH134-pCXN2 and MH134-pCXN2-eotaxin only in normal mice. Administration of anti-CD4 or anti-CD8 antibodies suppressed growth of MH134-pCXN2-eotaxin cells compared with control antibodies, suggesting that T cells may interfere with immunity against MH134. Administration of anti-IL-5Ralpha and anti-asialo GM1 antibodies enhanced growth of MH134-pCXN2-eotaxin cells, suggesting involvement of eosinophils and NK cells in suppression of tumor cell growth. Although we cannot exclude the possibility that NK cells participate in tumor cell killing in vivo, the presence of NK markers such as DX5, asialo GM1, Ly49, and CD94, and NKG2D on large numbers of eosinophils activated by eotaxin suggests that eosinophils function in such suppression of tumor cell growth. Furthermore, we showed that anti-NKG2D antibodies could significantly inhibit the LPS-induced cytotoxicity against MH134 by highly enriched fraction of eosinophils.  相似文献   

12.
In the present study we establish an assay system of tumor growth inhibition with the use of a diffusion chamber and investigate the mechanism by which tumor-specific Lyt-1+2-T cells exhibit their inhibiting effect on tumor cell growth. When a diffusion chamber containing X5563 plasmacytoma cells together with normal syngeneic C3H/HeN spleen cells was implanted in the peritoneal cavity of C3H/HeN mice, these tumor cells continued to proliferate at least 7 to 9 days. In contrast, spleen cells from C3H/HeN mice that had acquired X5563-specific immunity by intradermal (i.d.) inoculation of viable tumor cells, followed by surgical resection of the tumor, exhibited an appreciable inhibitory effect on the growth of X5563 tumor cells admixed in the chamber. This antitumor effect was mediated by Lyt-1+2-T cells and was tumor-specific, because the growth of X5563 or another syngeneic MH134 hepatoma cells was inhibited by spleen cells from C3H/HeN mice immunized to the respective tumor cell types. Most important, these tumor-specific Lyt-1+2-T cells lost their antitumor activity by depleting an adherent cell population contained in spleen cells, indicating that adherent cells are required for the Lyt-1+2-T cell-mediated antitumor effect. This was substantiated by the fact that immune spleen cells depleted of adherent cells could regain their tumor-inhibiting effect when normal spleen cells were added back as an adherent cell source, or more directly by adding back a splenic or peritoneal resident adherent cell population. These results indicate that tumor-specific Lyt-1+2-T cells mediate the tumor growth inhibition and that their antitumor effect depends on the coexistence of an adherent cell population.  相似文献   

13.
H-2 dependency of T cell-mediated cytotoxicity and transplantation immunity to leukemia-associated antigens has been investigated. Through the use of a 20-hr 125IUdR release assay, it was found that the induction of T cell-mediated cytotoxicity against Friend virus-induced leukemias of different H-2 haplotype orgins could be produced by immunization with both syngeneic and allogeneic tumor cells; the effector cells that were generated by syngeneic immunization could also provide effective killing of allogeneic tumor cells, although the killing of allogeneic targets might require a longer incubation time (20 to 40 hr). Furthermore, in vivo transplantation immunity against Friend virus-induced leukemias also was induced by immunization with both syngeneic and allogeneic tumors and syngeneic immunization could induce specific protection against the challenge with a-logeneic tumor in x-irradiated hosts. These findings clearly indicate that, both at the sensitizing phase and effector phase of the immune response, there is no strict H-2 dependency for T cell-mediated cytotoxicity or in in vivo transplantation imunity to leukemia-associated antigens.  相似文献   

14.
Summary C3H/He mice were inoculated i.v. with 106 heavily X-irradiated syngeneic X5563 plasmacytoma cells 3 times at 4 day intervals. When these mice received an appropriate immunization procedure consisting of i. d. inoculation of viable tumor cells plus the surgical resection of the tumor which enables i.v. nonpresensitized mice to produce anti-X5563 immunity, they failed to develop tumor-specific immunity. This was demonstrated by the abrogation in potential of spleen and lymph node cells to generate in vivo protective immunity. In contrast, the tumor mass from X5563 tumor-bearing mice which had received the i.v. presensitization contained comparable anti-X5563 tumor neutralizing activity to that obtained from the tumor mass from nonpresensitized, X5563 tumor-bearing mice. Such an in vivo protective immunity was revealed to be mediated by tumor-specific T cells. These results demonstrate the differential generation and antitumor capability of tumor infiltrating T cells and T cells in lymphoid organs from mice which are in the tumor-specific tolerant state. The results are discussed in the context of potential utilization of tumor infiltrating in vivo protective T cells to enhance the local tumor-specific immunity in tumor-specific tolerant mice.This work was supported by Special Project Research-Cancer Bioscience from the Ministry of Education, Science and Culture  相似文献   

15.
In contrast to extensive studies on tocopherols, very little is understood about tocotrienols (T3). We evaluated the antitumor activities of gamma-T3 and delta-T3 in murine hepatoma MH134 cells in vitro and in vivo. We found that delta-T3 inhibited the growth of MH134 cells more strongly than gamma-T3 by inducing apoptosis. In C3H/HeN mice implanted with MH134, it was found that gamma-T3 and delta-T3 feeding significantly delayed tumor growth. On the other hand, both T3 had no significant effect on body weight, normal-tissue weight and immunoglobulin levels. Intriguingly, we found that T3 was detected in tumor, but not in normal tissues. These results, to our knowledge, are the first demonstration of specific accumulation of gamma-T3 and delta-T3 in tumors and suggest that T3 accumulation is critical for the antitumor activities of T3.  相似文献   

16.
C3H/He mice were injected i.v. with heavily X-irradiated syngeneic X5563 tumor cells three times at 4-day intervals. This regimen resulted in the abrogation of the potential to generate X5563 tumor-specific T cell-mediated immunity as induced by i.d. inoculation of viable X5563 tumor cells followed by surgical resection of the tumor, representing the tolerance induction. Although such a tumor-specific tolerant state was long-lasting, the recovery of anti-X5563 effector T cell responses was observed when the above ordinary immunization procedure was performed 6 months after the tolerance induction. The present study investigated whether the recovery from the tolerance can be accelerated by applying a helper-effector T-T cell interaction model in which enhanced anti-X5563 immunity is obtained by priming mice with BCG and by immunizing X5563 tumor cells modified with BCG cross-reactive MDP hapten (designated as L4-MDP) in the presence of anti-L4-MDP helper T cells preinduced with BCG. The results demonstrated that BCG-primed mice which received the tolerance regimen failed to generate anti-X5563 immunity when the ordinary immunization was performed 2 or 3 months after the tolerance induction. In contrast, the immunization of BCG-primed and X5563-tolerant mice with L4-MDP-coupled X5563 tumor cells at comparable timing to that of the ordinary immunization were capable of generating potent X5563-specific in vivo protective T cell-mediated immunity. As control groups, BCG-primed or unprimed tolerant mice did not develop anti-X5563 immunity when immunized with L4-MDP-uncoupled or L4-MDP-coupled tumor cells, respectively. These results indicate that immunization of BCG-primed, tumor-tolerant mice with L4-MDP-modified tumor cells results in accelerated recovery from the tumor tolerance.  相似文献   

17.
Immunization of animals with 1591-RE tumor cells, a highly immunogenic UV-induced epithelia cell tumor from C3H/HeN mice, that were haptenated with trinitrophenol (TNP) leads to protective immunity against a challenge of TNP-haptenated 3152-PRO tumor cells, a progressive highly malignant. MCA-induced fibrosarcoma from syngeneic mice. Animals that rejected TNP-1591-RE and subsequently TNP-3152-PRO tumor cells showed increased tumor-specific resistance to another challenge of 3152-PRO tumor cells, even when these fibrosarcoma cells had not been haptenated with TNP. Induction of protection required the presence of TNP-hapten groups on both 1591-RE and 3152-PRO during the initial immunization, and could be induced by immunization with other haptenated syngeneic highly immunogenic regressor tumor lines. In addition, TNP-haptenated progressor variants of the 1591-RE were ineffective in generating protection, suggesting that the immunogenicity of the haptenated tumor used for the initial immunization was a determining factor in whether or not protective immunity against the highly malignant tumor was later generated. Protection required at least two T cell types: a Lyt-1-2+ T cells, and a Lyt-1+2- T cell that also expressed I-J determinants and was Vicia villosa lectin adherent, suggesting it was not a classical helper T cell. These results suggest that presentation of a hapten by highly immunogenic tumor cells can lead to enhanced protective immunity to poorly immunogenic noncross-reactive tumors that co-express the same hapten, and rejection of these haptenated poorly immunogenic tumors leads to enhanced protection against a subsequent challenge of the same, but not noncross-reactive progressor tumors.  相似文献   

18.
The present study determines the Ly phenotype of T cells mediating tumor cell rejection in vivo and investigates some of cellular mechanisms involved in the in vivo protective immunity. C3H/HeN mice were immunized to syngeneic X5563 plasmacytoma by intradermal (i.d.) inoculation of viable X5563 tumor cells, followed by the surgical resection of the tumor. Spleen cells from these immune mice were fractionated by treatment with anti-Lyt antibodies plus complement, and each Lyt subpopulation was tested for the reconstituting potential of in vivo protective immunity in syngeneic T cell-depleted mice (B cell mice). When C3H/HeN B cell mice were adoptively transferred with Lyt-1-2+ T cells from the above tumor-immunized mice, these B cell mice exhibited an appreciable cytotoxic T lymphocyte (CTL) response to the X5563 tumor, whereas they failed to resist the i.d. challenge of X5563 tumor cells. In contrast, the adoptive transfer of Lyt-1+2- anti-X5563 immune T cells into B cell mice produced complete protection against the subsequent tumor cell challenge. Although no CTL or antibody response against X5563 tumors was detected in the above tumor-resistant B cell mice, these mice were able to retain Lyt-1+2- T cell-mediated delayed-type hypersensitivity (DTH) responses to the X5563 tumor. These results indicate that Lyt-1+2- T cells depleted of the Lyt-2+ T cell subpopulation containing CTL or CTL precursors are effective in in vivo protective immunity, and that these Lyt-1+2- T cells implement their in vivo anti-tumor activity without inducing CTL or antibody responses. The mechanism(s) by which Lyt-1+2- T cells function in vivo for the implementation of tumor-specific immunity is discussed in the context of DTH responses to the tumor-associated antigens and its related Lyt-1+2- T cell-mediated lymphokine production.  相似文献   

19.
Electroporation is a method for introducing DNA into cells by using a high-voltage electric field. This method is very simple and easily manipulated. We describe here a method for the modification of tumor cells with the Fas/Apo-1 (CD95) antigen-gene and Fas ligand (FasL)-gene transfection through the use of electroporation, and suggest that the Fas-FasL system is a good target for the induction of apoptosis-mediated antitumor activity. The Fas receptor/ligand system induces apoptosis and plays an important role in regulation of the immune system. In the method described, hepatoma MH134 (Fas and FasL) is transfected with murine Fas and FasL cDNA. A single administration of monoclonal anti-Fas antibody efficiently suppresses the growth of F6b (MH134+Neo+Fas) tumors but not that of N1d (MH134+Neo) tumors in gld/gld lpr/lpr mice. MH134+Neo+FasL tumor cells were rejected after the induction of inflammation with infiltration of neutrophils in mice. These results suggest that electroporation and Fas-mediated apoptosis are a good method for inducing of antitumor activity.  相似文献   

20.
When mice were immunized with adequate doses (1.0~5.0 mg) of tumor cells attenuated with acetone-ether, complete resistance to the graft of Sarcoma 180 could be induced. The serum taken from mice immunized with repeated challenges was found to display immune adherence reactivity and the antibody titer of anti-Sarcoma 180 serum was higher than that of anti-sarcoma 37 or anti-Ehrlich serum prepared from respective tumor resistant mice.

The interaction between anti-Sarcoma 180 serum and various lines of tumor cells was investigated by the tests of immune adherence absorption and cytotoxicity.

Sarcoma 37 cells exhibited the same reactivity as Sarcoma 180 cells in both tests. Ehrlich cells showed lower reactivity than Sarcoma 180 or Sarcoma 37. Neither MH 134 cells nor myeloma cells exhibited a detectable reactivity in the test of cytotoxicity in vitro. On the other hand, in the test of cytotoxicity in vivo, MH 134 was slightly inhibited and myeloma was promoted in tumor growth.

These results suggest that anti-Sarcoma 180 serum prepared in this experimental system might be useful for the classification of tumor cells and in the study of tumor surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号