首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Light and electron microscopic localization of l-alpha-hydroxyacid oxidase (l-HOX) in rat kidney was studied by means of immunocytochemical · techniques. Isozymes A and B of l-HOX were purified from rat liver and kidney, respectively. The apparent molecular weights of the subunits of the isozymes A and B were 35,800 and 33,500 daltons, respectively, by a slab gel electrophoresis. Antibodies to the isozymes were raised in rabbits. Anti(isozyme A) is not cross-reactive with the isozyme B and vice versa anti(isozyme B) not with the isozyme A. Using anti-isozyme B, semithin sections of Epon-embedded material and ultrathin sections of Lowicryl K4M-embedded material were stained by immunoenzyme and protein A-gold techniques, respectively. By light microscopy, fine discrete granular staining was noted in proximal tubules, but not in distal tubules including thick and thin limbs of Henle and collecting tubules. By electron microscopy, gold particles representing the antigen sites for l-HOX B were confined exclusively to peroxisomes, in which most of the gold particles were localized in electron dense peripheral matrix, but little in central matrix with low electron density. The results indicate that l-HOX B does not homogeneously distribute in peroxisomes of rat kidney but might be associated with some substructure within peroxisome matrix.  相似文献   

2.
Summary The production of l-phenylalanine from the racemate d,l-phenyllactate in an enzyme membrane reactor has been examined. In a first step the racemate is dehydrogenated to the prochiral intermediate phenylpyruvate by the enzymes d-and l-hydroxyisocaproate dehydrogenase. In a second step phenylpyruvate is reductively aminated to l-phenylalanine by l-phenylalanine dehydrogenase. Both steps are dependent on coenzyme, the first one requires NAD, the second one NADH in stoichiometric amounts; in this way the coenzyme is regenerated and only required catalytically. The coenzyme is covalently bound to polyethylene glyco-20 000 and can thus be retained in the reactor analogously to the three enzymes. In order to optimize the continuous production of l-phenylalanine from d,l-phenyllactate, models of the reaction kinetics and of the reactor system have been set up. By means of the reactor model, we can calculate the optimum ratio of the three enzymes, the optimum coenzyme concentration and the optimum phenylpyruvate concentration in the feed.In this process, at a substrate concentration of 50 mM d,l-phenyllactate we reached a spacetime-yield of 28 g l-Phe/(l*d).Abbreviations PEG polyethylene glycol - d-HicDH d-hydroxyisocaproate dehydrogenase - l-HicDH l-hydroxyisocaproate dehydrogenase - PheDH l-phenylalanine dehydrogenase - V max maximum velocity - K M Michaelis-Menten constant - K l inhibition constant - R1 reaction rate of the d-HicDH forward reaction - R2 reaction rate of the d-HicDH reverse reaction - R3 reaction rate of the l-HicDH forward reaction - R4 reaction rate of the l-HicDH reverse reaction - R5 reaction rate of the PheDH forward reaction - R6 reaction rate of the PheDH reverse reaction - d-PLac d-phenyllactate - l-PLac l-phenyllactate - PPy phenylpyruvate - l-Phe l-phenylalanine - NH4 ammonium - residence time  相似文献   

3.
Summary An improved method for the production ofl-leucine dehydrogenase is described employing a mutant with a constitutive enzyme and a fed-batch cultivation technique yielding high cell concentrations. Purification ofl-leucine dehydrogenase to homogeneity was carried out starting with 30 kgBacillus cereus cells by heat treatment at 63°C, followed by two liquid-liquid extraction steps and three conventional column chromatographies. Crystals have been obtained from the 95-fold purified enzyme. The molecular weight of the native enzyme was determined by sedimentation equilibrium and gel filtration studies to be 310 000 containing eight identical subunits with a molecular weight of 39 000. The sedimentation coefficient was estimated to 11.65 S. Branched-chain amino acids likel-leucine,l-valine orl-isoleucine are deaminated by the NAD-dependent enzyme. In the reverse reaction a variety of 2-ketoacids, especially 2-ketoisocaproate, 2-ketoisovalerate and 2-keto-3-methyl-valerate, were reductive aminated to the correspondingl-amino acids in the presence of 0.9 M ammonia. The amino acid composition for the subunit ofl-leucine dehydrogenase is presented.  相似文献   

4.
Summary An improved detection of activity of l-gulonolactone oxidase, which is responsible for the final oxidative step in the synthetic process of l-ascorbate from glucose in animals, was achieved using phenazine methosulfate and cyanide. Cold acetone fixation eliminated non-specific deposition of formazan on lipid droplets. The specificity of the method was tested and proven by a biological control, histochemical controls, inhibitors and activators. By application of the method, strong reactivity was found in the cytoplasm of centrilobular parenchymal cells of livers of the opossum, rat, ground squirrel and flying squirrel. Staining of dog liver was moderate and centrilobular. Prosimians were strongly positive: The centrilobular localization was found in the tree shrew and galago; slow lorises and some pottos showed strong reactivity in centrilobular cells and some peripheral cells as well. These prosimians seem to be able to synthesize l-ascorbate as many lower mammals are. On the contrary, true simians (i.e. the squirrel monkey, spider monkey, rhesus monkey and chimpanzee) were negative as guinea pigs were, suggesting their probable inability for l-ascorbate synthesis.Visiting scientist from the Department of Anatomy, Tokyo Medical and Dental University, Tokyo, Japan. T. R. Shanthaveerappa in previous publications, also fellow, Department of Anesthesiology, Emory University.  相似文献   

5.
Summary To develop a practical process for d-alanine production from dl-alanine, we screened 107 yeasts for their asymmetric degrading activity against dl-alanine. Candida maltosa JCM1504 degraded the l-isomer ten times more rapidly than the d-isomer. The cells of this strain were used as a biocatalyst for eliminating the l-isomer. However, when the degradation reaction was conducted in the presence of a high concentration of dl-alanine, the pH of the reaction mixture was rapidly increased by the liberation of ammonia from l-alanine, and consequently the reaction stopped. This hindrance was overcome by controlling the pH value at 6.0 with H2SO4 during the reaction. Additionally, we found that the maximum rate of l-isomer degradation was obtained at 30° C and pH 6.0 under conditions of high aeration (1.0 vvm) and agitation (1200 rpm). Under the optimal conditions, the l-isomer of 200 g dl-alanine/l was completely degraded within 40 h and 90 g d-alanine/l remained in the reaction mixture. d-Alanine was easily isolated from the reaction mixture. The chemical and optical purity of the d-isomer product so obtained was 99.0% and 99.9% enantiomeric excess, respectively.Offprint requests to: I. Umemura  相似文献   

6.
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates ammonia and other forms of reduced nitrogen either through the GS/GOGAT pathway or by the concerted action of l-alanine dehydrogenase and aminotransferases. These routes are light-independent and very responsive to the carbon and nitrogen sources used for cell growth. GS was most active in cells grown on nitrate or l-glutamate as nitrogen sources, whereas it was heavily adenylylated and siginificantly repressed by ammonium, glycine, l-alanine, l-aspartate, l-asparagine and l-glutamine, under which conditions specific aminotransferases were induced. GOGAT activity was kept at constitutive levels in cells grown on l-amino acids as nitrogen sources except on l-glutamine where it was significantly induced during the early phase of growth. In vitro, GOGAT activity was strongly inhibited by l-tyrosine and NADPH. In cells using l-asparagine or l-aspartate as nitrogen source, a concerted induction of l-aspartate aminotransferase and l-asparaginase was observed. Enzyme level enhancements in response to nitrogen source variation involved de novo protein synthesis and strongly correlated with the cell growth phase.Abbreviations ADH l-alanine dehydrogenase - AOAT l-alanine:2-oxoglutarate aminotransferase - Asnase l-asparaginase - GOAT Glycine: oxaloacetate aminotransferase - GOGAT Glutamate synthase - GOT l-aspartate: 2-oxoglutarate aminotransferase - GS Glutamine synthetase - HPLC High-Pressure Liquid Chromatography - MOPS 2-(N-morpholino)propanesulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

7.
Summary The aim of this work was to study l-DOPA-containing neuronal structures of the rat posterior and dorsal hypothalamus by means of immunohistochemistry using antiserum against glutaraldehyde conjugated l-DOPA. Aspects and distribution of l-DOPA immunoreaction among cells of the supramammillary nucleus and the A11, A13c and A13 cell groups are described and compared to dopamine immunoreactivity, mainly through a double colored labelling procedure employing a color modification of the DAB reaction by metallic ions. Differences between l-DOPA and dopamine stainings within cell groups as the presence of cells with predominant or exclusive l-DOPA coloration are tentatively explained under the light of previous findings using immunohistochemistry of catecholamines synthesizing enzymes and catecholamines histofluorescence.  相似文献   

8.
l-2-Aminobutyric acid can be synthesized in a transamination reaction from l-threonine and l-aspartic acid as substrates by the action of threonine deaminase and aromatic aminotransferase, but the by-product l-alanine was produced simultaneously. A small amount of l-alanine increased the complexity of the l-2-aminobutyric acid recovery process because of their extreme similarity in physical and chemical properties. Acetolactate synthase has been introduced to remove the pyruvate intermediate for reducing the l-alanine concentration partially. To eliminate the remnant l-alanine, alanine racemase of Bacillus subtilis in combination with d-amino acid oxidase of Rhodotorula gracilis or Trigonopsis variabilis respectively was introduced into the reaction system for the l-2-aminobutyric acid synthesis. l-Alanine could be completely removed by the action of alanine racemase of B. subtilis and d-amino acid oxidase of R. gracilis; thereby, high-purity l-2-aminobutyric acid was achieved. The results revealed that alanine racemase could discriminate effectively between l-alanine and l-2-aminobutyric acid, and selectively catalyzed l-alanine to d-alanine reversibly. d-Amino acid oxidase then catalyzed d-alanine to pyruvate stereoselectively. Furthermore, this method was also successfully used to remove the by-product l-alanine in the production of other neutral amino acids such as l-tertiary leucine and l-valine, suggesting that multienzymatic whole-cell catalysis can be employed to provide high purity products.  相似文献   

9.
Microorganisms capable of cleaving the urethane bond of t-butoxycarbonyl (Boc) amino acids in a whole-cell reaction were screened among stock cultures, and Corynebacterium aquaticum IFO12154 was the most promising. The conversion of Boc-Ala to Ala was stimulated by CoSO4 in the medium and reaction mixture. The optimum whole-cell concentration was 25 mg lyophilized cells/ml. Boc-l-Met was the best substrate for this reaction, and other Boc-L-amino acids, as well as benzyloxycarbonyl-l-amino acids with hydrophobic residues, were also good substrates. Boc-d- and Z-d-amino acids were inert. When the reactions had proceeded for 24 h with each substrate at 10 mM, the molar conversion rates from Boc-l-, dl- and d-Met were 100%, 50%, and 0% respectively. From 150 mM Boc-l-Met, 143 mM l-Met was formed at a molar yield of 95.3%. Received: 3 September 1996 / Received last revision: 7 April 1997 / Accepted: 19 April 1997  相似文献   

10.
Recombinant Escherichia coli harboring the l-arabinose isomerase (BLAI) from Bacillus licheniformis was used as a biocatalyst to produce l-ribulose in the presence of borate. Effects of substrate concentration, the borate to l-arabinose ratio, pH, and temperature on the conversion of l-arabinose to l-ribulose were investigated. l-Ribulose production was efficient when pH was higher than 9 and temperature was higher than 50 °C. Borate addition to the reaction mixture was essential for high conversion of l-arabinose to l-ribulose as it resulted in an equilibrium shift in favor of the product. Under the optimal conditions determined by response surface methodology, the E. coli harboring BLAI produced 375 g l−1 L-ribulose from 500 g l−1 l-arabinose at a reaction time of 60 min, corresponding to a conversion yield of 75% and productivity of 375 g l−1 h−1. When the resting recombinant E. coli cells were recycled, 85% of the yield was obtained even after seven cycles of reuse. The productivity and final concentration of l-ribulose obtained in the present study were the highest yet reported.  相似文献   

11.
A series of dipeptides of l-proline-l-amino acid and l-proline-d-amino acid were synthesized to evaluate the catalytic effect for asymmetric direct aldol reactions. In the direct aldol reaction, a catalyst of l-proline-l-amino acid achieves better enantioselectivity than the corresponding l-proline-d-amino acid catalyst. Solubility of the dipeptide catalysts in the solvents is a key point for achieving a better yield of the direct aldol reaction, while hydrogen bonding of solvent does not play an important role in attaining better enantioselectivity and yield. Yield and enantioselectivity of the direct aldol reaction in water were improved by NMM and SDS additives, but the results that were done in plain DMSO were even better.  相似文献   

12.
Peptidasen     
Summary Using fresh frozen (with and without semipermeable membranes), freeze-dried or sections from aldehyde fixed material and hexazotized p-rosaniline for simultaneous coupling more than 20 different unsubstituted or substituted l-amino acid naphthylamides are split especially in the microvilli and/or stereocilia of the small intestine, kidney and epididymis from rats. Further sites of positive reactions can be revealed by l-alanyl, l-leucyl, l-lysyl, ,l-glutamyl, ,l-glutamyl, l-asparaginyl, N-benzoyl-l-arginyl, N-carbobenzoxy-l-arginyl and N-benzoyl-l-phenylalanyl 2-naphthylamide. Among the substituted and unsubstituted peptide 2-naphthylamides l-prolyl-l-arginyl 2-naphthylamide is not hydrolysed in visible amounts; l-arginyl-l-arginyl, l-alanyl-l-arginyl-l-arginyl, l-alanyl-l-leucyl-l-tyrosyl, l-histidyl-l-seryl, l-seryl-l-tyrosyl and l-glycyl-l-phenylalanyl 2-naphthylamide are metabolized in the renal and intestinal brush border; the reaction pattern obtained with N-carbobenzoxy-l-glycyl-l-glycyl-l-arginyl 2-naphthylamide differs from that of N-carbobenzoxy-l-arginyl 2-naphthylamide. In addition l-glycyl-l-prolyl, l-leucyl-l-alanyl, l-lysyl-l-alanyl and l-alanyl-l-phenylalanyl-l-prolyl 2-naphthylamide are also split in the lysosomes of many organs and the secretion granules of gland cells.
PeptidasenI. Histochemische Untersuchungen mit 2-Naphthylamiden und Hexazonium-p-rosanilin
Zusammenfassung Mit hexazotiertem p-Rosanilin als Simultankuppler werden in frischen (mit und ohne semipermeable Membranen), gefriergetrockneten und in Schnitten von aldehyd-fixiertem Material mehr als 20 unsubstituierte oder substituierte Aminosäure-2-naphthylamide nahezu ausschließlich in den Mikrovilli und/oder Stereocilien von Dünndarm, Nebenhoden und Niere von Ratten umgesetzt. Weitere positive Reaktionsorte liefern l-Alanyl-, l-Leucyl-, l-Lysyl-, ,l-Glutamyl-, ,l-Glutamyl-, l-Asparaginyl-, N-Benzoyl-l-arginyl-, N-Carbobenzoxy-l-arginyl- und N-Benzoyl-l-phenylalanyl-2-naphthylamid. Unter den Peptid-2-naphthylamiden wird l-Prolyl-l-arginyl-2-naphthylamid nicht in sichtbarer Menge hydrolysiert; l-Alanyl-l-arginyl-l-arginyl-, l-Arginyl-l-arginyl-, l-Asparaginyl-l-arginyl-, l-Alanyl-l-leucyl-l-tyrosyl-, l-Histidyl-l-seryl-, l-Seryl-l-tyrosyl- und l-Glycyl-l-phenylalanyl-2-naphthylamid setzen der renale und intestinale Bürstensaum um. N-Carbobenzoxy-l-glycyl-l-glycyl-l-arginyl-2-naphthylamid liefert verglichen mit Benzoyl- und N-Carbobenzoxy-l-arginyl-2-naphthylamid zusätzliche Resultate. Mit l-Glycyl-l-prolyl-, l-Leucyl-l-alanyl-, l-Lysyl-l-alanyl-und l-Alanyl-l-phenylalanyl-l-prolyl-2-naphthylamid reagieren die Lysosomen zahlreicher Organe und Sekretgranula positiv.


Mit Unterstützung durch die Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 105)  相似文献   

13.
The use of a biological procedure for l-carnitine production as an alternative to chemical methods must be accompanied by an efficient and highly productive reaction system. Continuous l-carnitine production from crotonobetaine was studied in a cell-recycle reactor with Escherichia coli O44 K74 as biocatalyst. This bioreactor, running under the optimum medium composition (25 mM fumarate, 5 g/l peptone), was able to reach a high cell density (26 g dry weight/l) and therefore to obtain high productivity values (6.2 g l-carnitine l−1 h−1). This process showed its feasibility for industrial l-carnitine production. In addition, resting cells maintained in continuous operation, with crotonobetaine as the only medium component, kept their biocatalytic capacity for 4 days, but the biotransformation capacity decreased progressively when this particular method of cultivation was used. Received: 10 December 1998 / Received revision: 19 February 1999 / Accepted: 20 February 1999  相似文献   

14.
Summary Utilizing the -replacement reaction ofStreptomyces cystathionine -lyase (EC 4.4.1.1.), an efficient production method forl-cystathionine has been established. Under optimal conditions, 50 mMl-cystathionine was synthesized from 50 mMO-succinyl-l-homoserine and 50 mMl-cysteine, added in four stages to the reaction mixture, with a substrate conversion rate of 100%. This productivity (11 gl-1 of reaction mixture) is about 3.5 times higher than that withl-homoserine andl-cysteine as substrates.Recipient of a JSPS Fellowship for Japanese Junior Scientists  相似文献   

15.
A gram-negative, rod-shaped bacterium capable of utilizing l-asparagine as its sole source of carbon and nitrogen was isolated from soil and identified as Enterobacter cloacae. An intracellularly expressed l-asparaginase was detected and it deaminated l-asparagine to aspartic acid and ammonia. High-pressure liquid chromatography analysis of a cell-free asparaginase reaction mixture indicated that 2.8 mM l-asparagine was hydrolyzed to 2.2 and 2.8 mM aspartic acid and ammonia, respectively, within 20 min of incubation. High asparaginase activity was found in cells cultured on l-fructose, d-galactose, saccharose, or maltose, and in cells cultured on l-asparagine as the sole nitrogen source. The pH and temperature optimum of l-asparaginase was 8.5 and 37–42 °C, respectively. The half-life of the enzyme at 30 °C and 37 °C was 10 and 8 h, respectively. Received: 19 February 1998 / Received last revision: 4 June 1998 / Accepted: 10 July 1998  相似文献   

16.
Summary l-Threonine hyper-producing mutants were obtained fromEscherichia coli W strain KY-8366, by reducingl-threonine degradation activity and enhancingl-threonine biosynthetic activity. Anl-threonine degradation reaction test using resting cells of KY-8366 suggested that the main pathway ofl-threonine degradation by KY-8366 is via glycine. A strain with reducedl-threonine degradation activity was obtained among those mutants that could not utilizel-threonine as sole nitrogen source. Rifampicin-resistant mutants andl-lysine plus methionine-insentitive mutants were isolated. These mutants showed enhanced aspartokinase levels and accumulated morel-threonine than the parental strains. Mutant H-4290 accumulated 58 g/l ofl-threonine.  相似文献   

17.
Summary A new process (Living Cell Reaction Process) forl-isoleucine production using viable, non-growing cells ofBrevibacterium flavum AB-07 was optimised using ethanol as the energy source and -ketobutyric acid (-KB) as precursor.l-valine also could be produced from glucose at high yield by this process. This process differs from the usual fermentation method in that non-growing cells are used, and the production ofl-isoleucine andl-valine were carried out under conditions of repressed cell division and growth. Minimal medium missing the essential growth factor, biotin was employed as the reaction mixture for the production ofl-isoleucine andl-valine. The productivity ofl-isoleucine andl-valine were 200 mmol·l–1 · day–1 (molecular yield to -KB: 95%) and 300 mmol · l–1 · day–1 (molecular yield to glucose: 80%) respectively. The content ofl-isoleucine andl-valine in total amino acids produced in the each mixture were 97% and 96% respectively.  相似文献   

18.
Summary Cell extracts ofCandida guilliermondii grown ind-xylose,l-arabinose,d-galactose,d-glucose,d-mannose and glycerol as sole carbon sources possessed NADPH-dependent aldose reductase activity, but no NADH-dependent activity was detected.d-xylose andl-arabinose were the best inducers of aldose reductase activity. The highest enzyme activity ind-xylose orl-arabinose-grown cells was observed first withl-arabinose followed byd-xylose as substrates of the enzymatic reaction. However, only low activity was found ind-glucose,d-mannose andd-galactose-grown cells, indicating that these carbon sources cause catabolite repression. Enzyme activities induced ind-xylose-grown cells were twice as high as those obtained from the cells under resting conditions. Furthermore, the level of induction of aldose reductase activity depended on the initial concentration ofd-xylose. The present study shows that aldose reductase activity may be efficiently induced by pentose sugars of hemicellulosic hydrolysates and weakly by hemicellulosic hexoses.  相似文献   

19.
Trichoderma reesei Rut C-30 was grown on eight different natural or rare aldopentoses as the main carbon source and on mixtures of an aldopentose with d-glucose or lactose. The fungal cells consumed all aldopentoses tested, except l-xylose and l-ribose. The highest total xylanase and cellulase activities were achieved when cells were grown on l-arabinose as the main carbon source. The total xylanase activity produced by cells grown on l-arabinose was even higher than that produced by cells grown on an equal amount of lactose. In co-metabolism of d-glucose (15 g l–1) and l-arabinose (5 g l–1), the total volumetric and specific xylanase productivities were improved (derepressed) approximately 23- and 18-fold, respectively, compared to a cultivation on only d-glucose (20 g l–1). In a similar experiment, in which cells were grown on a mixture of lactose and l-arabinose, the xylanase productivity was approximately doubled, compared to a cultivation on only lactose. The cellulase productivities, however, were not improved by the addition of l-arabinose. Compared with a typical industrial fungal enzyme production process with lactose as the main carbon source, better volumetric and specific xylanase productivities were achieved both on a lactose/arabinose mixture and on a glucose/arabinose mixture.  相似文献   

20.
Rhodobacter capsulatus strains E1F1 and B10 and Rhodobacter sphaeroides DSM 158 did not use hydroxylamine as nitrogen source for growth but metabolized it mainly through the glutamine synthetase reaction. Hydroxylamine had a high toxicity for cells growing either under phototrophic or dark-aerobic conditions. l-methionine-d,l-sulfoximine partially inhibited hydroxylamine uptake and increased the inhibition time of nitrogenase activity by this nitrogen compound. Nitric oxide was also a powerful inhibitor of nitrogenase in intact cells of R. capsulatus. Since low amounts of NO were produced from hydroxylamine, short-term inhibition of nitrogenase in the presence of this compound could be mediated in vivo by nitric oxide.Abbreviations GS glutamine synthetase - MSX l-methionine-d,l-sulfoximine - MTA mixed alkyltrimethylammonium bromide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号