首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Comparative electroretinographic studies of the d-wave evoked with long duration photo stimuli in dark- and light-adapted fish species (three marine and three freshwater) were performed. At the end of prolonged photo-stimulation in scotopic conditions a negative d-wave appears in electroretinograms of dogfish shark, eel and goldfish diminishing and eventually changing with intensity of photo-stimulation, while in rudd it only increases. Dark-adapted electroretinograms of two percids (perch and painted comber) exhibit a positive d-wave that approaches the b-wave amplitude under bright photopic conditions. Judging from the d-wave, only the rod pathway is active in dark-adapted dogfish shark, eel, and goldfish. Under the light adaptation, cone pathways are active in eel and goldfish, whereas the positive response to the end of light stimuli in dogfish shark could be explained by independent ON and OFF pathways from outer to inner retina via bipolar cells. In the case of two percids, dark adaptation has no influence on cone pathways. The d-wave of rudd behaves like cone-driven d-waves but in opposite sign. The data thus show that the d-wave form, amplitude and sign depend on interconnection of ON and OFF pathways as determined by the state of adaptation and/or type of photoreceptor.  相似文献   

2.
Effect of flurazepam (water-soluble benzodiazepine) on the amplitude and time course of ERG waves was investigated in superfused frog eyecups (Rana ridibunda). Flurazepam (50 and 100 microM) had inhibitory effect on the b- and d-wave amplitude, which was not accompanied with significant changes in their implicit time. Flurazepam potentiated the depressant effect of GABA (2.5 and 5 mM) on the b- and d-wave amplitude. The inhibitory effect of flurazepam was not blocked by 50 microM bicuculline (BCC), (GABA(A) antagonist), although the blocker markedly potentiated the b- and d-wave amplitude. The suppressive effect of flurazepam on the b- but not d-wave amplitude was blocked by 100 microM BCC. Our results indicate existence of functional benzodiazepine regulatory sites on GABA(A) receptors in distal frog retina.  相似文献   

3.
The effects of picrotoxin and bicuculline upon the discharge pattern of center-surround organized cat retinal ganglion cells of X and Y type were studied. All experiments were carried out under scotopic or possibly low mesopic conditions; mostly but not exclusively on-center cells were studied. Stimuli were chosen so that responses were either; (a) "purely" central; (b) surround dominated; or (c) clearly mixed but center dominated. In each case a pre-drug control response was estaboished, the drug was administered intravenously, and its subsequent effect upon the response was observed. In Y cells both picrotoxin and bicucullin caused the center-driven component of the response to become somewhat reduced in magnitude, while the surround component was substantially reduced. There was thus a change in center- surround balance in favor of the center-driven component. Responses of X cells remained virtually unaffected by both picrotoxin and bicuculline.  相似文献   

4.
在保持完整血液循环的鲫鱼眼杯标本上,应用Ag-AgCl电极记录视网膜电图(ERG),研究了急性低氧下不同适应状态ERG反应变化的情况,以期分析视锥与视杆通路对急性低氧的敏感性是否不同。结果表明:1.急性低氧对明视ERG-b波的影响要远远快于对暗视b波的影响,这说明视锥信号通路比视杆信号通路对缺氧敏感;2.在间视状态下,ERG的b波在低氧开始反几分钟内有一个明显的增大过程,而在明视或暗视中皆未观察到  相似文献   

5.
Properties of the depolarizing response of on-center bipolar cells to a light spot stimulus were studied in the carp retina. On-center bipolar cells were classified into two types, cone-dominant and rod-dominant, according to their major input from cones and rods. Cone-dominant bipolar cells responded to spectral light with the maximum amplitude near 625 nm, suggesting major input from red cones. The response was accompanied by a resistance increase and showed a reversal potential at -63 +/- 21 mV when the membrane was hyperpolarized by current. The results suggest that the photoresponse of cone-dominant cells is due to a decrease of gK and/or gCl, membrane conductances to potassium and chloride, respectively. Rod-dominant bipolar cells responded to spectral light with the maximum amplitude near 525 nm under scotopic conditions and near 625 nm under photopic conditions, providing evidence that they receive input from rods and red cones. In the scoptopic condition their response was accompanied by a resistance decrease and showed a reversal potential at 29 +/- 13 mV, whereas in the photopic condition the response in most of them was accompanied by a resistance increase, at least in their part and showed a reversal at -53 +/- 11 mV. The results suggest that the photoresponse activated by rod input is due to an increase in gNa. In the mesopic condition rod-dominant cells showed complex electrical membrane properties as the result of electric interaction between the above two differnt ionic mechanisms activated by rod and cone inputs.  相似文献   

6.
采用电生理方法研究了夜行性凶猛鱼类鳜鱼视网膜电图的一般特性、光谱敏感性和适应特性。顷鱼的视网膜电图不显示典型的混合型视网膜特征。明视和暗视视网膜电图的光谱敏感曲线形状基本相同,峰值都在530nm处,没有出现Purkinje氏位移。明适应曲线仅出现下降型变化,暗适应过程异常缓慢。鳜鱼的视网膜仅存在单一的光感受系统,即暗视系统,不可能形成色觉。但级鱼视网膜具有很高的光敏感性,适于弱光视觉。  相似文献   

7.
The contrast discrimination of Gadus morhua L. was studied by means of a cardiac conditioning technique. Fish were trained to respond to a projected pattern of spots and the contrast of pattern and background then reduced until the minimum contrast required to elicit a response was established. This was repeated at seven different background light levels to cover the range of light conditions naturally encountered by the cod. The minimum detectable contrast decreased with increasing light level to a minimum of around 2.0%. The contrast threshold curve showed a discontinuity at a light level of approximately 8.0 × 10-6 W sr-1 m-2. This was thought to be linked to the change from photopic to scotopic vision. Significant differences were found in cod taken from two different locations. Overall, cod contrast detection compared very favourably with figures available for other species including man. Using the obtained contrast discrimination figures some estimates were made of the cod sighting distance of hypothetical targets under natural conditions.  相似文献   

8.
The effect of GABAergic blockade by picrotoxin on ganglion cells (GC) activity was investigated in perfused dark adapted eyecups of frog (Rana ridibunda). PT had diverse effects on the light responses of GC in contrast to its uniform potentiating effect on the amplitude of the ERG b- and d-wave. In some (n=32) of PT-sensitive ON-OFF GC the ON and OFF responses were changed in a similar manner (both responses were potentiated or both were inhibited), but in the other (n=10) the both responses were changed in a different manner. PT influenced differentially the activity of OFF GC (n=17) as well. It not only potentiated or inhibited their light responses, but changed also the temporal characteristics of the responses. Some tonic cells became phasic ones and in some phasic cells a late component appeared under the influence of PT. In some cases (n=4) the GABAergic blockade changed the apparent cell's type, because of appearance of a new type of response (ON or OFF) non-existing before the blockade. Our results indicate that the GABAergic interneurons are involved in different networks in the inner plexiform layer of frog retina.  相似文献   

9.
Integrated spike activity of axons from the optic nerve was measured in an investigation of the e-vector sensitive mechanism underlying the ability of rainbow trout (Oncorhynchus mykiss) for orientation in downwelling, linearly-polarized light. In anaesthetized, immobilized fish, one eye was exposed to incremental light flashes which were superimposed over closely controlled background conditions. Under scotopic and various photopic conditions, intensity/response curves were generated from the on-response of the optic nerve. Relative sensitivity curves were then obtained as a function of e-vector direction for the 5 kinds of receptor cells in this trout's retina: rods, ultraviolet cones (UV), short wavelength cones (S), medium wavelength cones (M), and long wavelength cones (L).Under scotopic conditions, no sensitivity to e-vector was apparent: thus, rods do not mediate polarization sensitivity. Under photopic conditions, parr weighing 8–10 g exhibited e-vector sensitivity in two orthogonal channels. A UV stimulus (380 nm) on a white background evoked a three-peaked response (0°, 90°, and 180°) to the e-vector orientations presented in 30° increments between 0° and 180°. In contrast, when the background was illuminated with appropriate short and long wavelength cut-off filters, M-and L-cones showed maximum responses only to the horizontal (90°) plane whether they were stimulated at their -absorption band or their -absorption band in the near UV. Isolated UV-cones gave maximum responses to the vertical (0° and 180°) e-vector, thus corresponding to a second channel. The blue sensitive, S-cones, did not show evidence of polarization sensitivity. As well, no evidence of the polarization sensitivity was observed under UV isolating background conditions in larger individuals, 50–78 g smolts, although the other cone mechanisms responded as in smaller individuals.  相似文献   

10.
Despite the large amount of variation found in the night (scotopic) vision capabilities of healthy volunteers, little effort has been made to characterize this variation and factors, genetic and non-genetic, that influence it. In the largest population of healthy observers measured for scotopic visual acuity (VA) and contrast sensitivity (CS) to date, we quantified the effect of a range of variables on visual performance. We found that young volunteers with excellent photopic vision exhibit great variation in their scotopic VA and CS, and this variation is reliable from one testing session to the next. We additionally identified that factors such as Circadian preference, iris color, astigmatism, depression, sex and education have no significant impact on scotopic visual function. We confirmed previous work showing that the amount of time spent on the vision test influences performance and that laser eye surgery results in worse scotopic vision. We also showed a significant effect of intelligence and photopic visual performance on scotopic VA and CS, but all of these variables collectively explain <30% of the variation in scotopic vision. The wide variation seen in young healthy volunteers with excellent photopic vision, the high test-retest agreement, and the vast majority of the variation in scotopic vision remaining unexplained by obvious non-genetic factors suggests a strong genetic component. Our preliminary genome-wide association study (GWAS) of 106 participants ruled out any common genetic variants of very large effect and paves the way for future, larger genetic studies of scotopic vision.  相似文献   

11.
Study of receptive fields (RFs) of neurones in the postero-temporal cortex (field 21) of alert cat at three levels of visual adaptation: light photopic, light mesopic and practically dark or extremely low scotopic adaptations--revealed invariance of the most part of the studied RFs to the level of visual adaptation. Reorganization of RFs, connected with change of background luminosity were observed only in 12% of visually activated neurones. Significant reduction of responses to optic stimulation is shown at increase of the level of luminosity in 75% of neurones, revealing adaptive reorganizations. It is suggested that these reorganizations may take place in analogy with neurones of the field 17 on account of different involvement of intracortical inhibitory mechanisms (and, probably, not only in the postero-temporal cortex, but also in structures which precede it in visual hierarchy). Study of neurones sensitivity in the field 21 to parameters of optic stimulation revealed their considerable invariance to the length and orientation of the optic stimulus moving through the RF (60% of cases). Testing of RF by a rhombic optic stimulus did not change neuronal reactions, the form and dimensions of RF did not significantly change.  相似文献   

12.
This paper considers whether photometric calculations using standard human spectral sensitivity data are satisfactory for applications with other species or whether it would be worthwhile to use bespoke spectral sensitivity functions for each species or group of species. Applications include the lighting of interior areas and the design of photometers. Published spectral sensitivity data for a number of domesticated animals (human, turkey, duck, chicken, cat, rat and mouse) were used to calculate lighting levels for each species and compared with those derived from standard CIE human photopic and scotopic functions. Calculations were made for spectral power distributions of daylight, incandescent light and 12 fluorescent sources commonly used to light interiors. The calculated lighting levels showed clear differences between species and the standard human. Assuming that the resulting effects on retinal illuminance determine the overall perception of the level of light, there may be applications where these differences are important. However, evidence is also presented that the magnitude of these inter-species effects are similar to, or smaller than, those arising from other optical, physiological and psychological factors, which are also likely to influence the resulting perception. It is also important to recognise that lighting-related parameters such as the good colour rendering of surfaces, the avoidance of glare from lamps and other factors that may be species related are sometimes of greater importance than the lighting levels. Our results suggest that a judicial choice of three spectral sensitivity functions would satisfy most circumstances. Firstly, where the overall sensitivity is maximal in the medium to long wavelengths, the standard CIE photopic function will suffice, chicken, turkey and duck fall in this category. Secondly, in a small number of cases where the sensitivity centres on the short to medium wavelengths, the CIE scotopic function should be used, e.g. for the scotopic cat, photopic rat and photopic mouse. Finally, where an animal is also sensitive to the UV region of the spectrum and there is a significant component of UV radiation, then an additional measure of the UV response should be included, as for the photopic rat and photopic mouse.  相似文献   

13.
Color and lightness constancy in different perceptual tasks   总被引:3,自引:0,他引:3  
Color and lightness constancy with respect to changing illumination was studied with three different perceptual tasks: ranking of colored papers according (1) to their lightness and (2) to their chromatic similarity in photopic, mesopic, and scotopic states of adaptation, and (3) recognition of remembered colored papers after changes of illumination in photopic vision. Constancy was found in the second task, only. Excitations of light receptors and luminance channels were computed to simulate the empirical rank orders. Results of the first task can be predicted with the hypothesis that luminance channels are activated, if lightness is asked for. Sequences arranged with respect to chromatic similarity were found independent of the illuminant spectra, even if the calculated rank orders of cone excitation were changed in the altered illumination. Received: 4 October 1997 / Accepted in revised form: 26 August 1998  相似文献   

14.
The intensity-response function of the b-wave of the ERG in the retina of the turtle (Emys orbicularis) was investigated at two different background illuminations--0.01 and 10 lx, before and after blockade of the GABA-ergic transmission by 0.4 mmol/l picrotoxin (PT). A shift of the curve to the left along the intensity axis at both backgrounds was observed after PT treatment. The region where the b-wave amplitude was linear function of the logarithm of the stimulus intensity was also considerably narrowed. The registered experimental data fitted in well with the Naka-Rushton equation. The participation of GABA-ergic neurones in the processes of light adaptation and gain control in the retina is discussed.  相似文献   

15.
Slow PIII component of the carp electroretinogram   总被引:10,自引:8,他引:2       下载免费PDF全文
The slow PIII component of the electroretinogram (ERG) was studied in the isolated, aspartate-treated carp retina. Although the latter is richly populated with cones, slow PIII appeared to reflect almost exclusively the activity of rods; e.g. the spectral sensitivity of the potential paralleled closely the rod pigment curve, its operating range (i.e. the V-log I curve) was limited to 3 log units above absolute threshold, and raising background intensities to photopic levels produced saturation of the increment threshold function without evidence of a cone-mediated segment. Only after bleaching away a significant fraction of the porphyropsin was it possible to unmask a small photopic contribution to slow PIII, as evidenced by a displacement in the action spectrum to longer wavelengths. The spatial distribution of the slow PIII voltage within the retina (Faber, D.S. 1969. Ph.D. Thesis. State University of New York. Buffalo, N.Y.; Witkovsky, P.J. Nelson, and H. Ripps. 1973. J. Gen Physiol. 61:401) and its ability to survive aspartate treatment indicate that this potential arises in the Muller (glial) fiber. Additional support for this conclusion is provided by the slow rise time (several seconds) and long temporal integration (up to 40s) of the response. In many respects the properties of slow PIII resemble those of the c-wave, a pigment epithelial response also subserved by rod activity. On the other hand, the receptoral (fast PIII) and the b-wave components of the ERG behave quite differently. Unlike slow PIII, response saturation could not be induced, since both potentials are subserved by cones when the stimulus conditions exceed the limits of the scotopic range. Receptors appear to govern light adaptation at photopic background levels; both fast PIII and b-wave manifest identical incremental threshold values over this range of intensities. However, under scotopic conditions, the sensitivity of the b-wave is affected by luminous backgrounds too weak to alter fast PIII threshold, indicating a postreceptoral stage of adaptation.  相似文献   

16.
Age-related changes in the amplitude and time characteristics of the electroretinogram (ERG) have been studied in subjects from different regions of the world (226 and 287 indigenous inhabitants of European and Arabic countries, respectively) in order to obtain additional information on the interaction between the human organ of vision and illumination conditions characteristic of different environments. The age-related changes in the amplitude of the photopic ERG in regions with intense or moderate solar radiation suggest hereditary mechanisms of protection of the central retinal area from photodamage. The results of comparison of scotopic ERGs of humans living at different geographic latitudes indicate that mechanisms of photoprotection of the peripheral retinal area are acquired and gradually develop during life.  相似文献   

17.
Photopic action of thyrotropin-releasing hormone in the cat retina   总被引:1,自引:0,他引:1  
The effects of iontophoretically applied thyrotropin-releasing hormone (TRH) on cat retinal brisk-sustained(X) and brisk-transient(Y) ganglion cells were studied in the intact eye in vivo. Under photopic illumination we found a differential action of TRH on ON- and OFF-centre cells: the maintained activity and light response were suppressed in ON-centre cells and enhanced in OFF-centre cells. This was true for both brisk-sustained(X) and brisk-transient(Y) cells. In contrast, TRH did not influence the ganglion cell discharge under scotopic stimulus conditions. These results indicate that TRH acts on neurons presynaptic to ganglion cells and these neurons are only active under photopic conditions. We suggest that a possible functional role of this specific action of TRH is in light adaptation.  相似文献   

18.

Introduction

We aimed to determine the limbal lighting illuminance thresholds (LLITs) required to trigger perception of sclerotic scatter at the opposite non-illuminated limbus (i.e. perception of a light limbal scleral arc) under different levels of ambient lighting illuminance (ALI).

Material and Methods

Twenty healthy volunteers were enrolled. The iris shade (light or dark) was graded by retrieving the median value of the pixels of a pre-determined zone of a gray-level iris photograph. Mean keratometry and central corneal pachymetry were recorded. Each subject was asked to lie down, and the ALI at eye level was set to mesopic values (10, 20, 40 lux), then photopic values (60, 80, 100, 150, 200 lux). For each ALI level, a light beam of gradually increasing illuminance was applied to the right temporal limbus until the LLIT was reached, i.e. the level required to produce the faint light arc that is characteristic of sclerotic scatter at the nasal limbus.

Results

After log-log transformation, a linear relationship between the logarithm of ALI and the logarithm of the LLIT was found (p<0.001), a 10% increase in ALI being associated with an average increase in the LLIT of 28.9%. Higher keratometry values were associated with higher LLIT values (p = 0.008) under low ALI levels, but the coefficient of the interaction was very small, representing a very limited effect. Iris shade and central corneal thickness values were not significantly associated with the LLIT. We also developed a censored linear model for ALI values ≤ 40 lux, showing a linear relationship between ALI and the LLIT, in which the LLIT value was 34.4 times greater than the ALI value.

Conclusion

Sclerotic scatter is more easily elicited under mesopic conditions than under photopic conditions and requires the LLIT value to be much higher than the ALI value, i.e. it requires extreme contrast.  相似文献   

19.
Lizards occupy both scotopic (light-limited) and photopic (light-rich) environments, thereby making this clade ideal for analyses of eye morphology adaptations. This study examines how in lizards the morphology of the eye varies according to activity in these different light environments. Measurements were collected on corneal diameters and axial lengths of the eye for 239 specimens of 116 lizard species (including Sphenodon) that include both species with scotopic and photopic visual adaptations. I show that the light level available to a lizard for vision has a significant effect on eye shape and size. Scotopic lizards have eye shapes that are optimized for visual sensitivity, with larger corneal diameters relative to axial lengths. However, photopic lizards do not exhibit absolutely larger axial lengths than do scotopic lizards, and the groups have the same absolute axial lengths of the eye. Results also indicate that the light level the lizard functions under is a more significant influence on eye shape, as defined by the relationship between corneal diameter and axial length of the eye, than is phylogeny.  相似文献   

20.
Spatial excitability contours in receptive fields of visual cortical neurons during changes in the physical and physiological parameters of photic stimulation were investigated in acute experiments on immobilized cats under conditions of dark, mesopic, and low photopic adaptation. With the change from dark to low mesopic adaptation the shape and size of the receptive fields detected by testing with flashes of constant intensity are unchanged, but with the transition to low photopic adaptation the receptive field becomes long and very narrow in 72% of cases, and the acuity of its orientational and directional tuning becomes much sharper. Against an unchanged background illumination, loss of brightness of the test light slit leads to narrowing of the measurable receptive field. Excitability contours of the receptive field estimated on the basis of absolute threshold of the cell response and level of intensity necessary to obtain the same number of spikes in the response become much narrower as the threshold criterion rises and during dark adaptation. Reactivity contours of the receptive field in response to stimulation of physiologically equal intensities (equal to the increase in threshold) under conditions of photopic adaptation also are much narrower than reactivity contours under conditions of dark adaptation. Evaluation of receptive fields with allowance for the possible contribution of effects of light scatter on the screen and in the ocular media showed that in most cases their size cannot be explained by these phenomena.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 115–123, March–April, 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号