首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kawaguchi Y  Tanaka M 《Uirusu》2004,54(2):255-264
Although methods for reverse genetics of herpesviruses have been established in early 1980s, the steps are laborious and time-consuming. In 1997, Dr. Koszinwski's group reported a novel approach for the construction of herpesvirus mutants, based on cloning the viral genome as a bacterial artificial chromosome (BAC) in E. coli. This technique allows the maintenance of viral genomes as plasmid in E. coli and the reconstitution of viral progeny by transfection of the BAC plasmid into eukaryotic cells. Any genetics modification of the viral genome in E. coli using bacterial genetics is possible, thereby facilitating the introduction of mutagenesis into herpesvirus genome. This 'BAC system' has opened new avenues for reverse and forward genetics of herpesviruses in basic research and in vector development for human therapy. Here we describe the principle of the 'BAC system' in herpesvirus researches.  相似文献   

2.
Herpesviruses are important pathogens in animals and humans. The large DNA genomes of several herpesviruses have been sequenced, but the function of the majority of putative genes is elusive. Determining which genes are essential for their replication is important for identifying potential chemotherapy targets, designing herpesvirus vectors, and generating attenuated vaccines. For this purpose, we recently reported that herpesvirus genomes can be maintained as infectious bacterial artificial chromosomes (BAC) in Escherichia coli. Here we describe a one-step procedure for random-insertion mutagenesis of a herpesvirus BAC using a Tn1721-based transposon system. Transposon insertion sites were determined by direct sequencing, and infectious virus was recovered by transfecting cultured cells with the mutant genomes. Lethal mutations were rescued by cotransfecting cells containing noninfectious genomes with the corresponding wild-type subgenomic fragments. We also constructed revertant genomes by allelic exchange in bacteria. These methods, which are generally applicable to any cloned herpesvirus genome, will facilitate analysis of gene function for this virus family.  相似文献   

3.
Biomedical research has undergone a major shift in emphasis over the past decade from characterizing the genomes of organisms to characterizing their proteomes. The high-throughput approaches that were successfully applied to sequencing of genomes, such as miniaturization and automation, have been adapted for high-throughput cloning and protein production. High-throughput platforms allow for a multi-construct, multi-parallel approach to expression optimization and construct evaluation. We describe here a series of baculovirus transfer and expression vectors that contain ligation-independent cloning regions originally designed for use in high-throughput Escherichia coli expression evaluation. These new vectors allow for parallel cloning of the same gene construct into a variety of baculovirus or E. coli expression vectors. A high-throughput platform for construct expression evaluation in baculovirus-infected insect cells was developed to utilize these vectors. Data from baculovirus infection expression trials for multiple constructs of two target protein systems relevant to the study of human diseases are presented. The target proteins exhibit a wide variation in behavior and illustrate the benefit of investigating multiple cell types, fusion partners and secretion signals in optimization of constructs and conditions for eukaryotic protein production.  相似文献   

4.
V B Rao  V Thaker  L W Black 《Gene》1992,113(1):25-33
Recombinant plasmid DNAs containing long DNA inserts that can be propagated in Escherichia coli would be useful in the analysis of complex genomes. We tested a bacteriophage T4 in vitro DNA packaging system that has the capacity to package about 170 kb of DNA into its capsid for cloning long DNA fragments. We first asked whether the T4 in vitro system can package foreign DNA such as concatemerized lambda imm434 DNA and phage P1-pBR322 hybrid DNA. The data suggest that the T4 system can package foreign DNA as efficiently as the mature phage T4 DNA. We then tested the system for its ability to clone foreign DNA fragments using the P1-pBR322 hybrid vectors constructed by Sternberg [Proc. Natl. Acad. Sci. USA 87 (1990) 103-107]. E. coli genomic DNA fragments were ligated with the P1 vectors containing two directly oriented loxP sites, and the ligated DNA was packaged by the T4 in vitro system. The packaged DNA was then transduced into E. coli expressing the phage P1 cyclization recombination protein recombinase to circularize the DNA by recombination between the loxP sites situated at the ends of the transduced DNA molecule. Clones with long DNA inserts were obtained by using this approach, and these were maintained as single-copy plasmids under the control of the P1 plasmid replicon. Clones with up to about 122-kb size inserts were recovered using this approach.  相似文献   

5.
6.
Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5′- and 3′-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis.  相似文献   

7.
DNA cloning by homologous recombination in Escherichia coli   总被引:18,自引:0,他引:18  
The cloning of foreign DNA in Escherichia coli episomes is a cornerstone of molecular biology. The pioneering work in the early 1970s, using DNA ligases to paste DNA into episomal vectors, is still the most widely used approach. Here we describe a different principle, using ET recombination, for directed cloning and subcloning, which offers a variety of advantages. Most prominently, a chosen DNA region can be cloned from a complex mixture without prior isolation. Hence cloning by ET recombination resembles PCR in that both involve the amplification of a DNA region between two chosen points. We apply the strategy to subclone chosen DNA regions from several target molecules resident in E. coli hosts, and to clone chosen DNA regions from genomic DNA preparations. Here we analyze basic aspects of the approach and present several examples that illustrate its simplicity, flexibility, and remarkable efficiency.  相似文献   

8.
Adenovirus vectors based on human serotype 5 (Ad5) have successfully been used as gene transfer vectors in many gene therapy-based approaches to treat disease. Despite their widespread application, many potential therapeutic applications are limited by the widespread prevalence of vector-neutralizing antibodies within the human population and the inability of Ad5-based vectors to transduce important therapeutic target cell types. In an attempt to circumvent these problems, we have developed Ad vectors based on human Ad serotype 11 (Ad11), since the prevalence of neutralizing antibodies to Ad11 in humans is low. E1-deleted Ad11 vector genomes were generated by homologous recombination in 293 cells expressing the Ad11-E1B55K protein or by recombination in Escherichia coli. E1-deleted Ad11 genomes did not display transforming activity in rodent cells. Transduction of primary human CD34+ hematopoietic progenitor cells and immature dendritic cells was more efficient with Ad11 vectors than with Ad5 vectors. Thirty minutes after intravenous injection into mice that express one of the Ad11 receptors (CD46), we found, in a pattern and at a level comparable to what is found in humans, Ad11 vector genomes in all analyzed organs, with the highest amounts in liver, lung, kidney, and spleen. Neither Ad11 genomes nor Ad11 vector-mediated transgene expression were, however, detected at 72 h postinfusion. A large number of Ad11 particles were also found to be associated with circulating blood cells. We also discovered differences in in vitro transduction efficiencies and in vivo biodistributions between Ad11 vectors and chimeric Ad5 vectors possessing Ad11 fibers, indicating that Ad11 capsid proteins other than fibers influence viral infectivity and tropism. Overall, our study provides a basis for the application of Ad11 vectors for in vitro and in vivo gene transfer and for gaining an understanding of the factors that determine Ad tropism.  相似文献   

9.
Simple and low-cost recombinant enzyme-free seamless DNA cloning methods have recently become available. In vivo Escherichia coli cloning (iVEC) can directly transform a mixture of insert and vector DNA fragments into E. coli, which are ligated by endogenous homologous recombination activity in the cells. Seamless ligation cloning extract (SLiCE) cloning uses the endogenous recombination activity of E. coli cellular extracts in vitro to ligate insert and vector DNA fragments. An evaluation of the efficiency and utility of these methods is important in deciding the adoption of a seamless cloning method as a useful tool. In this study, both seamless cloning methods incorporated inserting DNA fragments into linearized DNA vectors through short (15–39 bp) end homology regions. However, colony formation was 30–60-fold higher with SLiCE cloning in end homology regions between 15 and 29 bp than with the iVEC method using DH5α competent cells. E. coli AQ3625 strains, which harbor a sbcA gene mutation that activates the RecE homologous recombination pathway, can be used to efficiently ligate insert and vector DNA fragments with short-end homology regions in vivo. Using AQ3625 competent cells in the iVEC method improved the rate of colony formation, but the efficiency and accuracy of SLiCE cloning were still higher. In addition, the efficiency of seamless cloning methods depends on the intrinsic competency of E. coli cells. The competency of chemically competent AQ3625 cells was lower than that of competent DH5α cells, in all cases of chemically competent cell preparations using the three different methods. Moreover, SLiCE cloning permits the use of both homemade and commercially available competent cells because it can use general E. coli recA? strains such as DH5α as host cells for transformation. Therefore, between the two methods, SLiCE cloning provides both higher efficiency and better utility than the iVEC method for seamless DNA plasmid engineering.  相似文献   

10.
In vivo recombinational cloning in yeast is a very efficient method. Until now, this method has been limited to experiments with yeast vectors because most animal, insect, and bacterial vectors lack yeast replication origins. We developed a new system to apply yeast-based in vivo cloning to vectors lacking yeast replication origins. Many cloning vectors are derived from the plasmid pBR322 and have a similar backbone that contains the ampicillin resistance gene and pBR322-derived replication origin for Escherichia coli. We constructed a helper plasmid pSUO that allows the in vivo conversion of a pBR322-derived vector to a yeast/E. coli shuttle vector through the use of this backbone sequence. The DNA fragment to be cloned is PCR-amplified with the addition of 40 bp of homology to a pBR322-derived vector. Cotransformation of linearized pSU0, the pBR322-derived vector, and a PCR-amplified DNA fragment, results in the conversion of the pBR322-derived vector into a yeast/E. coli shuttle vector carrying the DNA fragment of interest. Furthermore, this method is applicable to multifragment cloning, which is useful for the creation of fusion genes. Our method provides an alternative to traditional cloning methods.  相似文献   

11.
A set of vectors which facilitates the sequential integration of new functions into the Escherichia coli chromosome by homologous recombination has been developed. These vectors are based on plasmids described by Posfai et al. (J. Bacteriol. 179:4426-4428, 1997) which contain conditional replicons (pSC101 or R6K), a choice of three selectable markers (ampicillin, chloramphenicol, or kanamycin), and a single FRT site. The modified vectors contain two FRT sites which bracket a modified multiple cloning region for DNA insertion. After integration, a helper plasmid expressing the flippase (FLP) recombinase allows precise in vivo excision of the replicon and the marker used for selection. Sites are also available for temporary insertion of additional functions which can be subsequently deleted with the replicon. Only the DNA inserted into the multiple cloning sites (passenger genes and homologous fragment for targeting) and a single FRT site (68 bp) remain in the chromosome after excision. The utility of these vectors was demonstrated by integrating Zymomonas mobilis genes encoding the ethanol pathway behind the native chromosomal adhE gene in strains of E. coli K-12 and E. coli B. With these vectors, a single antibiotic selection system can be used repeatedly for the successive improvement of E. coli strains with precise deletion of extraneous genes used during construction.  相似文献   

12.
Continued passage of the human parvovirus, adeno-associated virus (AAV), at high multiplicity of infection in human cells results in the accumulation of AAV particles containing variant genomes. We have analyzed the structure of individual variant AAV genomes by molecular cloning in the Escherichia coli plasmid, pBR328. Each of the AAV inserts in six individual recombinant plasmids contained a single internal deletion but in contrast to a previous model, the locations of the deletions were nonrandom. The molecular cloning protocol also generated recombinant plasmids containing the entire AAV2 DNA sequence which yielded infectious AAV particles when transfected into human 293 cells in the presence of helper adenovirus using a DEAE-transfection procedure. Infectious AAV genomes were also generated by recombination when cells were jointly transfected with a mixture of plasmids containing two different mutant AAV genomes. The efficiency of this recombination appear to be influenced by the degree of homology between the mutant AAV genomes.  相似文献   

13.
We have recently introduced a novel procedure for the construction of herpesvirus mutants that is based on the cloning and mutagenesis of herpesvirus genomes as infectious bacterial artificial chromosomes (BACs) in Escherichia coli (M. Messerle, I. Crnkovic, W. Hammerschmidt, H. Ziegler, and U. H. Koszinowski, Proc. Natl. Acad. Sci. USA 94:14759-14763, 1997). Here we describe the application of this technique to the human cytomegalovirus (HCMV) strain AD169. Since it was not clear whether the terminal and internal repeat sequences of the HCMV genome would give rise to recombination, the stability of the cloned HCMV genome was examined during propagation in E. coli, during mutagenesis, and after transfection in permissive fibroblasts. Interestingly, the HCMV BACs were frozen in defined conformations in E. coli. The transfection of the HCMV BACs into human fibroblasts resulted in the reconstitution of infectious virus and isomerization of the reconstituted genomes. The power of the BAC mutagenesis procedure was exemplarily demonstrated by the disruption of the gpUL37 open reading frame. The transfection of the mutated BAC led to plaque formation, indicating that the gpUL37 gene product is dispensable for growth of HCMV in fibroblasts. The new procedure will considerably speed up the construction of HCMV mutants and facilitate genetic analysis of HCMV functions.  相似文献   

14.
The development of yeast artificial chromosome (YAC) cloning vectors capable of carrying several hundred kilobase-pairs of DNA insert has greatly facilitated the study of complex genomes, and the cloning of large genes as single fragments. In addition, the ability to manipulate YAC sequences by homologous recombination makes this system extremely useful for the generation of disease models.  相似文献   

15.
16.
A M Myers  A Tzagoloff  D M Kinney  C J Lusty 《Gene》1986,45(3):299-310
We report yeast/Escherichia coli shuttle vectors suitable for fusing yeast promoter and coding sequences to the lacZ gene of E. coli. The vectors contain a region of multiple unique restriction sites including EcoRI, KpnI, SmaI, BamHI, XbaI, SalI, PstI, SphI and HindIII. The region with the unique cloning sites has been introduced in both orientations with respect to lacZ and occurs proximal to the eighth codon of the gene. All the restriction sites have been phased to three different reading frames. Two series of vectors have been constructed. The first series (YEp) has two origins of replication (ori), i.e., of the yeast 2 mu circle and of the ColE1 plasmid of E. coli, and can therefore replicate autonomously in both organisms. These shuttle vectors also have the ApR gene of E. coli and either the yeast LEU2 or URA3 genes to allow for selection of both E. coli and yeast transformants. The second series of vectors (YIp) are identical in all respects to the YEp vectors except that they lack the 2 mu ori. The YIp vectors can be used to integrate lacZ fusions into yeast chromosomal DNA. None of the vectors express beta-galactosidase (beta Gal) in yeast or E. coli in the absence of inserted yeast promoter sequences. The 5'-nontranslated sequences and parts of the coding sequences of various yeast genes have been cloned into representative lacZ fusion vectors. In-frame gene fusions can be detected by beta Gal activity when either yeast or E. coli clones are plated on media containing XGal indicator. Quantitative determinations of promoter activity were made by colorimetric assay of beta Gal activity in whole cells. Fusion of the yeast CYC1 gene to lacZ in one of the vectors allowed detection of regulated expression of this gene when cells were grown under conditions of catabolite repression or derepression.  相似文献   

17.
18.
A rate-limiting and costly step in many proteomics analyses is the cloning of all of the ORFs for an organism into technique-specific vectors. Here, we describe the generation of a Campylobacter jejuni expression clone set using a high-throughput cloning approach based on recombination in E. coli. The approach uses native E. coli recombination functions and requires no in vitro enzymatic steps or special strains. Our results indicate that this approach is an efficient and economical alternative for high-throughput cloning.  相似文献   

19.
A new collection of shuttle cloning vectors has been constructed that can be used in a broad host range, because they carry replication origins which are functional in Escherichia coli (p15A, pWV01, ColE1), Lactococcus lactis, lactobacilli, and Bacillus subtilis (pAMbeta1, pWV01). These plasmids contain the lacZ-T1T2 cassette from pJDC9, which allows the X-gal selection and cloning of DNA fragments that could cause plasmid instability in E. coli. In addition, they have been proved to be structurally and segregationally stable in Lactobacillus casei, in which their copy number has been determined by real-time quantitative PCR. Furthermore, the antibiotic resistance markers (beta-lactamase, chloramphenicol acetyl transferase, and erythromycin transacetylase) and the theta and rolling circle replicating origins have been combined to obtain this set of compatible plasmids (pIA family) that can be cotransformed, both in lactic acid bacteria and in E. coli.  相似文献   

20.
Many strains of E. coli K12 restrict DNA containing cytosine methylation such as that present in plant and animal genomes. Such restriction can severely inhibit the efficiency of cloning genomic DNAs. We have quantitatively evaluated a total of 39 E. coli strains for their tolerance to cytosine methylation in phage and plasmid cloning systems. Quantitative estimations of relative tolerance to methylation for these strains are presented, together with the evaluation of the most promising strains in practical recombinant cloning situations. Host strains are recommended for different recombinant cloning requirements. These data also provide a rational basis for future construction of 'ideal' hosts combining optimal methylation tolerance with additional advantageous mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号