首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In search of new 4-aminoquinolines which are not recognized by CQR mechanism, thiourea, thiazolidinedione and thioparabanic acid derivatives of 4-aminoquinoline were synthesized and screened for their antimalarial activities. Thiourea derivative 3 found to be the most active against CQ sensitive strain 3D7 of Plasmodium falciparum in an in vitro model with an IC50 of 6.07 ng/mL and also showed an in vivo suppression of 99.27% on day 4 against CQ resistant strain N-67 of Plasmodium yoelii.  相似文献   

2.
Previously we have shown that pentacycloundecylamine-chloroquinoline (PCU-CQ) conjugates possess significant chemosensitizing abilities and can circumvent the resistance associated with chloroquine (CQ) resistant plasmodia. In order to further explore structurally related polycyclic compounds as reversed CQ agents we synthesized a series of eight aza-adamantanol (14) and adamantane-imine (58) CQ conjugates. All conjugates showed limited cytotoxicity against CHO cells (IC50?>?37?µM). Compounds 1, 2 and 5 were highly active (K1 IC50?<?100?nM) exhibiting a 3–4-fold increase in antiplasmodial activity against CQ resistant strain K1 compared to CQ. Reduced cross-resistance (resistance index, RI: 2–4.3) relative to CQ (RI?=?38) was also observed for these compounds. Compound 1 which showed an 18-fold enhancement at retaining its activity against the K1 strain compared to CQ is a promising candidate to substitute CQ in P. falciparum resistant malaria.  相似文献   

3.
The aim of this study was to synthesize a series of quinoline–pyrimidine hybrids and to evaluate their in vitro antimalarial activity as well as cytotoxicity. The hybrids were brought about in a two-step nucleophilic substitution process involving quinoline and pyrimidine moieties. They were screened alongside chloroquine (CQ), pyrimethamine (PM) and fixed combinations thereof against the D10 and Dd2 strains of Plasmodium falciparum. The cytotoxicity was determined against the mammalian Chinese Hamster Ovarian cell line. The compounds were all active against both strains. However, hybrid (21) featuring piperazine linker stood as the most active of all. It was found as potent as CQ and PM against the D10 strain, and possessed a moderately superior potency over CQ against the Dd2 strain (IC50: 0.157 vs 0.417 μM, ~threefold), and also displayed activity comparable to that of the equimolar fixed combination of CQ and PM against both strains.  相似文献   

4.
The control of malaria has been complicated by increased resistance of the malaria parasite to existing antimalarials such as chloroquine (CQ). Herein, we report the ability of NGP1-01, the prototype pentacycloundecylamine (PCU), to reverse CQ resistance (>50%) and act as a chemosensitizer. Based on this finding we set out to synthesize a small series of novel agents comprising of a PCU moiety as the reversal agent conjugated to a CQ-like aminoquinoline (AM) molecule and evaluate the potential of these PCU-AM derivatives as reversed CQ agents. PCU-AM derivatives 13 showed anti-plasmodial IC50 values in the ranges of 3.74–17.6 nM and 27.6–253.5 nM against CQ-sensitive (D10) and CQ-resistant strains (Dd2) of Plasmodium falciparum, respectively. Compound 1 presented with the best antiplasmodial activity at low nM concentrations against both strains and was found to be 5 fold more active against the resistant strain than CQ. Compound 1 can be considered as a lead compound to develop reversed CQ agents with improved pharmacodynamic and pharmacokinetic properties.  相似文献   

5.
Artemisinin-ferrocene conjugates incorporating a 1,2-disubstituted ferrocene analogous to that embedded in ferroquine but attached via a piperazine linker to C10 of the artemisinin were prepared from the piperazine artemisinin derivative, and activities were evaluated against asexual blood stages of chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf). The most active was the morpholino derivative 5 with IC50 of 0.86?nM against Pf K1 and 1.4?nM against Pf W2. The resistance indices were superior to those of current clinical artemisinins. Notably, the compounds were active against Pf NF54 early and late blood stage gametocytes – these exerted >86% inhibition at 1?µM against both stages; they are thus appreciably more active than methylene blue (~57% inhibition at 1?µM) against late stage gametocytes. The data portends transmission blocking activity. Cytotoxicity was determined against human embryonic kidney cells (Hek293), while human malignant melanoma cells (A375) were used to assess their antitumor activity.  相似文献   

6.
A series of short chain 4-aminoquinoline-imidazole derivatives have been synthesized in one pot two step multicomponent reaction using van leusen standard protocol. The diethylamine function of chloroquine is replaced by substituted imidazole derivatives containing tertiary terminal nitrogen. All the synthesized compounds were screened against the chloroquine sensitive (3D7) and chloroquine resistant (K1) strains of Plasmodium falciparum. Some of the compounds (6, 8, 9 and 17) in the series exhibited comparable activity to CQ against K1 strain of P. falciparum. All the compounds displayed resistance factor between 0.09 and 4.57 as against 51 for CQ. Further, these analogues were found to form a strong complex with hematin and inhibit the β-hematin formation, therefore these compounds act via heme polymerization target.  相似文献   

7.
In the present study we have synthesized a new class of 4-aminoquinolines and evaluated against Plasmodium falciparum in vitro (3D7-sensitive strain & K1-resistant strain) and Plasmodium yoelii in vivo (N-67 strain). Among the series, eleven compounds (5, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 21) showed superior antimalarial activity against K1 strain as compared to CQ. In addition, all these analogues showed 100% suppression of parasitemia on day 4 in the in vivo mouse model against N-67 strain when administered orally. Further, biophysical studies suggest that this series of compounds act on heme polymerization target.  相似文献   

8.
A series of 4-aminoquinolinyl-chalcone amides 1119 were synthesized through condensation of carboxylic acid-functionalized chalcone with aminoquinolines, using 1,1′-carbonyldiimidazole as coupling agent. These compounds were screened against the chloroquine sensitive (3D7) and chloroquine resistant (W2) strains of Plasmodium falciparum. Their cytotoxicity towards the WI-38 cell line of normal human fetal lung fibroblast was determined. All compounds were found active, with IC50 values ranging between 0.04–0.5 μM and 0.07–1.8 μM against 3D7 and W2, respectively. They demonstrated moderate to high selective activity towards the parasitic cells in the presence of mammalian cells. However, amide 15, featuring the 1,6-diaminohexane linker, despite possessing predicted unfavourable aqueous solubility and absorption properties, was the most active of all the amides tested. It was found to be as potent as CQ against 3D7, while it displayed a two-fold higher activity than CQ against the W2 strain, with good selective antimalarial activity (SI = 435) towards the parasitic cells. During this study, amide 15 was thus identified as the best drug-candidate to for further investigation as a potential drug in search for new, safe and effective antimalarial drugs.  相似文献   

9.
Dihydroartemisinin (DHA) was coupled to different aminoquinoline moieties forming hybrids 9-14, which were then treated with oxalic acid to form oxalate salts (9a-14a). Compounds 9a, 10a, 12, 12a, and 14a showed comparable potency in vitro to that of chloroquine (CQ) against the chloroquine sensitive (CQS) strain, and were found to be more potent against the chloroquine resistant CQR strain. Hybrids 12 and its oxalate salt 12a were the most active against CQR strain, being 9- and 7-fold more active than CQ, respectively (17.12 nM; 20.76 nM vs 157.9 nM). An optimum chain length was identified having 2 or 3 Cs with or without an extra methylene substituent.  相似文献   

10.
There is challenge and urgency to synthesize cost-effective chemotherapeutic agents for treatment of malaria after the widespread development of resistance to CQ. In the present study, we synthesized a new series of hybrid 9-anilinoacridine triazines using the cheap chemicals 6,9-dichloro-2-methoxy acridine and cyanuric chloride. The series of new hybrid 9-anilinoacridine triazines were evaluated in vitro for their antimalarial activity against CQ-sensitive 3D7 strain of Plasmodium falciparum and their cytotoxicity were determined on VERO cell line. Of the evaluated compounds, two compounds 17 (IC50 = 4.21 nM) and 22 (IC50 = 4.27 nM) displayed two times higher potency than CQ (IC50 = 8.15 nM). Most of the compounds showed fairly high selectivity index. The compounds 13 and 29 displayed >96.59% and 98.73% suppression, respectively, orally against N-67 strain of Plasmodium yoelii in swiss mice at dose 100 mg/kg for four days.  相似文献   

11.
The complexes [Ru(η6-p-cymene)(CQ)Cl2] (1), [Ru(η6-benzene)(CQ)Cl2] (2), [Ru(η6-p-cymene)(CQ)(H2O)2][BF4]2 (3), [Ru(η6-p-cymene)(en)(CQ)][PF6]2 (4), [Ru(η6-p-cymene)(η6-CQDP)][BF4]2 (5) (CQ = chloroquine base; CQDP = chloroquine diphosphate; en = ethylenediamine) interact with DNA to a comparable extent to that of CQ and in analogous intercalative manner with no evidence for any direct contribution of the metal, as shown by spectrophotometric and fluorimetric titrations, thermal denaturation measurements, circular dichroism spectroscopy and electrophoresis mobility shift assays. Complexes 1-5 induced cytotoxicity in Jurkat and SUP-T1 cancer cells primarily via apoptosis. Despite the similarities in the DNA binding behavior of complexes 1-5 with those of CQ the antitumor properties of the metal drugs do not correlate with those of CQ, indicating that DNA is not the principal target in the mechanism of cytotoxicity of these compounds. Importantly, the Ru-CQ complexes are generally less toxic toward normal mouse splenocytes and human foreskin fibroblast cells than the standard antimalarial drug CQDP and therefore this type of compound shows promise for drug development.  相似文献   

12.
The interactions of π-arene-Ru(II)-chloroquine complexes with human serum albumin (HSA), apotransferrin and holotransferrin have been studied by circular dichroism (CD) and UV-Visible spectroscopies, together with isothermal titration calorimetry (ITC). The data for [Ru(η6-p-cymene)(CQ)(H2O)Cl]PF6 (1), [Ru(η6-benzene)(CQ)(H2O)Cl]PF6 (2), [Ru(η6-p-cymene)(CQ)(H2O)2][PF6]2 (3), [Ru(η6-p-cymene)(CQ)(en)][PF6]2 (4), [Ru(η6-p-cymene)(η6-CQDP)][BF4]2 (5) (CQ: chloroquine; DP: diphosphate; en: ethylenediamine), in comparison with CQDP and [Ru(η6-p-cymene)(en)Cl][PF6] (6) as controls demonstrate that 1, 2, 3, and 5, which contain exchangeable ligands, bind to HSA and to apotransferrin in a covalent manner. The interaction did not affect the α-helical content in apotransferrin but resulted in a loss of this type of structure in HSA. The binding was reversed in both cases by a decrease in pH and in the case of the Ru-HSA adducts, also by addition of chelating agents. A weaker interaction between complexes 4 and 6 and HSA was measured by ITC but was not detectable spectroscopically. No interactions were observed for complexes 4 and 6 with apotransferrin or for CQDP with either protein. The combined results suggest that the arene-Ru(II)-chloroquine complexes, known to be active against resistant malaria and several lines of cancer cells, also display a good transport behavior that makes them good candidates for drug development.  相似文献   

13.
We report the synthesis and in vitro antimalarial activities of more than 50 7-chloro-4-aminoquinolyl-derived sulfonamides 38 and 1126, ureas 1922, thioureas 2326, and amides 2754. Many of the CQ analogues prepared for this study showed submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strains of Plasmodium falciparum) and low resistance indices were obtained in most cases. Systematic variation of the side chain length and introduction of fluorinated aliphatic and aromatic termini revealed promising leads that overcome CQ resistance. In particular, sulfonamide 3 exhibiting a short side chain with a terminal dansyl moiety combined high antiplasmodial potency with a low resistance index and showed IC50s of 17.5 and 22.7 nM against HB3 and Dd2 parasites.  相似文献   

14.
A series of novel indole-based oxalamide and aminoacetamide derivatives were designed, synthesized, and evaluated for antiproliferative activities. Preliminary results revealed that compound 8g exhibited significant antiproliferative effect against PC-3, HeLa and HCT-116 cell lines. Flow cytometric analysis of the cell cycle demonstrated the compound 8g induced the cell cycle arrest at G2/M phase in HeLa cell lines. Immunocytochemistry revealed loss of intact microtubule structure in cells treated with 8g and inhibition of tubulin polymerization. Additionally, molecular docking analysis suggested that 8g formed stable interactions in the colchicine-binding site of tubulin. These preliminary results demonstrated that a new class of novel indole-based oxalamide and aminoacetamide derivatives described in the investigation could be developed as potential scaffolds to new anticancer agents.  相似文献   

15.
Facile synthesis of biaryl pyrazole sulfonamide derivative of 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide (SR141716, 1) and an investigation of the effect of replacement of the –CO group in the compound 1 by the –SO2 group in the aminopiperidine region is reported. Primary ex-vivo pharmacological testing and in vitro screening of sulfonamide derivative 2 showed the loss of CB1 receptor antagonism.  相似文献   

16.
A new quinoline derivative, methyl 8-(3-methoxy-3-methylbutyl)-2-methylquinoline-4-carboxylate (1), was isolated from the endophytic strain Streptomyces sp. neau50, and the structure was elucidated by extensive spectroscopic analysis. Compound 1 showed cytotoxicity against human lung adenocarcinoma cell line A549 with an IC50 value of 29.3 μg mL−1.  相似文献   

17.
The mechanism of antimalarial action of [Au(CQ)(PPh3)]PF6 (1), which is active in vitro against CQ-resistant P. falciparum and in vivo against P. berghei, has been investigated in relation to hemozoin formation and DNA as possible important targets. Complex 1 interacts with heme and inhibits β-hematin formation both in aqueous medium and near water/n-octanol interfaces at pH ~ 5 to a greater extent than chloroquine diphosphate (CQDP) or other known metal-based antimalarial agents; the higher inhibition activity is probably related to the higher lipophilicity observed for 1 through partition coefficient measurements at low pH, with respect to CQDP. The interactions of complex 1 with DNA were explored using spectrophotometric and fluorimetric titrations, circular dichroism spectroscopy, viscosity and melting point studies, as well as electrophoresis and covalent binding assays. The experimental data indicate that complex 1 interacts with DNA predominantly by intercalation and electrostatic association of the CQ moiety, similarly to free CQDP, while no covalent metal-DNA binding seems to take place. The most likely antimalarial mechanism for complex 1 is thus heme aggregation inhibition; the high activities observed against resistant parasites are probably due to the structural modification of CQ introduced by the presence of the gold-triphenylphosphine fragment, together with the enhanced lipophilic character.  相似文献   

18.
A dual activity, conjugated approach has been taken to form hybrid molecules of two known antimalarial drugs, chloroquine (CQ) and the non-sedating H1 antagonist astemizole. A variety of linkers were investigated to conjugate the two agents into one molecule. Compounds 58 possessed improved in vitro activity against a CQ-resistant strain of Plasmodium falciparum, and examples 7 and 8 were active in vivo in mouse models of malaria.  相似文献   

19.
Novel derivatives bearing a ferrocene attached via a piperazine linker to C-10 of the artemisinin nucleus were prepared from dihydroartemisinin and screened against chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf) parasites. The overall aim is to imprint oxidant (from the artemisinin) and redox (from the ferrocene) activities. In a preliminary assessment, these compounds were shown to possess activities in the low nM range with the most active being compound 6 with IC50 values of 2.79?nM against Pf K1 and 3.2?nM against Pf W2. Overall the resistance indices indicate that the compounds have a low potential for cross resistance. Cytotoxicities were determined with Hek293 human embryonic kidney cells and activities against proliferating cells were assessed against A375 human malignant melanoma cells. The selectivity indices of the amino-artemisinin ferrocene derivatives indicate there is overall an appreciably higher selectivity towards the malaria parasite than mammalian cells.  相似文献   

20.
β-(1→4)-Thiodisaccharides formed by a pentopyranose unit as reducing or non reducing end have been synthesized using a sugar enone derived from a hexose or pentose as Michael acceptor of a 1-thiopentopyranose or 1-thiohexopyranose derivatives. Thus, 2-propyl per-O-acetyl-3-deoxy-4-S-(β-d-Xylp)-4-thiohexopyranosid-2-ulose (3) and benzyl per-O-acetyl-3-deoxy-4-S-(β-d-Galp)-4-thiopentopyranosid-2-ulose (11) were obtained in almost quantitative yields. The carbonyl function of these uloses was reduced with NaBH4 or K-Selectride, and the stereochemical course of the reduction was highly dependent on the reaction temperature, reducing agent and solvent. Unexpectedly, reduction of 3 with NaBH4–THF at 0 °C gave a 3-deoxy-4-S-(β-d-Xylp)-4-thio-α-d-ribo-hexopyranoside derivative (6) as major product (74% yield), with isomerization of the sulfur-substituted C-4 stereocenter of the pyranone. Reduction of 11 gave always as major product the benzyl 3-deoxy-4-S-(Galp)-4-thio-β-d-threo-pentopyranoside derivative 14, which was the only product isolated (80% yield) in the reduction with K-Selectride in THF at −78 °C. Deprotection of 14 and its epimer at C-2 (13) afforded, respectively the free thiodisaccharides 19 and 18. They displayed strong inhibitory activity against the β-galactosidase from Escherichia coli. Thus, compound 18 proved to be a non-competitive inhibitor of the enzyme (Ki = 0.80 mM), whereas 19 was a mixed-type inhibitor (Ki = 32 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号