首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA non-homologous end joining starts with the binding of Ku heterodimers to double strand breaks. In this work, we characterized the thermodynamics of the Ku-DNA interaction by fluorescence anisotropy of the probe-labeled DNA. We determined that the microscopic dissociation constant (kd) for the binding of Ku to a DNA binding site of the proper length (>20 bp) ranges from 22 to 29 nm at 300 mm NaCl. The binding isotherms for DNA duplexes with two or three heterodimers were analyzed with two independent models considering the presence and absence of overlapping binding sites. This analysis demonstrated that there is no or very weak nearest-neighbor cooperativity among the Ku molecules. These models can most likely be applied to study the interaction of Ku with duplexes of any length. Furthermore, our salt dependence studies indicated that electrostatic interactions play a major role in the binding of Ku to DNA and that the kd decreases approximately 60-fold as the salt concentration is lowered from 300 to 200 mm. The slope (Gammasalt) of the plot of log kd versus log[NaCl] is 12.4 +/- 0.1. This value is among the highest reported in the literature for a protein-DNA interaction and suggests that approximately 12 ions are released upon formation of the Ku-DNA complex. In addition, comparison of the slope values measured upon varying the type of cation and anion indicated that approximately nine cations and three anions are released from DNA and Ku, respectively, when the complex is formed.  相似文献   

2.
The Ku70-Ku80 ring complex encloses DNA ends to facilitate telomere maintenance and DNA break repair. Many studies focus on the ring-forming regions of subunits Ku70 and Ku80. Less is known about the Ku70 C-terminal tail, which lies outside the ring. Our results suggest that this region is responsible for dynamic sumoylation of Yku70 upon DNA association in budding yeast. Mutating a cluster of five lysines in this region largely eliminates Yku70 sumoylation. Chromatin immunoprecipitation analyses show that yku70 mutants with these lysines replaced by arginines exhibit reduced Ku-DNA association at both telomeres and internal DNA breaks. Consistent with this physical evidence, Yku70 sumoylation deficiency is associated with impaired ability to block DNA end resection and suppression of multiple defects caused by inefficient resection. Correlating with these, yku70 mutants with reduced sumoylation levels exhibit shorter telomeres, increased G overhang levels, and altered levels of non-homologous end joining. We also show that diminution of sumoylation does not affect Yku70 protein levels or its interactions with protein and RNA partners. These results suggest a model whereby Yku70 sumoylation upon DNA association strengthens Ku-DNA interaction to promote multiple functions of Ku.  相似文献   

3.
One of the hallmarks of ionizing radiation exposure is the formation of clustered damage that includes closely opposed lesions. We show that the Ku70/80 complex (Ku) has a role in the repair of closely opposed lesions in DNA. DNA containing a dihydrouracil (DHU) close to an opposing single strand break was used as a model substrate. It was found that Ku has no effect on the enzymatic activity of human endonuclease III when the substrate DNA contains only DHU. However, with DNA containing a DHU that is closely opposed to a single strand break, Ku inhibited the nicking activity of human endonuclease III as well as the amount of free double strand breaks induced by the enzyme. The inhibition on the formation of a free double strand break by Ku was found to be much greater than the inhibition of human endonuclease III-nicking activity by Ku. Furthermore, there was a concomitant increase in the formation of Ku-DNA complexes when endonuclease III was present. Similar results were also observed with Escherichia coli endonuclease III. These results suggest that Ku reduces the formation of endonuclease III-induced free double strand breaks by sequestering the double strand breaks formed as a Ku-DNA complex. In doing so, Ku helps to avoid the formation of the intermediary free double strand breaks, possibly helping to reduce the mutagenic event that might result from the misjoining of frank double strand breaks.  相似文献   

4.
DNA-dependent protein kinase (DNA-PK) plays an essential role in the repair of DNA double-stranded breaks (DSBs) mediated by the nonhomologous end-joining pathway. DNA-PK is a holoenzyme consisting of a DNA-binding (Ku70/Ku80) and catalytic (DNA-PKcs) subunit. DNA-PKcs is a serine/threonine protein kinase that is recruited to DSBs via Ku70/80 and is activated once the kinase is bound to the DSB ends. In this study, two large, distinct fragments of DNA-PKcs, consisting of the N terminus (amino acids 1–2713), termed N-PKcs, and the C terminus (amino acids 2714–4128), termed C-PKcs, were produced to determine the role of each terminal region in regulating the activity of DNA-PKcs. N-PKcs but not C-PKcs interacts with the Ku-DNA complex and is required for the ability of DNA-PKcs to localize to DSBs. C-PKcs has increased basal kinase activity compared with DNA-PKcs, suggesting that the N-terminal region of DNA-PKcs keeps basal activity low. The kinase activity of C-PKcs is not stimulated by Ku70/80 and DNA, further supporting that the N-terminal region is required for binding to the Ku-DNA complex and full activation of kinase activity. Collectively, the results show the N-terminal region mediates the interaction between DNA-PKcs and the Ku-DNA complex and is required for its DSB-induced enzymatic activity.  相似文献   

5.
Lehman JA  Hoelz DJ  Turchi JJ 《Biochemistry》2008,47(15):4359-4368
Ionizing radiation induces DNA double-strand breaks which are repaired by the nonhomologous end joining (NHEJ) pathway. NHEJ is initiated upon Ku binding to the DNA ends and facilitating an interaction with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). This heterotrimeric DNA-PK complex is then active as a serine/threonine protein kinase. The molecular mechanisms involved in DNA-PK activation are unknown. Considering the crucial role of Ku in this process, we therefore determined the influence of DNA binding on the structure of the Ku heterodimer. Chemical modification with NHS-biotin and mass spectrometry were used to identify sites of modification. Biotinylation of free Ku revealed several reactive lysines on Ku70 and Ku80 which were reduced or eliminated upon DNA binding. Interestingly, in the predicted C-terminal SAP domain of Ku70, biotinylation patterns were observed which suggest a structural change in this region of the protein induced by DNA binding. Limited proteolytic digests of free and DNA-bound Ku revealed a series of unique peptides, again, indicative of a change in the accessibility of the Ku70 and Ku80 C-terminal domains. A 10 kDa peptide was also identified which was preferentially generated under non-DNA-bound conditions and mapped to the C-terminus of Ku70. These results indicate a DNA-dependent movement or structural change in the C-terminal domains of Ku70 and Ku80 that may contribute to DNA-PKcs binding and activation. These results represent the first demonstration of DNA-induced changes in Ku structure and provide a framework for analysis of DNA-PKcs and the mechanism of DNA-PK activation.  相似文献   

6.
The Ku heterodimer plays a central role in non-homologous end-joining. The binding of recombinant Ku to DNA has been investigated by dynamic light scattering, double-filter binding, fluorescence spectroscopy, and band shift assays. The hydrodynamic radius of Ku in solution is 5.2 nm and does not change when a 25-bp double-strand DNA (dsDNA) fragment (D25) is added, indicating that only one Ku molecule binds to a 25-bp fragment. The dissociation constant (k(d)) for the binding to D25 is 3.8 +/- 0.9 nm. If both ends of the substrate are closed with hairpin loops, Ku is still able to bind with little change in the k(d). The k(d) is not affected by ATP, Mg(2+), or ionic strength. However, the addition of bovine serum albumin decreases the k(d) by 2-fold. DNA substrates of 50 bp can bind two Ku molecules, whereas three molecules are bound to a 75-bp substrate. Data analysis with the Hill equation yields a value of the Hill coefficient (n) close to 1, and the k(d) values for the binding of Ku to both ends of these substrates are the same. Thus, we demonstrate that there is no cooperative interaction among the Ku heterodimers binding longer substrates.  相似文献   

7.
In the development of biosensors, it is essential to understand how the signal-transducing element may perturb surface-bound proteins and nucleic acids. The tip of the atomic force microscope is such an element in atomic force microscopy. In this paper, we describe the influence of tip-sample interactions on the measured height of the DNA repair protein, Ku, that has been adsorbed onto a mica surface which was submerged in aqueous solution. We find that the measured height of the Ku molecule depends critically on whether or not it is associated with DNA. Additionally, we observed that the conditions (time and concentration) under which Ku is incubated with DNA, affect the appearance (number and type) of the DNA-Ku complexes observed.  相似文献   

8.
Yoo S  Dynan WS 《Nucleic acids research》1999,27(24):4679-4686
Ku protein and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are essential components of the double-strand break repair machinery in higher eukaryotic cells. Ku protein binds to broken DNA ends and recruits DNA-PKcs to form an enzymatically active complex. To characterize the arrangement of proteins in this complex, we developed a set of photocross-linking probes, each with a single free end. We have previously used this approach to characterize the contacts in an initial Ku-DNA complex, and we have now applied the same technology to define the events that occur when Ku recruits DNA-PKcs. The new probes allow the binding of one molecule of Ku protein and one molecule of DNA-PKcs in a defined position and orientation. Photocross-linking reveals that DNA-PKcs makes direct contact with the DNA termini, occupying an approximately 10 bp region proximal to the free end. Characterization of the Ku protein cross-linking pattern in the presence and absence of DNA-PKcs suggests that Ku binds to form an initial complex at the DNA ends, and that recruitment of DNA-PKcs induces an inward translocation of this Ku molecule by about one helical turn. The presence of ATP had no effect on protein-DNA contacts, suggesting that neither DNA-PK-mediated phosphorylation nor a putative Ku helicase activity plays a role in modulating protein conformation under the conditions tested.  相似文献   

9.
Park S  Lippard SJ 《Biochemistry》2011,50(13):2567-2574
HMGB1, one of the most abundant nuclear proteins, has a strong binding affinity for cisplatin-modified DNA. It has been proposed that HMGB1 enhances the anticancer efficacy of cisplatin by shielding platinated DNA lesions from repair. Two cysteine residues in HMGB1 domain A form a reversible disulfide bond under mildly oxidizing conditions. The reduced domain A protein binds to a 25-bp DNA probe containing a central 1,2-d(GpG) intrastrand cross-link, the major platinum-DNA adduct, with a 10-fold greater binding affinity than the oxidized domain A. The binding affinities of singly and doubly mutated HMGB1 domain A, respectively deficient in one or both cysteine residues that form the disulfide bond, are unaffected by changes in external redox conditions. The redox-dependent nature of the binding of HMGB1 domain A to cisplatin-modified DNA suggests that formation of the intradomain disulfide bond induces a conformational change that disfavors binding to cisplatin-modified DNA. Hydroxyl radical footprinting analyses of wild-type domain A bound to platinated DNA under different redox conditions revealed identical cleavage patterns, implying that the asymmetric binding mode of the protein across from the platinated lesion is conserved irrespective of the redox state. The results of this study reveal that the cellular redox environment can influence the interaction of HMGB1 with the platinated DNA and suggest that the redox state of the A domain is a potential factor in regulating the role of the protein in modulating the activity of cisplatin as an anticancer drug.  相似文献   

10.
The Ku protein is composed of two polypeptide subunits, p70 and p80, and binds DNA ends in vitro. Previous studies suggested that p70 and p80 are physically associated in vivo, although such an association may have been mediated by DNA. We have now utilized full-length Ku polypeptides synthesized in vitro to examine the association of p70, p80, and linear DNA to form a complex. In gel filtration chromatography, p70 migrates as a 70-kDa structure, whereas p80 migrates at 150 kDa. Co-translation of the two cDNAs yields complexes which migrate at 300 kDa and contain equimolar quantities of the p70 and p80 polypeptides, providing direct evidence that p70 and p80 assemble into a complex in the absence of DNA. To demonstrate that this recombinant protein complex binds DNA, we developed a radiolabeled protein electrophoretic mobility shift assay. When radiolabeled proteins synthesized in vitro were incubated with linear DNA and fractionated in a nonreducing, nondenaturing gel, a band representing a complex of p70, p80, and the DNA was seen. Formation of this Ku-DNA complex required free DNA ends, and binding to DNA ends was not observed with individual p70 or p80 subunits. DNA binding was not reconstituted by mixing the individual subunits together. These studies thus demonstrate that it is the complex of p70 and p80, not individual p70 or p80, which possesses the DNA binding properties previously described for native Ku protein. These results provide new information about the assembly, structure, and DNA binding properties of the Ku protein.  相似文献   

11.
12.
We analysed protein-DNA and protein-protein interactions relevant to the repair of DNA DSBs (double-strand breaks) by NHEJ (non-homologous end-joining). Conformational transitions in mammalian DNA ligases III (LigIII) and IV (LigIV), as well as in PARP-1 [poly(ADP-ribose) polymerase-1], were analysed upon binding to double-stranded DNA by changes in tryptophan emission and FRET (F?rster resonance energy transfer) from tryptophan to DNA-conjugated Alexa Fluor? 532. For LigIII, two non-equivalent high- and low-affinity DNA-binding sites are detected interacting sequentially with DNA. PARP-1 displays a single high-affinity DNA-binding site and can displace bound DNA fragments from the low-affinity site of LigIII, consistent with its mediator role in LigIII-DNA interactions. For the LX [LigIV-XRCC4 (X-ray cross-complementation group 4)] complex, a single DNA-binding site is detected. Binding of Ku to DNA was accompanied by conformational changes in the protein and intermolecular FRET from dansyl chromophores of the labelled Ku to the Alexa Fluor? chromophores of Alexa Fluor? 532-conjugated DNA. The average distance of 5.7?nm calculated from FRET data is consistent with a location of Ku at the very end of the DNA molecule. Binding of LX to Ku-DNA complexes is associated with conformational changes in Ku, translocating the protein further towards the DNA ends. The protein-protein and protein-DNA interactions detected and analysed generate a framework for the characterization of molecular interactions fundamental to the function of NHEJ pathways in higher eukaryotes.  相似文献   

13.
14.

Background  

DNA double-strand breaks (DSBs) can occur in response to ionizing radiation (IR), radiomimetic agents and from endogenous DNA-damaging reactive oxygen metabolites. Unrepaired or improperly repaired DSBs are potentially the most lethal form of DNA damage and can result in chromosomal translocations and contribute to the development of cancer. The principal mechanism for the repair of DSBs in humans is non-homologous end-joining (NHEJ). Ku is a key member of the NHEJ pathway and plays an important role in the recognition step when it binds to free DNA termini. Ku then stimulates the assembly and activation of other NHEJ components. DNA binding of Ku is regulated by redox conditions and evidence from our laboratory has demonstrated that Ku undergoes structural changes when oxidized that results in a reduction in DNA binding activity. The C-terminal domain and cysteine 493 of Ku80 were investigated for their contribution to redox regulation of Ku.  相似文献   

15.
The Ku heterodimer, composed of Ku70 and Ku80, is the initiating factor of the nonhomologous end joining (NHEJ) double-strand break (DSB) repair pathway. Ku is also thought to impede the homologous recombination (HR) repair pathway via inhibition of DNA end resection. Using the cell-free Xenopus laevis egg extract system, we had previously discovered that Ku80 becomes polyubiquitylated upon binding to DSBs, leading to its removal from DNA and subsequent proteasomal degradation. Here we show that the Skp1-Cul1-F box (SCF) E3 ubiquitin ligase complex is required for Ku80 ubiquitylation and removal from DNA. A screen for DSB-binding F box proteins revealed that the F box protein Fbxl12 was recruited to DNA in a DSB- and Ku-sensitive manner. Immunodepletion of Fbxl12 prevented Cul1 and Skp1 binding to DSBs and Ku80 ubiquitylation, indicating that Fbxl12 is the F box protein responsible for Ku80 substrate recognition. Unlike typical F box proteins, the F box of Fbxl12 was essential for binding to both Skp1 and its substrate Ku80. Besides Fbxl12, six other chromatin-binding F box proteins were identified in our screen of a subset of Xenopus F box proteins: β-TrCP, Fbh1, Fbxl19, Fbxo24, Fbxo28 and Kdm2b. Our study unveils a novel function for the SCF ubiquitin ligase in regulating the dynamic interaction between DNA repair machineries and DSBs.  相似文献   

16.
17.
The effect of electrostatic interactions on the conformation and thermal stability of plastocyanin (Pc) was studied by infrared spectroscopy. Association of any of the two redox states of the protein with positively charged membranes at neutral pH does not significantly change the secondary structure of Pc. However, upon membrane binding, the denaturation temperature decreases, regardless of the protein redox state. The extent of destabilization depends on the proportion of positively charged lipid headgroups in the membrane, becoming greater as the surface density of basic phospholipids increases. In contrast, at pH 4.8 the membrane binding-dependent conformational change becomes redox-sensitive. While the secondary structures and thermal stabilities of free and membrane-bound oxidized Pc are similar under acidic conditions, the conformation of the reduced form of the protein drastically rearranges upon membrane association. This rearrangement does not depend on electrostatic interactions to occur, since it is also observed in the presence of uncharged lipid bilayers. The conformational transition, only observed for reduced Pc, involves the exposure of hydrophobic regions that leads to intermolecular interactions at the membrane surface. Membrane-mediated partial unfolding of reduced Pc can be reversed by readjusting the pH to neutrality, in the absence of electrostatic interactions. This redox-dependent behavior might reflect specific structural requirements for the interaction of Pc with its redox partners.  相似文献   

18.
The DNA ligase IV.XRCC4 complex (LX) functions in DNA non-homologous-end joining, the main pathway for double-strand break repair in mammalian cells. We show that, in contrast to ligation by T4 ligase, the efficiency of LX ligation of double-stranded (ds) ends is critically dependent upon the length of the DNA substrate. The effect is specific for ds ligation, and LX/DNA binding is not influenced by the substrate length. Ku stimulates LX ligation at concentrations resulting in 1-2 Ku molecules bound per substrate, whereas multiply Ku-bound DNA molecules inhibit ds ligation. The combined footprint of DNA with Ku and LX bound is the sum of each individual footprint suggesting that the two complexes are located in tandem at the DNA end. Inhibition of Ku translocation by the presence of cis-platinum adducts on the DNA substrate severely inhibits ligation by LX. Fluorescence resonance energy transfer analysis using fluorophore-labeled Ku and DNA molecules showed that, as expected, Ku makes close contact with the DNA end and that addition of LX can disrupt this close contact. Finally, we show that recruitment of LX by Ku is impaired in an adenylation-defective mutant providing further evidence that LX interacts directly with the DNA end, possibly via the 5'-phosphate as shown for prokaryotic ligases. Taken together, our results suggest that, when LX binds to a Ku-bound DNA molecule, it causes inward translocation of Ku and that freedom to move inward on the DNA is essential to Ku stimulation of LX activity.  相似文献   

19.
Aluminum is a known neurotoxic agent and its neurotoxic effects may be due to its binding to DNA. However, the mechanism for the interaction of aluminum ions with DNA is not well understood. Here, we report the application of isothermal titration calorimetry (ITC), fluorescence spectroscopy, and UV spectroscopy to investigate the thermodynamics of the binding of aluminum ions to calf thymus DNA (CT DNA) under various pH and temperature conditions. The binding reaction is driven entirely by a large favorable entropy increase but with an unfavorable enthalpy increase in the pH range of 3.5-5.5 and at all temperatures examined. Aluminum ions show a strong and pH-dependent binding affinity to CT DNA, and a large positive molar heat capacity change for the binding, 1.57 kcal mol(-1) K(-1), demonstrates the burial of the polar surface of CT DNA upon groove binding. The fluorescence of ethidium bromide bound to CT DNA is quenched by aluminum ions in a dynamic way. Both Stern-Volmer quenching constant and the binding constant increase with the increase of the pH values, reaching a maximum at pH 4.5, and decline with further increasing the pH to 5.5. At pH 6.0 and 7.0, aluminum ions precipitate CT DNA completely and no binding of aluminum ions to CT DNA is observed by ITC. Combining the results from these three methods, we conclude that aluminum ions bind to CT DNA with high affinity through groove binding under aluminum toxicity pH conditions and precipitate CT DNA under physiological conditions.  相似文献   

20.
Ku protein binds broken DNA ends, triggering a double-strand DNA break repair pathway. The spatial arrangement of the two Ku subunits in the initial Ku-DNA complex, when the Ku protein first approaches the broken DNA end, is not well defined. We have investigated the geometry of the complex using a novel set of photocross-linking probes that force Ku protein to be constrained in position and orientation, relative to a single free DNA end. Results suggest that this complex is roughly symmetric and that both Ku subunits make contact with an approximately equal area of the DNA. The complex has a strongly preferred orientation, with Ku70-DNA backbone contacts located proximal and Ku80-DNA backbone contacts located distal to the free end. Ku70 also contacts functional groups in the major groove proximal to the free end. Ku80 apparently does not make major groove contacts. Results are consistent with a model where the Ku70 and Ku80 subunits contact the major and minor grooves of DNA, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号