首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The ability of lithium to potentiate muscarinic cholinoceptor-stimulated CMP-phosphatidate (CMP.PA) accumulation has been examined in various cells in which muscarinic cholinoceptor agonists evoke a phosphoinositide response. Cell types examined include rat cerebellar granule cells, Chinese hamster ovary cells transfected to express the human muscarinic M3 receptor (CHO-M3 cells), and SH-SY5Y neuroblastoma cells. Neither carbachol (1 m M ) nor lithium (10 m M ) caused significant increases in CMP.PA accumulation in rat cerebellar granule cells; however, when added together for 20 min a linear 17-fold increase over basal levels was observed. The increase was dependent on the concentration of carbachol and lithium present, and the effect could be reversed by addition of exogenous myo -inositol (10 m M ). Addition of carbachol alone to CHO-M3 cells caused a five-fold increase in CMP.PA accumulation. In the presence of lithium, a 70-fold increase was observed at 20 min after carbachol plus lithium addition. This latter response was concentration dependent and could be abolished by preincubation in the presence of 10 m M myo -inositol. In contrast, whereas carbachol elicited a three-fold increase in CMP.PA accumulation in SH-SY5Y neuroblastoma cells, which reached a plateau 10 min after agonist addition, the response could neither be augmented by addition of lithium nor inhibited by addition of myo -inositol. These results emphasise that the ability of lithium to affect agonist-stimulated CMP.PA accumulation is not simply a function of stimulus strength, but is also crucially dependent on the intracellular concentration of inositol.  相似文献   

2.
Abstract: Mild depolarisation (20 m M KCI) synergistically enhances the ability of a muscarinic agonist to activate phosphoinositide turnover and to elevate inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in cerebellar granule cells in primary culture. The effects of lithium on this intense stimulation of phosphoinositide turnover was studied. Lithium causes depletion of cytoplasmic inositol and phosphoinositides, which results in the inhibition of phosphoinositide turnover within 15 min and the return of Ins(1,4,5)P3 to basal levels at this time. This inhibition could not be reversed by culturing and preincubating cerebellar granule cells in concentrations of inositol similar to those detected in the CSF. Inositol concentrations substantially in excess of those in the CSF not only reversed the effects of lithium on stimulated Ins(1,4,5)P3 levels, but significantly enhanced this level in comparison with stimulation in the absence of lithium. sn -1,2-Diacylglycerol elevation during stimulated phosphoinositide turnover was also disrupted by lithium, but in contrast to Ins(1,4,5)3, the presence of lithium resulted in a transient enhancement of the elevation evoked by carbachol plus mild KCI depolarisation, which was reversed by 500 µ M inositol, but not by 200 µ M inositol. The implications of these phenomena in relation to the mechanism of action of lithium in the treatment of manic depression are discussed.  相似文献   

3.
Glycine potentiates stimulation of inositol phospholipid hydrolysis by glutamate and N-methyl-D-aspartate, but not by quisqualate or carbamylcholine, in primary cultures of cerebellar granule cells. This potentiation occurs in the absence of extracellular Mg2+, but is more evident when stimulation of inositol phospholipid hydrolysis by N-methyl-D-aspartate is measured in the presence of 1 mM Mg2+. The action of glycine is not antagonized by strychnine. These results suggest that glycine acts as a positive modulator of signal transduction at a specific class of N-methyl-D-aspartate-sensitive glutamate receptors coupled to inositol phospholipid hydrolysis in cerebellar granule cells.  相似文献   

4.
Abstract: The coupling of muscarinic receptor-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis by phospholipase C to resynthesis of phosphatidylinositol (PtdIns) and the ability of Li+ to inhibit this after cellular inositol depletion were studied in 1321N1 astrocytoma cells cultured in medium ± inositol (40 µM). In inositol-replete cells, 1 mM carbachol/10 mM LiCl evoked an initial (0–30 min) ~≥20-fold activation of phospholipase C, whereas prolonged (>60 min) stimulation turned over Ptdlns equal to the cellular total mass, involving ~80% of the cellular Ptdlns pool without reducing PtdIns concentrations significantly. PtdIns resynthesis was achieved by a similar, initial agonist activation of PtdIns synthase. The dose dependency for carbachol stimulation of PtdIns synthase and phospholipase C was similar (EC50~ 20 µM) as was the relative intrinsic activity of muscarinic receptor partial agonists. This demonstrates the tight coupling of phosphoinositide hydrolysis to resynthesis and suggests this is achieved by a direct mechanism. In inositol-replete or depleted cells basal concentrations of inositol and CMP-phosphatidate were respectively ~20 mM or ≤100–500 µM and ~0.1 or ~≥1–10 pmol/mg of protein. Comparison of the effects of agonist ± Li+ on the concentrations of these cosubstrates for PtdIns synthase suggest that accelerated activity of this enzyme is differentially driven by stimulated increases in the amounts of CMP-phosphatidate or inositol in inositol-replete or depleted cells, respectively. Thus, the preferential capacity of Li+ to impair stimulated phosphoinositide turnover in systems expressing low cellular inositol can be attributed to its ability to attenuate the stimulated rise in inositol concentrations on which such systems selectively depend to trigger accelerated PtdIns resynthesis.  相似文献   

5.
Abstract: Previous studies in our laboratory have demonstrated that exposure of rats to chronic lithium results in a significant reduction in the hippocampus of levels of the protein kinase C (PKC) phosphoprotein substrate MARCKS (myristoylated alanine-rich C kinase substrate), which persists after withdrawal and is not observed following acute administration. In an immortalized hippocampal cell line (HN33), we have determined that phorbol esters rapidly down-regulate PKC activity and lead to a subsequent PKC-dependent reduction in content of MARCKS protein. We now report that chronic exposure of HN33 cells to LiCl (1–10 m M ) produces a dose- and time-dependent down-regulation of MARCKS protein. The lithium-induced reduction in MARCKS is dependent on the concentration of inositol present in the medium and is reversed and prevented in the presence of elevated inositol concentrations. When HN33 cells were exposed to lithium at clinically relevant concentrations (1 m M ) under limiting inositol conditions, activation of muscarinic receptor-coupled phosphoinositide signaling significantly potentiated the lithium-induced down-regulation of MARCKS protein. It has been suggested that a major action of lithium in the brain is linked to its inositol monophosphatase inhibitory activity in receptor-mediated signaling through the inositol trisphosphate/diacylglycerol pathway, resulting in a relative inositol depletion. Our data provide evidence that this initial action of lithium may translate into a PKC-dependent long-term down-regulation of MARCKS protein expression in the hippocampus.  相似文献   

6.
This paper describes a rapid and simple method for measuring CMP-phosphatidate (CMP-PA; CDP-diacylglycerol), providing a novel assay for inositol phospholipid metabolism. Rat cerebral-cortical slices labelled with [14C]cytidine were incubated with the muscarinic cholinergic agonist carbachol in the presence of various concentrations of LiCl; 10 mM-LiCl greatly enhanced the carbachol-stimulated formation of [14C]CMP-PA over a 60 min incubation period. The potentiation by Li+ was concentration-dependent, with a maximal enhancement at 3 mM and half-maximal enhancement at 0.6 mM-LiCl. The enhancement by Li+ could be reversed by incubation with myo-inositol; a maximal effect was observed with 10 mM-inositol. A similar, though smaller, enhancement of CMP-PA concentrations in the presence of LiCl was observed in slices stimulated with noradrenaline, 5-hydroxytryptamine and K+. The results are discussed in relation to previously observed effects of Li+ on inositol phospholipid metabolism.  相似文献   

7.
Cortical slices from rat brain were used to study carbachol-stimulated inositol phospholipid hydrolysis. Omission of calcium during incubation of slices with [3H]inositol increased its incorporation into receptor-coupled phospholipids. Carbachol-stimulated hydrolysis of [3H]inositol phospholipids in slices was dose-dependent, was affected by the concentrations of calcium and lithium present and resulted in the accumulation of mostly [3H]inositol-l-phosphate. Incubation of slices withN-ethylmaleimide or a phorbol ester reduced the response to carbachol. Membranes prepared from cortical slices labeled with [3H]inositol retained the receptor-stimulated inositol phospholipid hydrolysis reaction. The basal rate of inositol phospholipid hydrolysis was higher than in slices and addition of carbachol further stimulated the process. Addition of GTP stimulated inositol phospholipid hydrolysis, suggesting the presence of a guanine nucleotide-binding protein coupled to phospholipase C. Carbachol and GTP-stimulated inositol phospholipid hydrolysis in membranes was detectable following a 3 min assay period. In contrast to slices, increased levels of inositol bisphosphate and inositol trisphosphate were detected following incubation of membranes with carbachol. These results demonstrate that agonist-responsive receptors are present in cortical membranes, that the receptors may be coupled to phosphatidylinositol 4,5-bisphosphate, rather than phosphatidylinositol, hydrolysis and that a guanine nucleotide-binding protein may mediate the coupling of receptor activation to inositol phospholipid hydrolysis in brain.  相似文献   

8.
Abstract: A detailed analysis of the generation and subsequent metabolism of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] following muscarinic cholinoceptor stimulation in primary cultures of rat cerebellar granule cells has been undertaken. Following incubation of cerebellar granule cell cultures with [3H]inositol for 48 h, labelling of the inositol phospholipid pool approached equilibrium. Significant basal labelling of inositol pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6), as well as inositol mono- to tetrakisphosphate, fractions was observed. Addition of carbachol (1 m M ) caused an immediate increase in level of Ins(1,4,5)P3 (peak increase two-fold over basal by 60 s), which was well-maintained over the initial 300 s following agonist addition. In contrast, only a modest, more slowly developing, increase in inositol tetrakisphosphate accumulation was observed, whereas labelling of InsP5 and InsP6 was entirely unaffected by carbachol stimulation. Analysis of the products of Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate metabolism in broken cell preparations strongly suggested that Ins(1,4,5)P3 metabolism occurs predominantly via the inositol polyphosphate 5-phosphatase route, with metabolism via the Ins(1,4,5)P3 3-kinase being a relatively minor pathway. In view of the pattern of inositol (poly)phosphate metabolites observed on stimulation of the muscarinic receptor, it seems likely that, over the time course studied, the inositol polyphosphates are derived principally from phosphoinositide-specific phospholipase C hydrolysis of phosphatidylinositol 4,5-bisphosphate, although some hydrolysis of phosphatidylinositol 4-phosphate cannot be excluded.  相似文献   

9.
The effects of lithium (Li+) on the adenylyl cyclase and inositol phospholipid receptor signalling pathways were compared directly in noradrenergic and carbachol stimulated rat brain cortical tissue slices. Li+ was a comparatively weak inhibitor of noradrenaline-stimulated cyclic AMP accumulation with an IC50 of approx. 20 mM. By contrast, half-maximal effects of Li+ on inositol monophosphate (InsP) accumulation in [3H]inositol labelled tissue slices occurred at about 1 mM. A similar IC50 for Li+ of about 1 mM was also obtained for noradrenaline-stimulated accumulation of CMP-phosphatidate (CMPPA), a sensitive indicator of intracellular inositol depletion, in tissue slices that had been prelabelled with [3H]cytidine. The effect of myo-inositol (inositol) depletion on the prolonged activity of phosphoinositidase C (PIC) was examined in carbachol-stimulated cortical slices using a novel mass assay for InsP. Exposure to a maximal dose of carbachol for 30 min in the presence of 5 mM Li+ caused a 10-fold increase in the level of radioactivity associated with the InsP fraction, but only a 2-fold increase in InsP mass. During prolonged incubations in the presence of both carbachol and Li+ the accumulation of InsP mass was enhanced if 30 mM inositol was included in the medium. The results are compatible with the inositol depletion hypothesis of Li+ action but do not support the concept that adenylyl cyclase or guanine nucleotide dependent proteins represent therapeutically relevant targets of this drug.  相似文献   

10.
Two murine, keyhole limpet hemocyanin-specific, Th cell clones were studied for their ability to respond to antibody-mediated stimulation of the TCR complex or to Ag-pulsed accessory cells by hydrolyzing inositol phospholipids. Both clones were positive for the determinant expressed on the epsilon chain of CD3 that is recognized by the mAb, 145-2C11 (2C11 mAb); one clone also expressed the V beta 8 epitope of the alpha/beta chains of the TCR recognized by the F23.1 mAb. Treatment of these cells with 2C11 or F23.1 mAb adsorbed onto polystyrene beads induced a time-dependent accumulation of inositol phosphates (IP). Keyhole limpet hemocyanin-pulsed accessory cells which expressed the appropriate MHC phenotype also induced IP accumulation, whereas no response was induced by medium-treated or MHC congenic accessory cells. The hydrolysis of inositol phospholipids induced by TCR perturbation depended upon the presence of exogenous Ca2+; Mg2+ did not substitute for Ca2+. Treatment of cells with ionomycin at concentrations up to 30 microM was unable to induce hydrolysis of inositol phospholipids, indicating that entrance of Ca2+ was itself insufficient to generate IP. Stimulated IP generation was rapidly blocked upon addition of EGTA to the incubation medium. Reducing the level of exogenous Ca2+ decreased the production of inositol mono-, bis-, and trisphosphate isomers similarly, suggesting that extracellular Ca2+ was required for the initiation of the hydrolysis rather than affecting phospholipase C affinity for its substrates. We concluded that activation of inositol phospholipid hydrolysis by perturbation of the TCR complex in the Th cell clones under investigation displays a Ca2+-dependent component which is likely to be proximal to IP generation.  相似文献   

11.
We have investigated the effects of in vivo lithium treatment on cerebral inositol phospholipid metabolism. Twice-daily treatment of rats with LiCl (3 mEq/kg) for 3 or 16 days resulted in a 25-40% reduction in agonist-stimulated inositol phosphate production, compared with NaCl-treated controls, in cortical slices prelabelled with [3H]inositol. A small effect was also seen with 5-hydroxytryptamine (5-HT) 24 h after a single dose of LiCl (10 mEq/kg). Dose-response curves to carbachol and 5-HT showed that lithium treatment reduced the maximal agonist response without altering the EC50 value. This inhibition was not affected by the concentration of LiCl in the assay buffer. Stimulation of inositol phosphate formation by 10 mM NaF in membranes prepared from cortex of 3-day lithium-treated rats was also inhibited, by 35% compared with NaCl-treated controls. Lithium treatment did not alter the kinetic profile of inositol polyphosphate formation in cortical slices stimulated with carbachol. Muscarinic cholinergic and 5-HT2 bindings were unaltered by lithium, as was cortical phospholipase C activity and isoproterenol-stimulated cyclic AMP formation. [3H]Inositol labelling of phosphatidylinositol 4,5-bisphosphate was significantly enhanced by 3-day lithium treatment. The results, therefore, indicate that subacute or chronic in vivo lithium treatment reduces agonist-stimulated inositol phospholipid metabolism in cerebral cortex; this persistent inhibition appears to be at the level of G-protein-phospholipase C coupling.  相似文献   

12.
Abstract: The effects of lithium on muscarinic cholinoceptor-stimulated phosphoinositide turnover have been investigated in rat hippocampal, striatal, and cerebral cortical slices using [3H]inositol or [3H]cytidine prelabelling and inositol 1,4,5-trisphosphate [lns(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [lns(1,3,4,5)P4] mass determination methods. Carbachol addition resulted in maintained increases in lns(1,4,5)P3 and lns(1,3,4,5)P4 mass levels in hippocampus and cerebral cortex, whereas in striatal slices these responses declined significantly over a 30-min incubation period. Carbachol-stimulated lns(1,4,5)P3 and lns(1,3,4,5)P4 accumulations were inhibited by lithium in all brain regions studied in a time-and concentration-dependent manner. For example, in hippocampal slices significant inhibitory effects of LiCl were observed at times > 10 min after agonist challenge; IC50 values for inhibition of agonist-stimulated lns(1,4,5)P3 and lns(1,3,4,5)P4 accumulations by lithium were 0.22 ± 0.09 and 0.33 ± 0.13 mM, respectively. [3H]CMP-phosphatidate accumulation increased in all brain regions when slices were stimulated by agonist and lithium. The ability of myo-inositol to reverse these effects, as well as lithium-suppressed lns(1,4,5)P3 accumulation, implicates myo-inositol depletion in the action of lithium in the hippocampus and cortex at least. The results of this study suggest that although significant differences in the magnitude and time courses of changes in inositol (poly)phosphate metabolites occur in different brain regions, lithium evokes qualitatively similar enhancements of [3H]inositol monophosphate and [3H]CMP-phosphatidate levels and inhibitions of lns(1,4,5)P3 and lns(1,3,4,5)P4 accumulations. However, the inability of striatal slices to sustain carbachol-stimulated inositol polyphosphate accumulation in the absence of lithium and the inability to reverse effects with myo-inositol may indicate differences in phosphoinositide signalling in this brain region.  相似文献   

13.
The effects of lithium (Li+) on the adenylyl cyclase and inositol phospholipid receptor signalling pathways were compared directly in noradrenergic and carbachol stimulated rat brain cortical tissue slices. Li+ was a comparatively weak inhibitor of noradrenaline-stimulated cyclic AMP accumulation with an IC50 of approx. 20 mM. By contrast, half-maximal effects of Li+ on inositol monophosphate (InsP) accumulation in [3H]inositol labelled tissue slices occurred at about 1 mM. A similar IC50 for Li+ of about 1 mM was also obtained for noradrenaline-stimulated accumulation of CMP-phosphatidate (CMPPA), a sensitive indicator of intracellular inositol depletion, in tissue slices that had been prelabelled with [3H]cytidine. The effect of myo-inositol (inositol) depletion on the prolonged activity of phosphoinositidase C (PIC) was examined in carbachol-stimulated corticol slices using a novel mass assay fro InsP. Exposure to a maximal dose of carbachol for 30 min in the presence of 5 mM Li+ caused a 10-fold increase in the level of radioactivity associated with the InsP fraction, but only a 2-fold increase in InsP mass. During prolonged incubations in the presence of both carbachol and Li+ the accumulation of InsP mass was enhanced if 30 mM inositol was included in the medium. The results are comptable with the inositol depletion hypothesis of Li+ action but do not support the concept that adenylyl cyclase or guanine nucleotide dependent proteins represent therapeutically relevant targets of this drug.  相似文献   

14.
Insulin is known to increase the de novo synthesis of inositol phospholipids in rat epididymal fat pads. We presently examined the effects of insulin on the hydrolysis of inositol phospholipids in this tissue. Relatively small (30-40%) but significant increases in inositol phosphates (mono-, di-, and tri-) were apparent within 30-60 s of insulin treatment in fat pads (and adipocytes); thereafter, inositol phosphates returned to control levels. These rapid insulin-induced increases in inositol phosphates appeared to be due to phospholipase C-mediated hydrolysis of inositol phospholipids, since there were associated transient decreases in these lipids during 32P pulse-chase experiments. Increases in the synthesis of inositol phospholipids were also apparent within a few minutes of insulin treatment and persisted for at least 2 h. We conclude that, in the rat epididymal fat pad, insulin has two phospholipid effects, viz. a transient activation of phospholipase C, and a persistent increase in de novo phospholipid synthesis.  相似文献   

15.
Abstract: Inositol phosphate accumulation on carbachol stimulation of rat cerebellar granule cells shows a marked dependence on factors affecting cytosolic Ca2+ concentration ([Ca2+]c). After 5 min, potassium depolarisation caused a modest accumulation of inositol phosphates but augmented the response to carbachol by a factor of 2–3. These effects of potassium were dependent on an extracellular source of calcium and could be partially blocked by specific (nifedipine) and nonspecific (verapamil) calcium channel blockers. Measurements of [Ca2+]c under a range of stimulatory conditions demonstrated a close correlation between the elevation of [Ca2+]c and agonist-stimulated phospholipase C (PLC) activity. The maximal potentiation of carbachol-stimulated inositol phosphate accumulation was achieved using 20 m M KCl, which increased [Ca2+]c from ∼20 to ∼75 n M , indicating the involvement of relatively low threshold Ca2+ channels and the high sensitivity of the relevant PLC to small changes in [Ca2+]c. By contrast, increases in [Ca2+]c induced by the Ca2+ ionophore ionomycin were associated with more modest and less potent effects on agonist-stimulated PLC. These results demonstrate a cooperative interaction between a receptor/G protein-regulated PLC and voltage-stimulated elevations of [Ca2+]c, which may function to integrate ionotropic and metabotropic signalling mechanisms in cerebellar granule cells.  相似文献   

16.
Postnatal Swiss albino mice were treated with with methylazoxymethanol acetate (MAM) or saline and sacrificed at 25 days of age. Granule cell depletion resulted. Significant reduction in the cerebellar weight, protein, ganglioside sialic acid , cerebrosides, sulfatides, and phospholipids were documented. There was not, however, selective reduction of any component known to be associated with the synaptic structures. Specific association of cerebellar ganglioside with its granule cell population was not substantiated. Cerebroside/sulfatide ratios were not different in the two groups, indicating that significant alterations previously observed in spinal cord were not present in the cerebellum. It was concluded that the bulk of cerebellar granule cells and their synaptic connections could be deleted without affecting total ganglioside and phospholipid concentrations.  相似文献   

17.
Abstract: Exposure of rat brain or parotid gland slices to muscarinic receptor agonists stimulates a phospholipase C that degrades inositol phospholipids. When tissue slices were labelled in vitro with [3H]inositol, this response could be monitored by measuring the formation of [3H]inositol phosphates. Accumulation of inositol 1,4-biphosphate in stimulated brain slices suggests that polyphosphonositides are the primary targets for phospholipase C activity. Li+ (10 m M ) in the medium completely blocked the hydrolysis of inositol 1-phosphate, partially inhibited inositol 1,4bisphosphate hydrolysis, but had no effect on the hydrolysis of inositol 1,4,5-trisphosphate by endogenous phosphatases. Muscarinic receptor pharmacology was studied by measuring the accumulation of [3H]inositol 1-phosphate in the presence of 10 m M Li+. In experiments on brain slices, the response to carbachol was antagonised by atropine with an affinity constant of approximately 8.79 ± 0.12. Dose-response curves to several muscarinic agonists were constructed using brain and parotid gland slices. The results are consistent with relatively direct coupling of low-affinity muscarinic receptors to inositol phospholipid breakdown in brain slices; full agonists were relatively more potent in the parotid gland compared with the brain. Explanations for these differences are suggested.  相似文献   

18.
Abstract: The ability of receptors coupled to phosphoinositide turnover to evoke accumulation of inositol 1,4,5-trisphosphate (InsP3) over extended incubation periods, and consequently to affect the level of InsP3 receptor expression, was studied in cultured cerebellar granule cells. The cholinergic agonist carbachol (CCh; 1 m M ) evoked a biphasic accumulation of InsP3, a rapid three- to fourfold peak increase over control levels at ∼10 s, decreasing within 1 min to a long-lasting plateau elevation. Using an antibody against the type I InsP3 receptor, it was demonstrated that >50% down-regulation of type I InsP3 receptor expression in cerebellar granule cells occurred within 1 h of incubation with 1 m M CCh. Over 24 h, 1 m M CCh caused an ∼85% decrease in type I InsP3 receptor levels, and significant decreases in immunoreactivity were evident at much lower concentrations of CCh. Direct assessment of total InsP3 receptor expression using a radioligand binding method also detected down-regulation, but to an apparently lesser extent. 1-Aminocyclopentane-1 S ,3 R -dicarboxylic acid (200 µ M ), an agonist of metabotropic glutamate receptors, evoked a marked decrease in type I InsP3 receptors after 24 h of incubation. These findings demonstrate that a functional consequence of maintained InsP3 production in cerebellar granule cells is the down-regulation of InsP3 receptor expression and that this down-regulation may be a common mechanism of action of phosphoinositide-linked receptors during prolonged stimulation.  相似文献   

19.
Cultured cerebellar granule cells express phospholipase C-coupled muscarinic cholinergic, histaminergic, alpha 1-adrenergic, and serotonergic receptors. In an attempt to study desensitization of these neurotransmitter receptors, cells were prestimulated with saturating concentrations of carbachol, histamine, norepinephrine, or serotonin during the labeling of cells with myo-[3H]inositol and then rechallenged with various receptor agonists for their ability to elicit accumulation of [3H]inositol monophosphate in the presence of lithium. Prestimulation with each of these receptor agonists was found to cause a time-dependent desensitization to subsequent stimulation with the desensitizing agonist. Thus, prestimulation for 0.5, 4, and 18 h decreased carbachol response to 87 +/- 4, 52 +/- 2, and 40 +/- 1% of the control, respectively; histamine response to 37 +/- 2, 24 +/- 2, and 18 +/- 2%, respectively; norepinephrine response to 55 +/- 5, 14 +/- 1, and 10 +/- 1%, respectively; and serotonin response to 36 +/- 1, 18 +/- 1, and 9 +/- 2%, respectively. In all cases, the responses mediated by receptors which were not prestimulated remained virtually unchanged, thus indicating homologous desensitization. Dose-response studies indicate that the desensitization was associated with a major reduction in the maximal extent of agonist-induced responses. The basal accumulation was markedly enhanced following 0.5- and 4-h prestimulation, but returned to near normal after 18-h pretreatment. Biologically active phorbol ester, 4 beta-phorbol 12-myristate 13-acetate, rapidly attenuated basal phospholipase C activity, as well as the responses mediated by carbachol, histamine, norepinephrine, and serotonin, suggesting that activation and translocation of protein kinase C might play a role in the desensitization of phospholipase C-coupled receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Neuroblastoma cells were used to determine the effect of high carbohydrate and polyol levels on myo-inositol metabolism. The presence of elevated concentrations of glucose or sorbitol caused a significant decrease in both inositol accumulation and incorporation into phospholipid. These conditions, however, did not alter the accumulation of the other phospholipid head groups or the growth rate and water content of the cells. Two weeks of growth in either of the modified conditions was necessary to obtain a maximal effect on inositol incorporation. In contrast, growth in elevated concentrations of fructose, mannitol, or dulcitol had no effect on inositol metabolism. The reduced inositol accumulation and incorporation into lipids seen with glucose or sorbitol supplementation resulted in a decrease in the total phosphatidylinositol content of the cell without changing the levels of the other phospholipids. Kinetic analysis of cells grown in the presence of elevated glucose indicated that V'max for inositol uptake was significantly decreased with little change in the K'm. These data suggest that glucose decreases myo-inositol uptake in this system by noncompetitive inhibition. Cells grown in the presence of increased glucose also had elevated levels of intracellular sorbitol and decreased levels of myo-inositol. These results suggest that the high levels of glucose and sorbitol which exist in poorly regulated diabetes may be at least partially responsible for diabetic neuropathy via a reduction in the cellular content of myo-inositol and phosphatidylinositol. This system may be a useful model to determine the effect of reduced inositol phospholipid levels on neural cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号