首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The renal response to infusion of three different saline solutions was studied in chicks of Leach's storm petrel (Oceanodroma leucorhoa). Each of the solutions (125 mmol·1-1 NaCl at 5.3 ml·h-1, 250 mmol·l-1 NaCl at 2.6 ml·h-1, and 550 mmol·l-1 NaCl at 1.2 ml·h-1) provided the same delivery of Nacl but in different volumes of water. Birds infused with 125 mmol·l-1 NaCl had a glomerular filtration rate of 25.7 ml·h-1, a urine flow rate of 4.4 ml·h-1, and excreted 71% of the infused Na+ load in the urine. With infusion of 250 mmol·l-1 NaCl, the glomerular filtration rate was unchanged (23.3 ml·h-1), but urine flow rate was reduced to 0.93 ml·h-1 and only 35% of the Na+ load was excreted in the urine. Infusion of 550 mmol·l-1 NaCl induced a sharp decrease in glomerular filtration rate (to 3.8 ml·h-1) and urine flow rate (to 0.08 ml·h-1), and only 1.4% of the infused Na+ was excreted in the urine. The contribution of different nephron populations to filtration was assessed by the pattern of staining of glomeruli by alcian blue infused during the last 30 min of the saline infusion. The numbers of stained glomeruli did not differ between birds infused with 125 and 250 mmol·l-1 NaCl (59000 and 55000 glomeruli per kidney, respectively), and the patterns of staining were similar for birds in these two groups. Birds infused with 550 mmol·l-1 NaCl had lighter staining overall and fewer stained glomeruli (37000 per kidney). This absence of staining was predominant in the smaller size classes of glomeruli, suggesting a selective shutdown of smaller (reptilian-type) nephrons during times of osmotic challenge in these birds. This may be part of an overall suite of water-conserving strategies employed by these chicks during their long confinement with irregular feeding in the nesting burrow.Abbreviations ADH antidiuretic hormone - GFR glomerular filtration rate - MT mammalian-type - P plasma inulin concentration - RT reptilian-type - U urine inulin concentration - V urine flow rate  相似文献   

2.
The acclimation of the clawed toad Xenopus laevis to hyperosmotic solutions of NaCl (balanced solution of sea salt), urea or mannitol was studied. The animals could not be acclimated to salt solutions more concentrated centrated than 400 mosm·l-1. Urea was tolerated till 500 mmol·l-1. Plasma osmolality was always hyperosmotic to the environmental solution, but with diminished osmotic gradient at the highest tolerated solutions. Plasma urea concentration approached 90 mmol·l-1, similar in the three solutions of acclimation. Urine volume was very small under all conditions. Serum aldosterone and corticosterone did not differ significantly, although there was a slight tendency towards lower aldosterone in the NaCl solution. In vivo water uptake in tap water acclimated animals was very small, and was higher in the other groups. Only the salt- and urea-acclimated, but not the tap water and mannitol-acclimated groups responded with a clear increase following injection of oxytocin or theophylline. In vitro urea fluxes were similar and invariable in both directions under all conditions. No significant effect of theophylline was observed. Sodium transport measured by the short-circuit technique in vitro was lower in salt- and mannitol-acclimation conditions, and was stimulated significantly under all conditions in response to serosal oxytocin or theopylline. It is concluded that Xenopus laevis can osmoregulate at a limited range of external solutions. It is limited in the increase of its plasma urea concentration; the transport properties of the skin do not change very much upon acclimation, except for the hydroosmotic response to oxytocin.Abbreviations I sc short circuit current - PD potential difference - SW balanced sea water - TW tap water  相似文献   

3.
The mangrove crab Ucides cordatus showed a significant reduction in its output of isosmotic urine (to 60% of submerged rates) in humid, emersed conditions when in apparent water balance. A similar, but lesser, reduction was observed in the intertidal temperature species Carcinus maenas. Some of the decrease is effected by increased water withdrawal of an isosmotic fluid in the antennal gland (inulin urine to haemolymph concentration ratio=1.27) in Ucides but most is due to the reduced filtration rate which decreases from 3.41 to 2.19 ml·100 g-1·day-1 (in Carcinus from 7.37 to 5.88). In Carcinus, inulin urine to haemolymph concentration ratios are within the range 1.34–1.41 and show significant change on emersion. Comparisons of ion and inulin clearance ratios revealed interspecific differences in renal handling of Na+ and Cl-. During emersion total Na+ efflux is markedly reduced in both species. Urinary Na+ losses are responsible for most of the efflux in Carcinus but represent only 50% of the total in Ucides. Significant Na+ uptake from interstitial water occurs in Ucides. REductions in ion and water loss appear to be mainly dependent on decreases in urine output (clearance rate). However, some released urine was found to accumulate in the branchial chambers in both species. Whether or not extrarenal reabsorption of ions from released urine occurs in the gill chambers in either crab species remains to be proved.Abbreviations CPM counts per minute - ECF extracellular fluid - k rate constant for inulin clearance - k Na rate constant for sodium efflux - J out Na sodium efflux rate - Q tot total radioactivity injected - SEM standard error of mean - SW sea water - 9-SW sea water, salinity 9 mg·ml-1 (ppt) - 26-SW sea water, salinity 26 mg·ml-1 (ppt) - U/B ratio of urine (U) to haemolymph (B) concentrations - V c1 clearance rate - V u urine output - V a inulin space  相似文献   

4.
Summary Renal clearance experiments were conducted on feral chickens descended from birds collected from a coral island off the coast of Queensland, Australia. Following a control period when 0.13 M NaCl was used as a vehicle for the renal function markers, a salt load was imposed by infusion of 1 M NaCl. The hypertonic NaCl infusion resulted in increases in glomerular filtration rate (GFR), effective renal blood flow (ERBF), and urine flow rate (V), whereas filtration fraction decreased. Haematocrit was reduced and plasma osmolality, sodium, chloride and potassium concentrations increased. Plasma arginine vasotocin (PAVT) levels increased from 31.4±2.3 pg·ml-1 during the control infusion to 56.0±1.7 pg·ml-1 following a salt load of 12 mmol Nacl·kg-1 The sensitivity of release of AVT was 0.69±0.11 pg·ml-1 per mosmol·kg-1. The concentrations of Na and Cl in urine increased, whereas urine osmolality and potassium concentration decreased. The expansion of the extracellular fluid volume induced by the salt loading would tend to suppress the release of AVT, whereas the osmotic stimulus would provide a stimulus for the release of AVT. In this study, GFR, ERBF and ERPF increased at the same time as PAVT increased.Abbreviations AVP arginine vasopressin - AVT arginine vasotocin - ERBF effective renal blood flow - ERPF effective renal plasma flow - GFR glomerular filtration rate - Pavt plasma arginine vasotocin concentration - PAH paraaminohippuric acid - SEM standard error of mean - SNGER single nephron glomerular filtration rate - U/P urine to plasma ratio - V urine flow rate  相似文献   

5.
Summary The influence of ambient temperature and water supply on water metabolism and O2-consumption was measured in rock hyraxes (Procavia habessinica).With ad libitum food and water (control), water turnover rates of hyraxes were significantly lower than the general eutherian mean; water turnover rates were 61.4, 44.1 and 55.1 ml·kg–0.82·24 h–1 at 20, 27 and 35°C respectively. When greens were fed ad libitum but no drinking water was given, water turnover rate at 20°C was twofold higher, but at 27 and 35°C it was similar to that in control experiments.Water turnover rates were significantly reduced when no drinking water and only 25 g greens per day were offered (25.8, 22.0 and 29.3 ml·kg–0.82·24 h–1 at 20, 27 and 35°C respectively). Highest urine osmolality (3,200 mosm·kg–1) was recorded at 20°C.Oxygen consumption under control conditions was 43% below that predicted on the basis of body weight for most eutherian mammals. The thermoneutral zone ranged from 27 to 35°C, and the basal metabolic rate was 165 kJ·kg–0.75·h–1.  相似文献   

6.
Summary The kidneys of winter flounders transferred to hypotonic medium were investigated for glomerular and tubular handling of fluid and electrolytes and for the urinary excretion of proteins. Media were sea water (925 mosm·kg–1) and brackish water (70 mosm·kg–1).In sea water, the urine was hypertonic to the plasma in 7 fish of this study. Urine flow rate was correlated with the GFR. After adaptation to brackish water a delay of 1 to 3 days was observed until the kidneys switched from fluid retention to the excretion of large amounts of dilute urine. GFR and urine flow rate were increased from 0.61±0.08 to 1.58±0.29 ml·h–1·kg–1 and from 0.14±0.02 to 0.68±0.08 ml·h–1·kg–1, respectively . With increased filtered load the tubular reabsorption of fluid decreased from 74±2.4% to 45±11.2%. The excretion rates of sodium and potassium were increased due to decreased fractional sodium and potassium reabsorption. The urinary excretion of divalent cations, however, was reduced because the net tubular reabsorption of calcium was increased and the net secretion of magnesium was diminished.Both the urinary total protein concentration and the protein pattern showed no significant change, but the rate of protein excretion was increased from 0.21±0.04 to 0.60±0.05 mg·h–1·kg–1. The comparison of protein patterns obtained from urine and serum samples revealed that high molecular weight (HMW) proteins prevail in the serum whereas low molecular weight (LMW) proteins dominate in the urine. The diminished quantity of the HMW-protein fraction in the urine thus may reflect size selectivity of the glomerular filtration barrier for serum proteins also in the winter flounder.Abbreviations BW brackish water - SW sea water - GFR glomerular filtration rate - HMW heigh molecular weight - LMW low molecular weight  相似文献   

7.
Changes in cell turgor pressure have been followed in cells of Microcystis sp. transferred to culture medium containing added NaCl at osmolalities of 30–1,500 mosmol kg-1 ( 74–3,680 kPa). Upon upshock turgor decreased, due to osmotically-induced water loss from the cell. However, partial recovery of turgor was then observed in illuminated cells, with maximum turgor regain in media containing 30–500 mosmol kg-1 NaCl. The lightdependent recovery of turgor pressure was completed within 60 min, with no evidence of further changes in cell turgor up to 24 h. This is the first direct evidence that turgor regulation may occur in a prokaryotic organism. Short-term increases in cell K+ content were also observed upon upshock in NaCl, indicating that turgor regain may involve a turgorsensitive K+ uptake system. Estimation of internal K+ concentration in cells transferred to 250 mosmol kg-1 NaCl showed that changes in cell K+ may account for at least half of the observed turgor regain up to 60 min.  相似文献   

8.
Summary Atlantic salmon may return to the sea after spawning in fresh water. These fish, known as kelts, reportedly show a limited ability to hypoosmoregulate. However, this study shows that fresh-water-adapted kelts exposed to seawater demonstrate rapid adaptation (within 48 h) in osmoregulatory parameters to values characteristic of seawater-adapted salmonids. The urine flow rate falls from 1.2 to 0.2 ml·kg-1·h-1 within 24 h. Over the same period, urine osmolality increases from 48 mosmol·kg-1 to become isosmotic with the plasma, and Mg2+ secretion by the kidney tubules elevates the urine concentration from 0.5 to 100 mmol·l-1. As is characteristic for marine teleosts, kelts drink seawater and process the ingested water in the gut to replace body water lost by osmosis to the hyperosmotic medium. Seawater exposure causes a marked hypoxia, arterial oxygen tension falling by 43% within minutes and persisting for at least 4 days at this low level. This is associated with large changes in blood pH and acid-base balance. The physiological mechanisms involved in adaptation to a hyperosmotic external medium are discussed, and the osmoregulatory capacity of kelts is compared with that of salmon at other stages of the life cycle.Abbreviations FW fresh water - GFR glomerular filtration rate - Hb haemoglobin - Hct haematocrit - MCHC mean cell haemoglobin concentration - pHa pH in arterial blood - P aO2 partial pressure of oxygen in arterial blood - SEM standard error of mean - SW seawater - UFR urine flow rate  相似文献   

9.
Summary The intestinal caeca reabsorb urinary sodium chloride (NaCl) and water (Rice and Skadhauge 1982). Free water may be generated if the reabsorbed NaCl is secreted via salt gland secretion (Schmidt-Nielsen et al. 1958). Therefore ceacal ligation should (a) reduce hingut NaCl and water reabsorption, (b) enhance the increase in plasma osmolality during saline acclimation, and (c) affect drakes more than ducks. Twelve Pekin drakes and 13 Pekin ducks, Anas platyrhynchos, were caecally ligated or sham operated before acclimation to 450 mmol · 1 NaCl. Body mass, hematocrit, plasma osmolality, and inonic concentrations of plasma, cloacal fluid, and salt gland secretion were measured after each increase in drinking water salinity. Osmoregulatory organ masses were determined. Caecal ligation did not effect plasma osmolality or ion concentrations of plasma, cloacal fluid, or salt gland secretion, but reduced salt gland size in ducks. Drakes and ducks drinking fresh water had the same hematocrit, plasma osmolality, and plasma concentrations of Na+ and Cl. In both sexes exposure to 75 mmol · 1-1 NaCl significantly decreased plasma [Na+] and doubled cloacal fluid [Na+]. Exposure to 450 mmol · 1-1 NaCl decreased body mass and increased hematocrit, plasma [Na+], [Cl], and plasma osmolality (more in drakes than in ducks); cloacal fluid osmolality nearly doubled compared to freshwater-adapted ducks, due mainly to osmolytes other than Na+ and Cl. The [Cl] in salt gland secretion only slightly exceeded drinking water [Cl].Abbreviations AVT antiduretic hormone - CF cloacal fluid - ECFV extraoellular fluid volume - FW freshwater acclimated - Hct hematocrit - MDWE mean daily water flux - [Na +]cf cloacal fluid sodium concentration - [Na +]pl plasma sodium concentration - Osm cf cloacal fluid osmolality - Osm pl plasma osmolality - SGS salt gland secretion - TBW total body water  相似文献   

10.
Clearance of polyethylene glycol (PEG), inulin, or dextran that had been injected into the hemolymph of the mussel, Dreissena polymorpha, was measured in animals acclimated to pondwater (PW) or 10% seawater (SW). In addition, we measured the clearance of PEG from mussels acutely transferred into 10% SW and following return to PW after acclimation to 10% SW. Clearance values calculated for PW-acclimated mussels ranged from 2.0 to 3.3 ml (g dry tissue ċ h)-1 and declined to 0.28 ml (g dry tissue ċ h)-1 in 10% SW-acclimated animals. Transferring mussels into 10% SW resulted in a reduction in PEG clearance from the blood, coincident with the reduction of osmotic gradient. When 10% SW-acclimated mussels were returned to PW the clearance of PEG increased to rates observed in PW-acclimated animals within 1 h. The PEG clearance remained constant during the re-acclimation to PW even though the osmotic gradient declined from about 100 to 30 mosmol kg-1. Clearance of the solutes used in this study was likely to be a measurement of renal filtration rate. The clearance values appeared to be maximal when the animals were in PW. The limited capacity to increase clearance in the face of an osmotic challenge may be a critical factor in restricting D. polymorpha to freshwater or lower salinity environments with small ranges in salinity.  相似文献   

11.
Summary Phyllomedusa sauvagei, a xeric adapted treefrog, excretes large amounts of nitrogen as urate when fed insects, even when deprived of additional water. Most terrestrial anurans produce urea which they do not excrete when they are deprived of water. We investigated the differences in renal function underlying the unusual excretory capacities ofP. sauvagei. Glomerular filtration rates (GFR) were measured inP. sauvagei in water and when deprived of water, except that in food, for up to 27 days. For comparison a toad (Bufo boreas) was studied in water and during water deprivation. In water both species produced 30–40 ml urine kg–1 h–1 and resorbed only ca. 50% of the filtrate. With water deprivation, GFR rapidly approached zero inB. boreas, but remained high (20–40 ml kg–1 h–1) inP. sauvagei despite reductions in urine production of up to 100-fold. During water deprivation inP. sauvagei, urate excretion was between 250–300 moles kg–1 h–1 and 90% of this reflects net tubular secretion. Urate clearances were similar to those of para-amino hippurate, indicating effective removal of urate from the peritubular circulation. Urea, sodium and chloride showed net fractional resorptions of 98–99%, and 85% of the potassium was resorbed. At low rates of urine production, urine to plasma (U/P) ratios for inulin in bladder urine were 20–100 whereas those for ureteral urine were ca. 10. The urinary bladder also functions as a water reserve during dehydration.  相似文献   

12.
Measurements of growth, activity and energy consumption and estimates of milk intake were made in free-living, nursing ringed seal (Phoca hispida) pups. This was accomplished through the simultaneous use of time-depth recorders and the doubly labelled water technique. The pups spent an average of 52±7% of their time hauled out on the ice, 37±5% of the time in the water at the surface, and 11±5% of the time diving. Average daily mass gain of the pups (n=3) throughout the duration of the study period was 0.35±0.08 kg. The composition of the mass gain was 76% fat, 6% protein and 18% water. The total water flux was measured to be 52±10 ml·kg-1·day-1. Average CO2 production was 0.85±0.16 ml·g-1·h-1, corresponding to a field metabolic rate of 0.55±0.10 MJ·kg-1·day-1, or 3.8±0.6 times the predicted basal metabolic rate based on body size (Kleiber 1975). Average daily milk intake was estimated to be 1379±390 ml. The field metabolic rate for the different components of seal pup activity budgets were calculated to be FMRhaul out=1.34 BMR, FMRsurface=6.44 BMR, and FMRdiving=5.88 BMR.Abbreviations BMR basal metabolic rate - FMR field metabolic rate - HTO tritiated water - HT18O doubly labelled water - RQ respiration quotient - SDA specific dynamic action - TDR time-depth recorder  相似文献   

13.
Production of hydrogen peroxide has been found in Ulva rigida (Chlorophyta). The formation of H2O2 was light dependent with a production of 1.2 mol·g FW–1·h–1 in sea water (pH 8.2) at an irradiance of 700 mol photons m–2·s–1. The excretion was also pH dependent: in pH 6.5 the production was not detectable (< 5 nmol·g FW–1·h–1) but at pH 9.0 the production was 5.0 mol·g FW–1·h–1. The production of H2O2 was totally inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea (DCMU). The ability of U. rigida growing in tanks (7501) under a natural light regime to excrete H2O2 was checked and found to be seven times higher at 08.00 hours than other times of the day. The H2O2 concentration in the cultivation tank (density: 2 g FW·l–1) reached the highest value (3 M) at 11.00 hours. Photosynthesis was not influenced by H2O2 formation. The H2O2 is suggested to come from the Mehler reaction (pseudocyclic photophosphorylation). With an oxygen evolution of 120 mmol·g FW–1·h–1 at pH 8.2 and 90 mmol·g FW–1·h–1 at pH 9.0, 0.5% and 2.7% of the electrons were used for extracellular H2O2 production. The H2O2 production is sufficiently high to be of physiological and ecological significance, and is suggested to be a part of the defence against epi and endophytes.Abbreviations ACL artificial, continuous light - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - GNL greenhouse - LDC Luminol-dependent chemiluminescence - SOD Superoxide dismutase This investigation was supported by SAREC (Swedish Agency for Research Cooperation with Developing Countries), Hierta-Retzius Foundation, Marianne and Marcus Wallenberg Foundation, the Swedish Environmental Protection Board, and CICYT Spain.  相似文献   

14.
Summary Renal clearance studies were performed in European starlings (Sturnus vulgaris) in order to determine the extent of ureteral sodium excretion under control conditions and during an acute, hyperosmotic salt stress. These experiments also estimated the contribution of the lower intestine (colon and cloaca) to postrenal solute reabsorption by making both cloacal and ureteral urine collections in the same birds. A comparison of ureteral vs cloacal excretion rates found significantly higher sodium (9.09±1.30 vs 1.03±0.38 Eq·kg–1·min–1) and chloride (4.15±0.56 vs 1.00±0.38 Eq·kg–1·min–1) excretion rates during the ureteral collections. Fractional excretion of sodium was also significantly higher during ureteral collections, but this value did not exceed 1% of the filtered sodium load during either collection series. Urine flow rate was significantly higher during cloacal collections, suggesting osmotic back-flux of water across the cloacal wall. Infusion of a 1M NaCl solution resulted in rapid increases in glomerular filtration rate (GFR), urine flow rate, and urine osmolality. Fractional sodium and water reabsorption decreased by 11% and 4%, respectively. Glomerular counts and size distribution profiles, measured by in vivo alcian blue labelling, provided no evidence for a reduction in the number of filtering glomeruli during hyperosmotic saline loading. We conclude that renal sodium excretion rates for the starling are similar to those seen in other avian species and in mammals. These studies also provide direct evidence for postrenal modification of urine in this species, even under conditions of continuous flow. Acute hyperosmotic salt stress can, under some conditions, cause increased rather than decreased GFR, indicating multiple regulatory pathways. Finally, there was no evidence in these studies for glomerular shutdown in response to salt loading.  相似文献   

15.
Sperm motility and composition of the seminal fluid in Lota lota were investigated. Fives after motility initiation, 88.2 ± 12.4% of the spermatozoa were motile, their mean average path swimming velocity was 61.6 ± 16.3 μm s?1 and their principal swimming type the linear motion (77.4 ± 20.9%). In distilled water the rate of motile spermatozoa decreased to 0% in 40s. In 25–50 mosmol kg?1 electrolyte (NaCl) or non-electrolyte (glucose, sucrose) solutions, motility was prolonged for 10s and these solutions can therefore increase the efficiency of artificial fertilization when used for sperm motility activation. When semen was diluted in electrolyte or non-electrolyte solutions with osmolalities higher than 50 mosmol kg?1, sperm motility rates and swimming velocities decreased, and at osmolalities of 400 mosmol kg?1 motility was completely suppressed. In the seminal fluid with an osmolality of 290.08 ± 45.22 mosmol kg?1, sodium levels of 139.86 ± 23.79 mmol × 1?1, potassium levels of 11.59 ± 2.45 mmol × 1?1 and calcium levels of 0.20 ± 0.08 mmol × 1?1, sperm motility was inhibited. Under in vitro conditions, artificial saline solutions resembling the seminal plasma composition and 400 mosmol kg?1 NaCl or glucose solutions were useful as motility inhibiting solutions for predilution of semen. Sperm motility was not affected by pH 7.5–9.0, but at pH 6 the motility rate and the swimming velocity were reduced; seminal fluid pH was 8.47 ± 0.02. Therefore buffering of the artificial saline solutions can provide more stabile conditions for semen during storage and activation. Temperature optimum of semen was between 2 and 5°C. At higher temperatures semen became spontaneously motile. Therefore, controlled temperature conditions are an important factor for handling of semen. The qualitative, organical composition of seminal fluid was similar as in other fresh water teleosts.  相似文献   

16.
Summary The osmoregulatory effects of intravenously (i.v.) administered angiotensin II (AII) at dose rates of 5, 15 and 45 ng · kg–1 · min–1 were examined in kelp gulls utilizing salt glands and/or kidneys as excretory organs.In birds given i.v. infusion of 1200 mOsmolal NaCl at 0.3 ml · min–1 and utilizing only the salt glands to excrete the load, infusion of AII for 30 min consistently inhibited salt gland function in a dose-dependent manner.In birds given i.v. infusion of 500 mOsmolal NaCl at 0.72 ml · min–1 and utilizing both salt glands and kidneys to excrete the load, each dose of AII given for 2 h inhibited salt gland function but stimulated the kidney, so that the overall outputs of salt and water were enhanced and showed significant (2P<0.01) positive correlations with plasma AII.In birds given i.v. infusion of 200 mOsmolal glucose at 0.5 ml · min–1 and utilizing only the kidneys to excrete the load, low doses of AII (5 and 15 ng · kg–1 · min–1) caused renal salt and water retention, whereas a high dose (45 ng · kg–1 · min–1) stimulated salt and water output.The actions of plasma AII in kelp gulls support the concept that this hormone plays a vital role in avian osmoregulation, having effects on both salt gland and kidney function. Elevation of plasma AII consistently inhibits actively secreting salt glands, but its effects upon renal excretion depend primarily on the osmotic status as well as on the plasma AII concentration. In conditions of salt and volume loading doses of AII stimulate sodium and water excretion. With salt and volume depletion, the action of AII is bi-phasic with low doses promoting renal sodium and water retention but high circulating levels causing natriuresis and diuresis.  相似文献   

17.
Summary Submerged batch cultivation under controlled environmental conditions of pH 3.8, temperature 30°C, and KLa200 h–1 (above 180 mMO2 l –1 h–1 oxygen supply rate) produced a maximum (12.0 g·l –1) SCP (Candida utilis) yield on the deseeded nopal fruit juice medium containing C/N ratio of 7.0 (initial sugar concentration 25 g·l –1) with a yield coefficient of 0.52 g cells/g sugar. In continuous cultivation, 19.9 g·l –1 cell mass could be obtained at a dilution rate (D) of 0.36 h–1 under identical environmental conditions, showing a productivity of 7.2 g·l –1·h–1. This corresponded to a gain of 9.0 in productivity in continuous culture over batch culture. Starting with steady state values of state variables, cell mass (CX–19.9 g·l –1), limiting nutrient concentration (Cln–2.5 g·l –1) and sugar concentration (CS–1.5 g·l –1) at control variable conditions of pH 3.8, 30°C, and KLa 200 h–1 keeping D=0.36 h–1 as reference, transient response studies by step changes of these control variables also showed that this pH, temperature and KLa conditions are most suitable for SCP cultivation on nopal fruit juice. Kinetic equations obtained from experimental data were analysed and kinetic parameters determined graphically. Results of SCP production from nopal fruit juice are described.Nomenclature Cln concentration of ammonium sulfate (g·l –1) - CS concentration of total sugar (g·l –1) - CX cell concentration (g·l –1) - D dilution rate (h–1) - Kln Monod's constant (g·l –1) - m maintenance coefficient (g ammonium sulfate cell–1 h–1) - m(S) maintenance coefficient (g sugar g cell–1 h–1) - t time, h - Y yield coefficient (g cells/g ammonium sulfate) - Ym maximum of Y - YS yield coefficient based on sugar consumed (g cells · g sugar–1) - YS(m) maximum value of YS - µm maximum specific growth rate constant (h–1)  相似文献   

18.
Summary Pekin ducks were adapted to permanent osmotic stress by rearing them on a NaCl solution of increasing concentration up to 2% as drinking water. Their salt and water balance was compared with that of non-adapted ducks maintained on tap water. Amounts and osmolalities of salt gland secretion and cloacal discharges, plasma osmolality and electrolytes were measured during stepwise osmotic loading by intravenous infusion of NaCl solution of about 740 mosm·kg–1, at rates of 0.25, 0.45 and 0.65 ml·min–1. Before loading, the plasma osmolality of the adapted ducks was about 22 mosm·kg–1 higher than in non-adapted animals. The initial step of loading induced salt gland secretion in the adapted ducks after an average rise of plasma osmolality of 3.6 mosm·kg–1 and in the non-adapted animals after a rise of 7.8 mosm·kg–1. The method of osmotic loading enabled both groups of animals to balance their water input and output. However, only the adapted ducks were able to balance NaCl input and output, predominantly by salt gland secretion, thus maintaining a stable plasma osmolality. The nonadapted ducks retained 42% of the salt load which resulted in a rise of plasma osmolality of 49 mosm·kg–1, more salt being excreted by the kidneys than by the salt glands.In the salt-adapted ducks, salt gland activity, plasma osmolality and Na+ concentration did not correlate during balanced states of salt input and output. The involvement of tonicity receptors in salt gland control was confirmed by the stimulating effects of various hypertonic solutions. On the other hand, continuous loading by a constant infusion of NaCl solution of 1,300 mosm·kg–1 induced a steady salt gland secretion at a rising plasma osmolality and thus suggested that a volume factor is involved in salt gland control. Inhibition of salt gland activity by withdrawing blood and activation by blood infusion confirmed this assumption. While a direct cause and effect relationship between volume changes and salt gland secretion cannot be demonstrated, the results indicate that volume changes in one or more extracellular compartments do affect salt gland secretion.Supported by Deutsche Forschungsgemeinschaft (Si 320/2)  相似文献   

19.
Body temperature and oxygen consumption were measured in the eastern hedgehog,Erinaceus concolor Martin 1838, during summer at ambient temperatures (T a) between-6.0 and 35.6°C.E. concolor has a relatively low basal metabolic rate (0.422 ml O2·g-1·h-1), amounting to 80% of that predicted from its body mass (822.7 g). Between 26.5 and 1.2°C, the resting metabolic rate increases with decreasing ambient temperature according to the equation: RMR=1.980-0.057T a. The minimal heat transfer coefficient (0.057 ml O2·g-1·h-1·°C-1) is higher than expected in other eutherian mammals, which may result from partial conversion of hair into spines. At lower ambient temperature (from-4.6 to-6.0° C) there is a drop in body temperature (from 35.2 to 31.4° C) and a decrease in oxygen consumption (1.530 ml O2·g-1·h-1) even though the potential thermoregulation capabilities of this species are significantly higher. This is evidenced by the high maximum noradrenaline-induced non-shivering thermogenesis (2.370 ml O2·g-1·h-1), amounting to 124% of the value predicted. The active metabolic rate at ambient temperatures between 31.0 and 14.5° C averages 1.064 ml O2·g-1·h-1; at ambient temperatures between 14.5 and 2.0° C AMR=3.228-0.140T a.Abbreviations AMR active metabolic rate - bm body mass - BMR basal metabolic rate - h heat transfer coefficient - NA noradrenaline - NST non-shivering thermogenesis - NSTmax maximum rate of NA-induced non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - STPD standard temperature and pressure (25°C, 1 ATM) - T a ambient temperature - T b body temperature  相似文献   

20.
Summary Respiratory and cutaneous evaporative water losses were measured in dried air from 5 xantusiid lizard species to determine whether adaptations for water conservation were present in one or both components. These species represent the range of arid to mesic habitats occupied by the Xantusiidae. The respiratory proportion of evaporative water loss ranged from 20–50% and did not show consistent patterns of temperature dependence or interspecific differences. However, respiratory water loss expressed as mg H2O per ml O2 consumed and cutaneous water loss (mg H2O· cm–2·h–1) exibited parallel correspondence to habitat aridity. Adaptations for reducing water loss from the skin involved an increased skin resistance to water flux while reduction of respiratory water loss was probably the result of reduced convection requirements for respiratory gas exchange.Abbreviations EWL evaporative water loss - RWL respiratory water loss - CWL cutaneous water loss  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号