首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfhydryl cross-linking poly(ethylene glycol) (PEG)-peptides and glycopeptides were prepared and tested for spontaneous polymerization by disulfide bond formation when bound to plasmid DNA, resulting in stable PEG-peptide and glycopeptide DNA condensates. A 20 amino acid synthetic peptide possessing a single sulfhydryl group on the N-terminal cysteine, with two or five internal acetamidomethyl (Acm)-protected cysteine residues, was reacted with either PEG vinyl sulfone or iodoacetamide tyrosinamide triantennary N-glycan. Following RP-HPLC purification, Acm groups were removed by silver tetrafluoroborate to generate sulfhydryl cross-linking PEG-peptides and glycopeptide that were characterized by either (1)H NMR or LC-MS. Sulfhydryl cross-linking PEG-peptides and glycopeptides were found to bind to plasmid DNA and undergo disulfide cross-linking resulting in stable DNA condensates with potential utility for in vivo gene delivery.  相似文献   

2.
Cross-linking peptides have been developed by inserting multiple Cys residues into a 20 amino acid condensing peptide that polymerizes through disulfide bond formation when bound to DNA resulting in small, highly stable DNA condensates that mediate efficient in vitro gene transfer [McKenzie et al. (2000) J. Biol. Chem. 275, 9970-9977]. In the present study, a minimal peptide of four Lys and two terminal Cys residues was found to substitute for Cys-Trp-(Lys)(17)-Cys, resulting in DNA condensates with similar particle size and gene expression in HepG2 cells. Substitution of His for Lys residues resulted in an optimal peptide of Cys-His-(Lys)(6)-His-Cys that, in addition to the attributes described above, also provided buffering capacity to enhance in vitro gene expression in the absence of chloroquine. The reported structure-activity relationships systematically explore peptides with combinations of Lys, Cys, and His residues resulting in low molecular weight peptides with improved gene transfer properties.  相似文献   

3.
目的:提出了一种新型的糖肽富集试剂,将不同代数的含高密度N端的聚酰胺-胺(PAMAM)型树枝状聚合物固定到溴化氰活化的琼脂糖凝胶上用于糖肽的高效分离。方法:先用标准糖蛋白对试剂的富集条件进行优化,包括是否使用还原剂、不同酸度的结合溶液、不同洗脱液、不同试剂比例,将优化后的方法用于鼠脑裂解液糖肽的富集。结果与结论:将优化的方法用于鼠脑糖肽的富集,用第6代PAMAM鉴定到的糖肽数目是采用商业化酰肼材料的3倍,该试剂对糖肽富集的高选择性和高重现性为糖蛋白组学研究提供了新的工具。  相似文献   

4.
A potent new class of reductively activated peptide gene delivery agents   总被引:10,自引:0,他引:10  
A new class of peptide gene delivery agents were developed by inserting multiple cysteine residues into short (dp 20) synthetic peptides. Substitution of one to four cysteine residues for lysine residues in Cys-Trp-Lys(18) resulted in low molecular weight DNA condensing peptides that spontaneously oxidize after binding to plasmid DNA to form interpeptide disulfide bonds. The stability of cross-linked peptide DNA condensates increased in proportion to the number of cysteines incorporated into the peptide. Disulfide bond formation led to a decrease in particle size relative to control peptide DNA condensates and prevented dissociation of peptide DNA condensates in concentrated sodium chloride. Cross-linked peptide DNA condensates were 5-60-fold more potent at mediating gene expression in HepG2 and COS 7 cells relative to uncross-linked peptide DNA condensates. The enhanced gene expression was dependent on the number of cysteine residues incorporated, with a peptide containing two cysteines mediating maximal gene expression. Cross-linking peptides caused elevated gene expression without increasing DNA uptake by cells, suggesting a mechanism involving intracellular release of DNA triggered by disulfide bond reduction. The results establish cross-linking peptides as a novel class of potent gene delivery agents that enhance gene expression through a new mechanism of action.  相似文献   

5.
The 26 amino acid hemolytic melittin peptide was converted into a gene transfer peptide that binds to DNA and polymerized through disulfide bond formation. Melittin analogues were synthesized by the addition of one to four Lys repeats at either the C- or the N-subterminal end along with terminal Cys residues. Melittin analogues were able to bind and polymerize on plasmids resulting in the formation of DNA condensates. In the absence of DNA, melittin analogues retained their red blood cell hemolytic potency but were inactive when bound to plasmid DNA. The in vitro gene transfer efficiency mediated by poly-melittin analogues was equivalent to PEI in HepG2 cells. Attempts to truncate portions of either of the two melittin alpha-helices resulted in concurrent loss of hemolytic potency and gene transfer efficiency. The results demonstrate the ability to transform melittin into a gene transfer peptide by transiently masking its membrane lytic activity by the addition of Lys and Cys residues to promote DNA binding and polymerization.  相似文献   

6.
The N-linked oligosaccharides synthesised by the murine plasmacytoma cell line NS-1 have been analysed by lectin affinity chromatography on columns of immobilised concanavalin A (Con A), Lens culinaris (lentil), Ricinus communis agglutinin (RCA) and leuko-phytohemagglutinin (L-PHA). The majority of complex N-glycans in this transformed cell line were branched structures with only a low level of biantennary complex chains detected. The analysis showed the major complex N-glycan fraction consisted of a minimum sialylated triantennary structure. [3H]Mannose-labelled transferrin receptor was isolated from NS-1 cells by immunoprecipitation followed by electroelution from SDS polyacrylamide gels. The isolated receptor was digested with Pronase and the 3H-labelled glycopeptides analysed by lectin affinity chromatography. Analysis by Con A-Sepharose indicated that approx. 50% of the labelled glycopeptides were branched complex N-glycans (unbound fraction) while the remainder were oligomannose structures (strongly bound). The presence of tri and/or tetraantennary structures in the Con A unbound fraction was further suggested by the interaction of 61% of the fraction with L-PHA. The lectin profiles obtained for the complex N-glycans of the transferrin receptor glycopeptides were similar to those for the total cellular glycopeptides of NS-1 cells. Reverse-phase HPLC analysis of tryptic glycopeptides of the isolated [3H]mannose-labelled transferrin receptor gave three 3H-labelled peaks, indicating that all three potential N-glycosylation sites on the receptor are utilised. The Con A-Sepharose profiles of the three fractions indicated the presence of branched complex N-glycans and high mannose chains at each site. The profiles of two of the tryptic glycopeptide fractions were very similar, while the third had a higher content of oligomannose oligosaccharides.  相似文献   

7.
Urine is a complex mixture of proteins and waste products and a challenging biological fluid for biomarker discovery. Previous proteomic studies have identified more than 2800 urinary proteins but analyses aimed at unraveling glycan structures and glycosylation sites of urinary glycoproteins are lacking. Glycoproteomic characterization remains difficult because of the complexity of glycan structures found mainly on asparagine (N-linked) or serine/threonine (O-linked) residues. We have developed a glycoproteomic approach that combines efficient purification of urinary glycoproteins/glycopeptides with complementary MS-fragmentation techniques for glycopeptide analysis. Starting from clinical sample size, we eliminated interfering urinary compounds by dialysis and concentrated the purified urinary proteins by lyophilization. Sialylated urinary glycoproteins were conjugated to a solid support by hydrazide chemistry and trypsin digested. Desialylated glycopeptides, released through mild acid hydrolysis, were characterized by tandem MS experiments utilizing collision induced dissociation (CID) and electron capture dissociation fragmentation techniques. In CID-MS(2), Hex(5)HexNAc(4)-N-Asn and HexHexNAc-O-Ser/Thr were typically observed, in agreement with known N-linked biantennary complex-type and O-linked core 1-like structures, respectively. Additional glycoforms for specific N- and O-linked glycopeptides were also identified, e.g. tetra-antennary N-glycans and fucosylated core 2-like O-glycans. Subsequent CID-MS(3), of selected fragment-ions from the CID-MS(2) analysis, generated peptide specific b- and y-ions that were used for peptide identification. In total, 58 N- and 63 O-linked glycopeptides from 53 glycoproteins were characterized with respect to glycan- and peptide sequences. The combination of CID and electron capture dissociation techniques allowed for the exact identification of Ser/Thr attachment site(s) for 40 of 57 putative O-glycosylation sites. We defined 29 O-glycosylation sites which have, to our knowledge, not been previously reported. This is the first study of human urinary glycoproteins where "intact" glycopeptides were studied, i.e. the presence of glycans and their attachment sites were proven without doubt.  相似文献   

8.
Baby-hamster kidney (BHK) cells were labelled metabolically by growth in media containing radioactive sugars and the asparagine-linked glycopeptides (N-glycans) obtained by Pronase digestion of disrupted cells were fractionated by chromatography on concanavalin A-Sepharose. About 2-3% of the total [3H]galactose- or [3H]fucose-labelled glycopeptides were found to be bound tightly to the lectin column and were eluted with 500 mM-methyl alpha-mannoside. Further analysis of these minor components by chromatography on Bio-Gel P4, lentil-lectin-Sepharose and DEAE-Sephacel and sensitivity to alpha-mannosidase indicates the presence in BHK-cell glycopeptides of hybrid structures of the following form: (Formula: see text) Similar structures were identified as major features of the glycoproteins of ricin-resistant mutants RicR17 and RicR19 as described previously for RicR21 cells [Hughes, Mills & Stojanovic (1983) Carbohydr. Res. 120, 215-234]. The RicR15 cell line also produces significant amounts of hybrid N-glycans. The studies show that the novel N-glycans accumulating in ricin-resistant mutants are derived by a metabolic pathway that exists to a minor extent in normal BHK cells.  相似文献   

9.
Large scale mass spectrometry analysis of N-linked glycopeptides is complicated by the inherent complexity of the glycan structures. Here, we evaluate a mass spectrometry approach for the targeted analysis of N-linked glycopeptides in complex mixtures that does not require prior knowledge of the glycan structures or pre-enrichment of the glycopeptides. Despite the complexity of N-glycans, the core of the glycan remains constant, comprising two N-acetylglucosamine and three mannose units. Collision-induced dissociation (CID) mass spectrometry of N-glycopeptides results in the formation of the N-acetylglucosamine (GlcNAc) oxonium ion and a [mannose+GlcNAc] fragment (in addition to other fragments resulting from cleavage within the glycan). In ion-trap CID, those ions are not detected due to the low m/z cutoff; however, they are detected following the beam-type CID known as higher energy collision dissociation (HCD) on the orbitrap mass spectrometer. The presence of these product ions following HCD can be used as triggers for subsequent electron transfer dissociation (ETD) mass spectrometry analysis of the precursor ion. The ETD mass spectrum provides peptide sequence information, which is unobtainable from HCD. A Lys-C digest of ribonuclease B and trypsin digest of immunoglobulin G were separated by ZIC-HILIC liquid chromatography and analyzed by HCD product ion-triggered ETD. The data were analyzed both manually and by search against protein databases by commonly used algorithms. The results show that the product ion-triggered approach shows promise for the field of glycoproteomics and highlight the requirement for more sophisticated data mining tools.  相似文献   

10.
beta-hexosaminidase B is an enzyme that is involved in the degradation of glycolipids and glycans in the lysosome. Mutation in the HEXB gene lead to Sandhoff disease, a glycolipid storage disorder characterized by severe neurodegeneration. So far, little structural information on the protein is available. Here, the complete analysis of the disulfide bond pattern of the protein is described for the first time. Additionally, the structures of the N-glycans are analyzed for the native human protein and for recombinant protein expressed in SF21 cells. For the analysis of the disulfide bond structure, the protein was proteolytically digested and the resulting peptides were analyzed by MALDI-MS. The analysis revealed three disulfide bonds (C91-C137; C309-C360; C534-C551) and a free cysteine (C487). The analysis of the N-glycosylation was performed by tryptic digestion of the protein, isolation of glycopeptides by lectin chromatography and mass measurement before and after enzymatic deglycosylation. Carbohydrate structures were calculated from the mass difference between glycosylated and deglycosylated peptide. For beta-hexosaminidase B from human placenta, four N-glycans were identified and analyzed, whereas the recombinant protein expressed in SF21 cells carried only three glycans. In both cases the glycosylation belongs to the mannose-core- or high-mannose-type, and some carbohydrate structures are fucosylated.  相似文献   

11.
Protein glycosylation is a central issue for post-genomic (proteomic) sciences. We have taken a systematic approach for analyzing soluble glycoproteins produced in the nematode Caenorhabditis elegans. The approach aims at assigning (i) genes that encode glycoproteins, (ii) sites where glycosylation occurs, and (iii) types of attached glycan structures. A soluble extract of C. elegans, as a starting material, was applied first to a concanavalin A (ConA) column (specific for high-mannose type N-glycans), and then the flow-through fraction was applied to a galectin LEC-6 (GaL6) column (specific for complex-type N-glycans). The adsorbed glycoproteins were digested with lysylendopeptidase, and the resultant glycopeptides were selectively recaptured with the same lectin columns. The glycopeptides were separated by reversed-phase chromatography and then subjected to sequence determination. As a result, 44 and 23 glycopeptides captured by the ConA and GaL6 columns, respectively, were successfully analyzed and assigned to 32 and 16 corresponding genes, respectively. For these glycopeptides, 49 N-glycosylation sites were experimentally confirmed, whereas 21 sites remained as potential sites. Of the identified genes, about 80% had apparent homologues in other species, as represented by typical secreted proteins. However, the two sets of genes assigned for the ConA and GaL6-recognized glycopeptides showed only 1 overlap with each other. Proof of the practical applicability of the glyco-catch method to a model organism, C. elegans, directs us to explore more complex multicellular organisms.  相似文献   

12.
An enzyme preparation from almond emulsin cleaved the peptide-carbohydrate linkage of stem bromelain glycopeptide, Asn-Asn (oligosaccharide)-Glu-Ser-Ser. The resulting products were determined to be an intact peptide, Asn-Asp-Glu-Ser-Ser, and an intact oligosaccharide unit with two moles of N-acetylglucosamine. So far as tested the enzyme hydrolyzed glycopeptides with 3 to 10 amino acids, while both asparagine-oligosaccharide from ovalbumin and Asn-GlcNAc were not. Thus, the enzyme is a new amidase capable of hydrolyzing aspartylglycosylamine linkage in glycopeptides with multiple amino acid residues.  相似文献   

13.
The authors describe a chromatographic mapping procedure of oligosaccharides present in acetolysates and partial acid hydrolysates of glycopeptides or glycoproteins. Oligosaccharides are first fractionated on charcoal-Celite columns and then identified by paper chromatography. This procedure is sensitive and reproducible and allows to compare the structure of N-glycans and of glycoproteins from various sources.  相似文献   

14.
H Sasaki  N Ochi  A Dell  M Fukuda 《Biochemistry》1988,27(23):8618-8626
We have previously determined the carbohydrate structure of human recombinant erythropoietin [Sasaki, H., Bothner, B., Dell, A., & Fukuda, M. (1987) J. Biol. Chem. 262, 12059-12076]. The carbohydrate chains are distributed in three N-glycosylation sites and one O-glycosylation site. In order to examine the extent to which protein structure influences glycosylation, we have analyzed the saccharide structures at each glycosylation site (Asn24, Asn38, Asn83, and Ser126) of human recombinant erythropoietin. By high-performance liquid chromatography, we have succeeded in separation of glycopeptides containing different O-linked saccharides to the same peptide backbone. Fast atom bombardment mass spectrometry of the isolated glycopeptides combined with Edman degradation allowed us to elucidate the composition of glycopeptides and the amino acid attachment site. The analysis of glycopeptides and saccharides by fast atom bombardment mass spectrometry and high-performance liquid chromatography provided the following conclusions on N-glycans: (1) saccharides at Asn24 are heterogeneous and consist of biantennary, triantennary, and tetraantennary saccharides with or without N-acetyllactosaminyl repeats; (2) saccharides at Asn38 mainly consist of well-processed saccharides such as tetraantennary saccharides with or without N-acetyllactosaminyl repeats; (3) saccharides at Asn83, on the other hand, are homogeneous in the backbone structure and are composed mainly of tetraantennary without N-acetyllactosaminyl repeats. It was also noted that saccharides at Asn24 are much less sialylated than those at Asn38, although these two glycosylation sites are close to each other. These results clearly indicate that the protein structure and, possibly, the carbohydrate chain at the neighboring site greatly influence glycosylation of a given glycosylation site.  相似文献   

15.
The purity of horseradish peroxidase isoenzyme C was demonstrated using isoelectric focusing, polyacrylamide gel electrophoresis at two pH values and cellulose acetate electrophoresis at two pH values. The glycopeptides obtained upon trypsin digestion were isolated using the plant lectin, concanavalin A, and were resolved using paper electrophoresis. The carbohydrate content of the native peroxidase was 86% accounted for by the carbohydrate content of the glycopeptides thus suggesting little loss of carbohydrate during glycopeptide isolation and purification. In each of the seven glycopeptides isolated glucosamine was associated with asparagine, thus suggesting the carbohydrate chains are covalently bound to the peptide chain through N-glycosidic linkages. The purity of each glycopeptide was demonstrated by the sequential release of single amino acid residues by Edman degradation. As six glycopeptides had unique amino acid sequences, it was concluded that the carbohydrate prosthetic group was distributed in at least six units along the protein backbone. Five glycopeptides possessed the amino acid sequence about the point of carbohydrate attachment of Asn-X-(Ser, Thr) where X is any amino acid. The size of the carbohydrate units ranged from 1600 to 3000 daltons. The predominant carbohydrate residues in each glycopeptide were mannose and glucosamine with lesser and varying amounts of fucose, xylose, and arabinose. There was no apparent correlation of the carbohydrate composition with the amino acid sequence.  相似文献   

16.
The N-glycosylation of structural unit 1 of Rapana venosa hemocyanin was studied. Enzymatically liberated N-glycans were analyzed by matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis (CE)-MS following 8-aminopyrene-1,3,6-trisulfonate labeling and labeling with 3-aminopyrazole, a new dedicated sugar reagent. Structural information was obtained by exoglycosidase sequencing, on-line MS/MS, permethylation, and amidation. A mixture of high-mannose and complex glycans with so far unknown and unusual acidic terminal structures was revealed. As the hemocyanin protein sequence is currently unknown, de novo sequencing of the glycopeptides had to be carried out. The N-glycans were therefore enzymatically removed with simultaneous partial (50%) (18)O-labeling of glycosylated asparagine residues prior to proteolysis. Following nano-liquid chromatography-MALDI-TOF-MS, the originally glycosylated peptides could be revealed and their sequences determined by MS/MS. The site occupancies were subsequently elucidated by precursor ion scanning of the intact glycopeptides using a Q-Trap mass spectrometer.  相似文献   

17.
18.
In this report, we describe that a salt adaptation of plant cells induces glycoform changes in N-glycoproteins. Intracellular and cell-wall glycopeptides were prepared from glycoproteins expressed in wild-type BY2 cells and salt-adapted cells. N-Glycans were liberated from those glycopeptides by hydrazinolysis, and the released oligosaccharides were N-acetylated and pyridylaminated. The structures of pyridylaminated (PA-) N-glycans were analyzed by a combination of two-dimensional sugar-chain mapping, MS analysis, and exoglycosidase digestion. In both wild-type cells and salt-adapted cells, the plant complex type structure was predominant among N-glycans expressed on glycoproteins, but we found that the Man2Xyl1Fuc1GlcNAc2 structure was significantly expressed on intracellular and cell-wall glycoproteins of the salt-adapted cells. Furthermore, enhancement of the specific activities of alpha-mannosidase and beta-N-acetylglucosaminidase was observed in the salt-adapted BY2 cells, suggesting that the glycoform changes are due to changes in glycosidase activities.  相似文献   

19.
Thermal-assisted partial acid hydrolysis of the carbohydrate moieties of N-glycosylated peptides of horseradish peroxidase (HRP) is used to generate oligosaccharide cleavage ladders. These ladders allow direct reading of components of the oligosaccharides by mass spectrometry. Acid hydrolysis performed with 1.4, 3.1, 4.5, or 6.7M trifluoroacetic acid at 37, 65, or 95 degrees C for 30min to 24h hydrolyzed mainly the oligosaccharide units of glycopeptides with least peptide bond or amino acid side chain hydrolysis. Tryptic N-glycosylated peptides from HRP with molecular weights of 2533, 2612, 3355, 3673, and 5647Da were used as test systems in these experiments. Data showed that the most labile group of oligosaccharides is the fucose (Fuc) and the majority of the end cleavage products are peptides with one or no N-acetylglucosamine (GlcNAc) residue linked to Asparagine (Asn). Additionally, the data agree with previous reports that glycopeptides 3355 and 3673Da carry an oligosaccharide (Xyl)Man3(Fuc)GlcNAc2, glycopeptide 5647Da carries two oligosaccharides (Xyl)Man3(Fuc)GlcNAc2, and glycopeptides 2612 and 2533Da carry (Xyl)Man3GlcNAc2 and (Fuc)GlcNAc, respectively. However, the glycosylation site of the 2612Da peptide at Asn286 is partially occupied. This method is particularly useful in identifying glycopeptides and obtaining monosaccharide compositions of glycopeptides.  相似文献   

20.
Proteasomes are multisubunit enzymes responsible for the degradation of many cytosolic proteins. The inhibition of the proteasome has been the subject of intense interest in the development of drug therapies. We have previously demonstrated that simultaneous administration of a tripeptide aldehyde proteasome inhibitor (MG115 or MG132) with a peptide (Cys-Trp-Lys18) DNA condensate boosted gene expression by 30-fold in cell culture. In the present study, we have developed a convergent synthesis to allow the incorporation of a proteasome inhibitor tripeptide into the C-terminal end of a gene delivery peptide. The resulting peptides formed DNA condensates that mediated a 100-fold enhancement in gene expression over a control peptide lacking all or part of the tripeptide inhibitor. Gene transfer peptides possessing intrinsic proteasome inhibitors were also found to be nontoxic to cells in culture. These results suggest that intrinsic proteasome inhibition may also be used to boost the efficiency of peptide-mediated nonviral gene delivery systems in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号